DES Waste Management Division 29 Hazen Drive; PO Box 95 Concord, NH 03302-0095

PHASE I ENVIRONMENTAL SITE ASSESSMENT FORMER POLYCLAD LAMINATES PROPERTY Volume 2 of 2 (Appendix D) Map 116, Lot 171 45 Tannery Street Franklin, New Hampshire 03235

NHDES Site No. 199902062 / Project No. 25885

NHDES Brownfields State Response Program Grant No. RP96128501

Prepared For:

New Hampshire Department of Environmental Services

Waste Management Division

29 Hazen Drive – P.O. Box 95

Concord, New Hampshire 03302-0095

(603) 271-2890

E. Molly Stark, P.G.

Molly.Stark@des.nh.gov

Prepared By:
Nobis Engineering, Inc
18 Chenell Drive
Concord, New Hampshire 03301
Phone Number: (603) 224-4182
Clarence "Tim" Andrews, P.G.
TAndrews@nobiseng.com

April 11, 2011 Nobis File No. 79100.24

TABLE OF CONTENTS Volume 1 of 2

1.0 SUMMARY

2.0 INTRODUCTION

- 2.1 Purpose
- 2.2 Detailed Scope-of-Services
- 2.3 Significant Assumptions
- 2.4 Limitations and Exceptions
- 2.5 Special Terms and Conditions
- 2.6 User Reliance
- 2.7 User Obligations

3.0 SITE DESCRIPTION

- 3.1 Location and Legal Description
- 3.2 Previous Environmental Investigations
- 3.3 Site and Vicinity General Characteristics
- 3.4 Current Use of the Site
- 3.5 Descriptions of Structures, Roads, Other Improvements on the Site
- 3.6 Current Use of Adjoining Properties

4.0 USER PROVIDED INFORMATION

- 4.1 Title Records
- 4.2 Environmental Liens or Activity and Use Restrictions
- 4.3 Specialized Knowledge
- 4.4 Commonly Known or Reasonably Ascertainable Information
- 4.5 Valuation Reduction for Environmental Issues
- 4.6 Owner, Property Manager, and Occupant Information
- 4.7 Reason for Performing Phase I
- 4.8 Other

5.0 RECORDS REVIEW

- 5.1 Standard Environmental Record Sources
- 5.2 Additional Environmental Sources
- 5.3 Physical Setting Sources
- 5.4 Historical Use Information on the Site
- 5.5 Historical Use Information on Adjoining Properties

6.0 SITE RECONNAISSANCE

- 6.1 Methodology and Limiting Conditions
- 6.2 General Site Setting
- 6.3 Exterior Observations

TABLE OF CONTENTS (continued) Volume 1 of 2

7.0 INTERVIEWS

- 7.1 Interview with Owner
- 7.2 Interview with Site Manager
- 7.3 Interviews with Occupants
- 7.4 Interviews with Local Government Officials
- 7.5 Interviews with Others
- 8.0 FINDINGS
- 9.0 OPINION
- 10.0 CONCLUSIONS
 - 10.1 E 1527-05 Statement of Conclusions
- 11.0 DEVIATIONS
- 12.0 ADDITIONAL SERVICES
- 13.0 REFERENCES
- 14.0 QUALIFICATIONS OF ENVIRONMENTAL PROFESSIONALS

FIGURES

Figure 1 - Locus Plan

Figure 2 - Site Sketch

Figure 3 – Features of Environmental Interest

Figure 4 – Site Photographs

Figure 5 – Site RECs

APPENDICES

Appendix A – Limitations

Appendix B - First Search Database Report

Appendix C – Environmental Documentation and Questionnaire

TABLE OF CONTENTS Volume 2 of 2

Appendix D – Historical Research Documentation and Supporting Information

SKETCH

45 TANNERY STREET

PAUL STREET REALTY, LLC

PO BOX 5081
LACONIA
DEED BOOK: 3181
DEED PAGE: 1919
DEED DATE: 20100302
LAST UPDATE: 20110217
SALE DATA:
DATE TYPE

CURRENT OWNER/ADDRESS

Parcel ID: 116-171-00

03247

CODE

99 Z

PRICE

AREA

NH

20100302LAND ONLY 7,000 20060419LAND + BLDG 1,332,600 OTHER FEATURES/ATTACHED IMPROVEMENTS NO STR/C

116-171-00		SHEET #	M7	N	umber	of Un	its:	Cla	iss:	1 - 4	440	Zoning	: B1	Card	# 1	1 of	1
 LAND DATA:	SIZE		LAND	INFLUE	NCE(S	>	FACTOR	LAND	VALUE		-			hborhoo			
		0		0										PRIOR		CURR	
PRIMARY	1.970	0000		0 0 0) 			93	,580		i e	AND UILDIN OTAL		93,61 4,71 98,31			,600 ,200 ,800
TOTAL ACREAC	ìE:	1.970		TOTAL		VALUE:		•	93,600	,	¯			TA COLLI 0100219 0091208 0090325		Ui F	ORMATION - NIMP.PARCE IELD REVIE IELD REVIE
IDENT. UNITS						−і етп	UCTURE T	YDF -									
		cos	T APPRO	ACH DET	AIL:												
	•	LEV	ELS (JSE P	ERIME	TER	HEATING		W/H	ARE/	A 9	SF RATE		RCN	% GO	00	RCNLD
AREA		T: T: T: T: T: T: T:	0 0 0 0 0 0				NONE NONE NONE NONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE NONE									
			# # #	UILDING EAR BUI UNITS UALITY IDENT EFFICI 1-BEDR 2-BEDR 3-BEDR	ROOMS	s					- 1	TOTAL U AVE % G GRADE F F IDENT FUNC/EC RCNLD	NADJ. OOD ACTOR UNIT ON FA	RCNLD S CTOR			
		OUT	BUILDIN	G/YARD	ITEM	DETAIL	-:					•					
		DES	CRIPTIO	N WIDT	TH LE	NGTH SIZE	QUAN.	YEAR BUILT	PHYS. COND.		FUNC Util		VALUE				÷
			PA1	1	1	2000	1	1980	NORMA		NORMA NONE NONE NONE NONE	AL	2,19	90			
		OTH	IER IMPR	OV							NONE						
		PER DAT	RMIT DAT		PRICE		PUR	TOTAL POSE	OBY/Y	ARD			2,190) - SUMMARY	·•		
		200 200 200	080326 D 040625 R 031028 R	08-03 04-74 03-121		29,8 25,0 20,0	00 00 00	PROD	DAMAGE TO WRE ENOS/D	D A HSE EMO				SQUARE F ARE FOOT INCOME: INCL. M			
				OST			_				IUIA	LNEIL	IPEKA I	INCL. M	INGMNT	.):	
		4/0 CON	06 SALE MM NOTE:	INCLUDE	ES 4	PARCEL	5				INCO	ALL RAT ME INDI	CATED	VALUE:			847,000

12714/1010

102.39

79.15

				_		
COMMERCIAL/INDUSTRIAL	PROPERTY	RECORD	CARD	/	FRANKLIN,	NEW HAMPSHIRE

EFFECTIVE DATE OF VALUE: ARPIL 1, 2007

00045 TANNERY STREET	Parcel ID:	116-171-00	SI	IEET # 1	13	Living	g Units	Class:	- 400	Zoning:	B1 Car	d# 1	of 1
CURRENT OWNER/ADDRESS DAUL STREET KEELY MAGENTA HOLDINGS, INC.	1) 6	LAND DATA:						-		N	eighborhoo	d ID: 3	304.00
	, LLC	TYPE S	SIZE	L	AND INF	LUENCE(S)	FACTOR	LAND VALUE		AS	SESSMENT I	NFORMAT	ON:
PO Box 5081		PRIMARY 1	1.970	0		0		98,500			PRIOR	CUR	RENT
ONE COOKSON PLACE PROVIDENCE RI La conia NH	02903 - 03247			0 0 0 0		0 0 0 0				LAND BUILDING TOTAL	98,5 1,106,3 1,204,8	00 00 1,7 00 1,7	98,500 106,300 204,800
DEED BOOK: 2884 318/ DEED PAGE: 1218		TOTAL ACREAGE:	: 1.9	270	TOT	AL LAND VALU	IF:	98,500		_	DATA COLL	ECTION	INFORMATION -
DEED DATE: 20060419 3/ LAST UPDATE: 20060727	12/10	- Nokender				THE ENTIRE THE				_	20040413 20010205	RS ET	ENT.GAINED ENTRY + SIGN ENT.GAINED
312110 LIB 7.	PRICE CODE 000 99 332,600 Z					1 s	STRUCTURE T	/DE- //01					
OTHER FEATURES/ATTATCHED IN	MPROVEMENTS			COST AF	PROACH	DETAIL: _	31KUCTUKL 1						
STUC/CODE MEASUREMENTS	IDENT.UNITS			LEVELS	USE	PERIMETER	HEATING	A/C W/H	AREA	SF RATE	RCN	% GOOD	RCNLD
EE1 1 50 OD1 10 10 OD1 8 8 LD4 30 50 LD5 SKETCH DATA: AREA	1 1 5 1 2	AREA		01 TO 01 01 TO 01 02 TO 02 01 TO 01 01 TO 01 TO	82 82 82 44 45	156 82 156 707 495	HOT AIR HOT AIR HOT AIR HOT AIR HOT AIR NONE NONE	CENTRA12 CENTRA24 NONE NONE	2356 744 2356 37208 15237	102.39 125.09 79.15 29.50 29.89	241,230 93,070 186,480 1,097,640 455,430	.50	120,620 46,540 93,240 548,820 318,800
* 1S MTL 18310 A 2S MSN & G 3100	6 D CP6 O E 1S MTL	1 04 15237		ТО			NONE	NONE					
B EE1 55 C RS2 284	0 F	1525			# IDE # EFF # 1-B # 2-B	BUILT	1 1930 1 C+ 1			TOTAL UNA AVE % GOO GRADE FA (# IDENT (FUNC/ECON RCNLD	DD CTOR JNITS		1,128,020 0.54 1.08 1 1.00 1,218,300
				OUTBUIL	DING/YA	RD ITEM DET	AIL:						
	·	5 76		DESCRIF	TION W	IDTH LENGT	H QUAN. ZE	YEAR PHYS. BUILT COND.	FUN UT 1		ALUE		

							15	76		
31		10	15 MTL			35				
31										
100	114				127				142	
100					127					
1	1	46		78			19 M	T ^L		8 I 8
Ľ	20 ₂₈ _		_							_

# 1 # 2	-BEDROO -BEDROO -BEDROO	MS MS				RCNL	D PACTOR	
OUTBUILDING/	YARD IT	EM DETAIL	:					
DESCRIPTION	WIDTH	LENGTH OR SIZE	QUAN.	YEAR BUILT	PHYS. COND.	FUNC. UTIL.	VALUE	
SH6 RS2 FN1 PA1 RS2 CP6 OTHER IMPROV	24 10 6 1 17 8	30 13 270 2000 16 13	1 1 1 1 1	1980 1980 1980 1980 1978 1978	NORMAL NORMAL NORMAL NORMAL NORMAL NORMAL	NORMAL NORMAL NORMAL NORMAL NORMAL NORMAL	2,490 1,150 2,480 2,490 2,400 510	
PERMIT DATA: DATE # 20040625 R04 20031028 R03 20001010 C-8 	PRI -74 -121 8-00 	25,00 20,00	00 00	JRPOSE PROD INT R	OBY/YARD	INCOME A TOTAL RE MARKET R POTENTIA TOTAL EX TOTAL NE	PPROACH SUMMARY: NTABLE SQUARE FEET ENT/SQUARE FOOT: LL GROSS INCOME: PENSES (INCL. MNGMI T OPERATING INCOME RATE: NDICATED VALUE:	NT.):

1S BR/S

36 1S BR/S

58

15 TANNERY STREET	Parcel ID:	097-072-00	SHEE	т# м7	1	Number of U	nits:	Cla	ass: I	- 401	Zoning:	B1 Ca	rd # 1	of 1
CURRENT OWNER/ADDRESS		LAND DATA:										Neighborho		
15 TANNERY STREET, LL	С	TYPE S	IZE	LAN	ID INFLUE		FACTOR	LAND	VALUE		AS	SSESSMENT		
PO BOX 66 FRANKLIN DEED BOOK: 2834 DEED PAGE: 1766	NH 03235		.000 0 .840 0		(0 0 0 0		47 4	,500 ,030		LAND BUILDING TOTAL	182,	500 400 900	JRRENT 51,500 131,400 182,900
EED DATE: 20051025 AST UPDATE: 2010021 ALE DATA:	6	TOTAL ACREAGE:	1.840		TOTAL	LAND VALUE	:	!	51,500					INFORMATION
TYPE	PRICE CODE 130,000 Z											2005112 2001030 2001021	B SW	ESTIMATED ESTIMATED
THER FEATURES/ATTACH	•													
O STR/C		IDENT. UNITS	_	COST APPI	SOACH DE		RUCTURE T	YPE: 3	97					
				LEVELS		PERIMETER	HEATING	A/C	W/H	AREA	SF RATE	RCN	% GOOD	RCNL
KETCH 1S BR/S 1S BR/S 1SBR/S	AREA 576 H 1856 I 1280 J K	AREA	0	1 TO 01 1 TO 01 1 TO A1 TO TO	82 82 45	86 296 133	HOT AIR HOT AIR HOT AIR NONE NONE NONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE NONE		576 3136 1856	132.46 138.40 23.76	76,300 434,030 44,100	.40 .40 .35	30,530 173,610 15,440
16	M N				BUILDIN YEAR BU # UNITS QUALITY # IDENT # EFFIC # 1-BED # 2-BED # 3-BED	GRADE CONTROL OF CONTR					# IDENT	ADJ.RCNLD OD CTOR UNITS N FACTOR		121,990 0.40 1.00 0.90 109,800
				OUTBUILD	ING/YARD	ITEM DETA	L:							
				DESCRIPT	ION WID	TH LENGTH OR SIZE		YEAR BUILT	PHYS. COND.	FUN UT I		ALUE		
	32			RG4 RS1 RS2 RS2		1 1568 1 112 1 192 1 304	1 1 1 1	1970 1970 1970 1970	NORMAL NORMAL NORMAL NORMAL	NOR NOR	MAL MAL E	7,420 740 1,320 2,100		
80 1SBR/S				OTHER IM	PROV			-1-0	OBY (VA	DD 1/41	UE. 21	. EQN		
		16		PERMIT D	ΔΤΔ-			LIOIAL	OBY/YA	KU VAL	UE: 21	,580		

PERMIT DATA: DATE # PURPOSE PRICE DATE INCOME APPROACH SUMMARY: TOTAL RENTABLE SQUARE FEET:
MARKET RENT/SQUARE FOOT:
POTENTIAL GROSS INCOME:
TOTAL EXPENSES (INCL. MNGMNT.):
TOTAL NET OPERATING INCOME: NOTES: COST 15 TANNERY STREET OVERALL RATE: INCOME INDICATED VALUE: COMM NOTE: DBA: LAKES REGION ARTESIAN WEL

201,100

COMMERCIAL/INDUSTRIAL PROPERTY RECORD CARD	/	FRANKLIN, NEW HAMPSHIRE	/	EFFECTIVE DATE OF VALUE: APRIL 1, 2010
--	---	-------------------------	---	--

TANNERY STREET	Parcel ID:	097-404-00 S	IEET # M7 Number of Un	nits: Class: E - 903	Zoning: B1 Card # 1 of 1
CURRENT OWNER/ADDRESS		LAND DATA: TYPE SIZE		FACTOR LAND VALUE	Neighborhood ID: 304.00 ASSESSMENT INFORMATION: PRIOR CURRENT
316 CENTRAL STREET FRANKLIN DEED BOOK: DEED PAGE:	NH 03235	WATERFRONT 1.000 RESIDUAL 13.184	0 0 0 TOPOGRAPHY TOPOGRAPHY TOPOGRAPHY 0 0 0 0	-75 11,750 -75 15,820	LAND 27,600 27,600 BUILDING TOTAL 27,600 27,600
DEED DATE: LAST UPDATE: 20100216 SALE DATA: DATE TYPE	PRICE CODE	TOTAL ACREAGE: 14.		27,600	- DATA COLLECTION INFORMATION - 20080613 RD UNIMP.PARCEL 20010213 TO UNIMP.PARCEL
OTHER FEATURES/ATTACHED NO STR/C	IMPROVEMENTS	IDENT. UNITS		RUCTURE TYPE:	
			COST APPROACH DETAIL:	COCTORE TIPE:	
			LEVELS USE PERIMETER	HEATING A/C W/H AREA	SF RATE RCN % GOOD RCNLD
SKETCH *A B C D E F G	AREA H I J K L	AREA	TO TO TO TO TO TO TO	NONE	
F G	N N		BUILDING # YEAR BUILT # UNITS QUALITY GRADE # IDENT UNITS # EFFICIENCIES # 1-BEDROOMS # 2-BEDROOMS # 3-BEDROOMS		TOTAL UNADJ.RCNLD AVE % GOOD GRADE FACTOR # IDENT UNITS FUNC/ECON FACTOR RCNLD
			OUTBUILDING/YARD ITEM DETAIL		
			DESCRIPTION WIDTH LENGTH OR SIZE	QUAN. YEAR PHYS. FUN BUILT COND. UTI	
				NON NON NON NON NON NON	E E E E
			OTHER IMPROV		
			PERMIT DATA:	TOTAL OBY/YARD VAL	.ue:
			DATE # PRICE		OME APPROACH SUMMARY:
			NOTES: COST	MAR POT	AL RENTABLE SQUARE FEET: KKET RENT/SQUARE FOOT: ENTIAL GROSS INCOME: AL EXPENSES (INCL MUGMNT.):
			PUBLIC BOAT RAMP COMM NOTE:	OVE	AL NET OPERATING INCOME: RALL RATE: OME INDICATED VALUE:

33	/01	/11	12:57:30	PM

FRANKLIN. NEW HAMPSHIRE

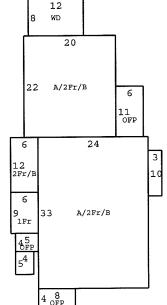
EFFECTIVE DATE OF VALUE: APRIL 1, 2010

5/U1/11 12:57:30 PM	RESIDENTIAL	ASSESSMENT		FRANKLI	N, NEW HAMPSHIRE		EFFECT	VE DATE OF VAL	JE: APRIL 1,	2010
351 NORTH MAIN STREET	MAP/LC	or: 097-073-00]	ZONING: B1	LIVING UNITS	: 2	CLASS: R - 10	04 CARD #	1 OF 1	
CURRENT OWNER/ADDRESS PHAIR, WILLIAM		LAND DATA: TYP LIN	PE SIZ IEAR W.F.	ZE 0	INFLUENCE FACTOR	s %	LAND VALUE		119.00 ESSMENT INFO	RMATION - CURRENT
2 SUNSET CIRCLE - APT B DERRY	NH 03038	PRI	MARY 0.3	0 0 0 10 0 0	OPOGRAPHY 0 0 0 0 0	-10	26,230	LAND BUILDING TOTAL	26,200 84,700 110,900 OPERTY VISIT	26,200 84,700 110,900
DEED BOOK: 2696 DEED PAGE: 907 DEED DATE: 20040831		тот	ACRE 0.3	ō 310		AL LAND VALUE:	26,200		081008 RB 041104 MS 020625 RS	ENT. GAINED ENTRY + SIGN OCC.NOT HOME UPDATE
Sale info not verified SALES DATA:	by assessor's	office PERMIT DATA:		DW			ADDITION DATA		- 4	Value
Date Type Pric 20040831 LAND + BLDG 20020930 LAND + BLDG	e Valid 139,000 0 79,000 0	d Date #	Amount	Purpose	Lower Level A B C	First Floor Wood Deck Opn Frm Prch Opn Frm Prch	Second Floo	r Third Floo	r Area 72 24 15	1300 900 600 00
DWELLING DATA: Style: FAMILY Story Ht. 2.00 Attic: NONE Walls: ALUM/V Bedrooms: 4		Ras	ST APPROACH CC se Price	OMPUTATIONS 160.450	E F G H				0	00 00 00 00
Total Rooms: 8 Full Baths: 2 Half Baths: 2 Half Baths: 8 Add'l Fixtures: 5 Total Fixtures: 7 Total Fixtures: 8 Basement: FULL Fin Bsmt. Living Area: 8 Heating System: ELECTR Heating Type: BASIC FIREPLACE WB: 972 Total Living Area: 972 Total Living Area: 1944 Quality Grade: C Condition: FAIR Marketability: FR Year Built: 1960 Eff. Year Built: Unfinished Area: Unheated Area:	MIC HOT AIR Mtl: Mtl:	Plu Adc Uni Bas Ati Hee FBI Rec SUE Gra C &	umbing ditions fin. Area sement tic at/AC Adj.	160,450 3780 2,800 167,030 1.00 -15 141,980 0.59	ſ	4 36	27 2Fr/B			
Type Qty Yr Size1 S RS1 1 1980 9 RC2 1 1990 10	Size2 Grd Cond 14 D A 14 D A	d Ma Value \$23 \$62	е	G:5		6 6 WD				
MAP SHEET # M7 Hous	se Color: 6 G	RAY				3 5 OFP				

TANNERY STRE	ET PARKING Parcel ID:	097-105-00	SHEET # M7	Number of	Units:	Class: C -	337 Zoning:	B1 Card#	1 of 1
CURRENT OWNER/ADDR	RESS	LAND DATA:					N	leighborhood ID:	304.00
LICIA STREET REAL	TY, LLC	TYPE SIZE	LAN	D INFLUENCE(S)	FACTOR	LAND VALUE	AS	SSESSMENT INFORMA	
PO BOX 5081 ACONIA EED BOOK: 3181 EED PAGE: 1917	NH 03247	PRIMARY 1.000	0 0 0 SHAPE/SIZE 0 0	0 0 0 0	-80	9,500	LAND BUILDING TOTAL	PRIOR 9,500 21,900 31,400	9,500 15,300 24,800
EED DATE: 2010030 AST UPDATE: 2010 ALE DATA: ATE TYPE	02 01103 PRICE CODE	TOTAL ACREAGE:	1.000	0 TOTAL LAND VALU	E:	9,500		DATA COLLECTION 20100512 RD 20100219 RD	INFORMATION - UNIMP.PARCE UNIMP.PARCE
0100302LAND ONLY 0060419LAND + BLC THER FEATURES/ATT 0 STR/C	7,000 99 DG 1,332,600 2 TACHED IMPROVEMENTS	IDENT. UNITS						20080614 RD	UNIMP.PARCE
			COST APPR	ROACH DETAIL:	TRUCTURE T	YPE:			
			LEVELS	USE PERIMETER	HEATING	A/C W/H AR	EA SF RATE	RCN % GOO	DD RCNLD
SKETCH	AREA H I J K L	AREA	TO TO TO TO TO TO TO		NONE NONE NONE NONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE NONE NONE			
	M N			BUILDING # YEAR BUILT # UNITS QUALITY GRADE # IDENT UNITS # EFFICIENCIES # 1-BEDROOMS # 2-BEDROOMS # 3-BEDROOMS			TOTAL UNA AVE % GOO GRADE FAC # IDENT L FUNC/ECON RCNLD	CTOR JNITS	
			OUTBUILD	ING/YARD ITEM DET	\IL:				
			DESCRIPT	ION WIDTH LENGT OR SI	I QUAN. Ze	YEAR PHYS. BUILT COND.	FUNC. VA	ALUE	
			PA1	20000) 1	1980 FAIR	NONE NONE NONE NONE	5,310	
			OTHER IM	PROV			NONE		
			PERMIT DATE	ATA: # PRICE		TOTAL OBY/YARD	INCOME APPRO		
							IPOTENTIAL GRO	LE SQUARE FEET: SQUARE FOOT: DSS INCOME: ES (INCL. MNGMNT ERATING INCOME:	

03/01/11 12:57:52 PM	RESIDENTIAL	. ASSESSME	NT	FRANK	LIN,	NEW HAMI	PSHIRE		EFFECTI	VE DATE OF	VALUE: A	APRIL 1,	2010
355 NORTH MAIN STREET	MAP/LO	OT: 097-07	4-00	ZONING: B	1	LIV	ING UNITS:	2	CLASS: R - 10	4 CARD	# 1 C	OF 1	
CURRENT OWNER/ADDRESS BEAUPRE, BRIAN		LAND DATA:	TYPE LINEAR W.F.	SIZE	0	INFLUEN	CE FACTORS	%	LAND VALUE	NBHD -			RMATION - CURRENT
PO BOX 5081 LACONIA	NH 03247		PRIMARY RESIDUAL	1.000 0.590	0 0 TOPC 0 0	OGRAPHY	0 0 0 0	-10	36,810 650	LAND BUILDING TOTAL	37, 143, 180,	,500 ,100 ,600	37,500 148,200 185,700
DEED BOOK: 2647 DEED PAGE: 0725 DEED DATE: 20040423			TOT. ACRE	1.590	0		O TOTA	L LAND VALUE:	37,500	-	2010041 2008100 2001021		HISTORY - INFO AT DOOR OCC.NOT HOME ENT. GAINED UPDATE
Sale into not verified	by assessor's	office		DW									
SALES DATA:		PERMIT D	ATA:						ADDITION DATA:	•			
Date Type Pric	e Valio	d Date	# Amount	Purpose		Lower	Level	First Floor	Second Floor	· Third F	loor	Area	Value
19981025 LAND + BLDG 20040424 LAND + BLDG	59,000 0 4,000 Z				A B C D	Bsmnt Bsmnt		1s Frame Opn Frm Prch Frame Bay Opn Frm Prch	1s Frame Frame Bay		Unfshd Unfshd	440 66 30 32	57600 2500 3800 1300
DWELLING DATA: Style: OLD ST Story Ht. 2.00 Attic: UNFIN Walls: ALUM/V Bedrooms: 5			COST APPROAC	H COMPUTATIONS	E F G H	Bsmnt	Unfsh	Opn Frm Prch 1s Frame Wood Deck 1s Frame	1s Frame			32 20 72 96 0	600 8800 1600 3800
Total Rooms: 9 Full Baths: 2 Half Baths: Add'l Fixtures: 2 Total Fixtures: 10			Base Price Plumbing Additions Unfin. Area Basement	141,000 6300 80,300 7,800									
Basement: FULL Fin Bsmt. Living Area: Basement Rec Room Area: Heating System: OIL Heating Type: BASIC FIREPLACE WB: /	HOT WATER	,	Attic Heat/AC Adj. FBLA Rec Rm Fireplace Bsmt. Gar.					8 WI	1				
Basement Garage (# cars Ground Fir Area: 792 Total Living Area: 2722 Quality Grade: C+ Condition: AVERAGE Marketability: AV Year Built: 1900 Eff. Year Built:	,		SUBTOTAL Grade Factor C & D Factor TOTAL RCN % Good Market Adj. Ecnom Obslcr	-15 210,090 0.65				22 A	/2Fr/B 6				
Unfinished Area: Unheated Area:	UILDING DATA		Functon Obster Functon Obster Nbhd/Style A Under Conster TOTAL RCNLD	en Adj.				6	OFP 24	3			

Qty Yr Size1 Size2 Grd Cond Ma Value Type \$11,370 \$210


VALUE FLAG:5

NOTES:

OUTBUILDING TOTAL: \$11,600

MAP SHEET # M7

House Color: 8 YELLOW

					,	,			
03/01/11 12:58:04 PM	RESIDENTIA	L ASSESSMENT	FRANKL I	IN, NEW HAMPSHIRE	<u> </u>	EFFECTI	VE DATE OF VALUE	: APRIL 1,	, 2010
15 STURTEVANT STREET	MAP/L	OT: 096-005-01	ZONING: B1	LIVING U	NITS: 1	CLASS: R - 10)1 CARD # 1	OF 1	
CURRENT OWNER/ADDRESS DURANT, SETH G DURANT, LYNN M		LAND DATA: TYPE LINEAR W.F.	SIZE	INFLUENCE FAC	ctors %	LAND VALUE	I	304.00 SSMENT INFO	CURRENT
15 STURTEVANT STREET FRANKLIN	NH 03235	PRIMARY	ā	O O O O	-10	35,120		35,100 167,100 202,200 PERTY VISIT	35,100 167,100 202,200 T HISTORY -
DEED BOOK: 2899 DEED PAGE: 1860 DEED DATE: 20060609		TOT. ACRE	0.460		TOTAL LAND VALUE:	35,100	2008	90616 DI 80618 RD 80617 SP	OCC.NOT HOME FIELD REVIEW OCC.NOT HOME UPDATE
Sale into not verified b	oy assessor's	office	DR						
SALES DATA:		PERMIT DATA:				ADDITION DATA		_	
Date Type Price	e Vali	d Date # Amount	Purpose	Lower Level	First Floor	Second Flooi	r Third Floor	Area	Value
20060609 LAND + BLDG 20050628 LAND ONLY DWELLING DATA:	220,000 Z 50,000 3	20050524 B05-5 200,0	DOO NEW HOME	A B C D E	Wood Deck Opn Frm Prch Opn Frm Prch		9	192 5 15 5 20	3200 300 600 300 900
Style: COLONIA Story Ht. 2.00 Attic: NONE Walls: ALUM/V Bedrooms: 3		COST APPROAG	CH COMPUTATIONS	F G H	Conc Patio		d december 1	252 0	1300 00 00
Total Rooms: 5 Full Baths: 2 Half Baths: Add'l Fixtures: Total Fixtures: 8 Basement: FULL		Base Price Plumbing Additions Unfin. Area Basement Attic	142,940 3780 6,600		18	12	, 		
Fin Bsmt. Living Area: Basement Rec Room Area: Heating System: GAS Heating Type: BASIC FIREPLACE WB: /	HOT WATER	Heat/AC Adj FBLA Rec Rm Fireplace / Bsmt. Gar.	153,320		14 CPat	1			
Basement Garage (# cars Ground Flr Area: 810 Total Living Area: 1650 Quality Grade: C+ Condition: AVERAGE		SUBTOTAL Grade Factol C & D Factol TOTAL RCN % Good	r 1.05						
Marketability: AV Year Built: 2005 Eff. Year Built: Unfinished Area: Unheated Area:	UILDING DATA	Market Adj. Ecnom Obslo Functn Obslo Nbhd/Style Under Const TOTAL RCNLD	cn Adj.			30			

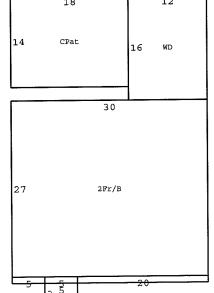
VALUE FLAG:5 NOTES: 6/06 SOLD TO FRIEND -10= LOCATION COMM LOT

Value

\$17,350

OUTBUILDING TOTAL: \$17,400

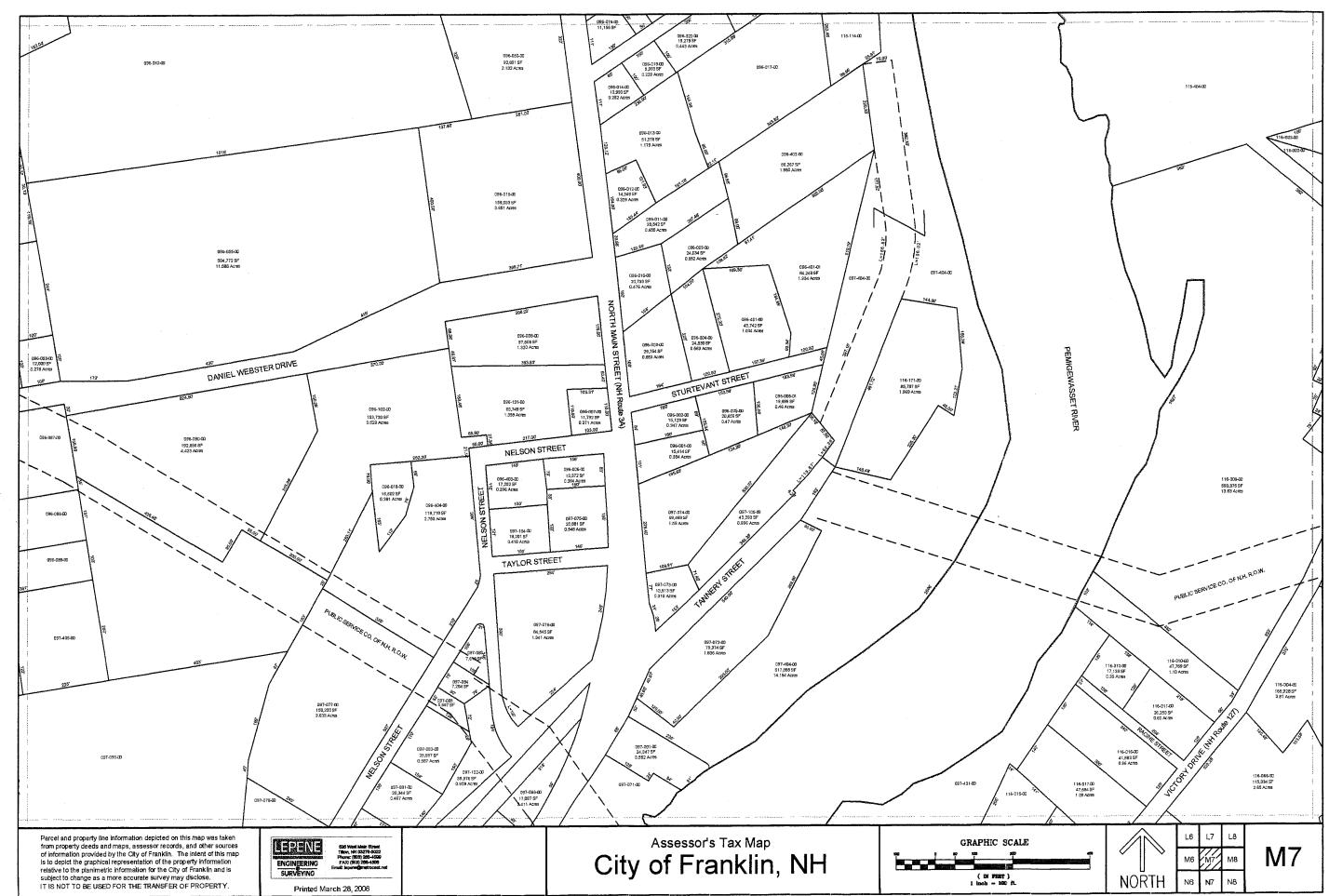
MAP SHEET # M7

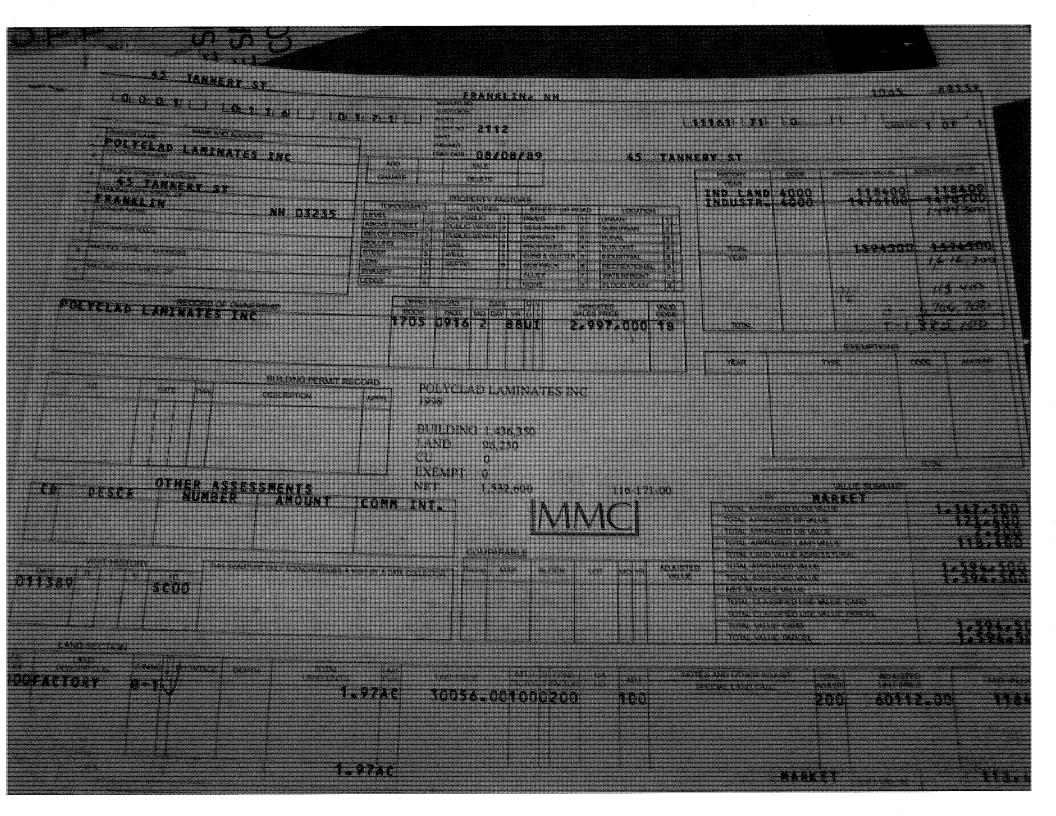

RG1

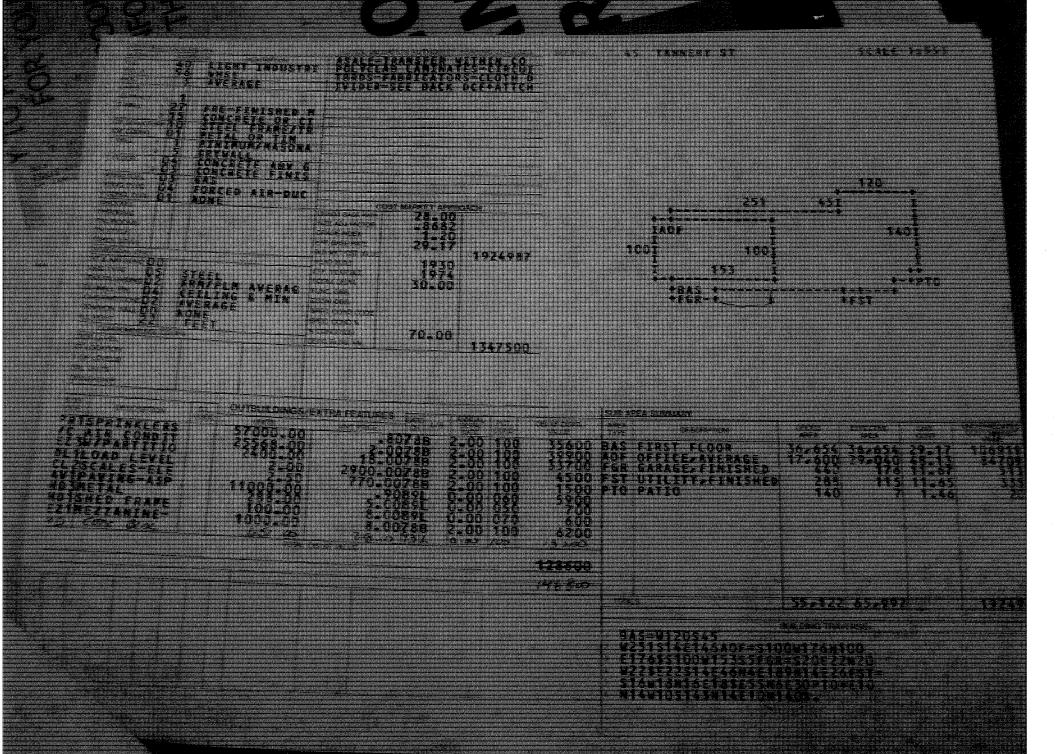
1 2005 24

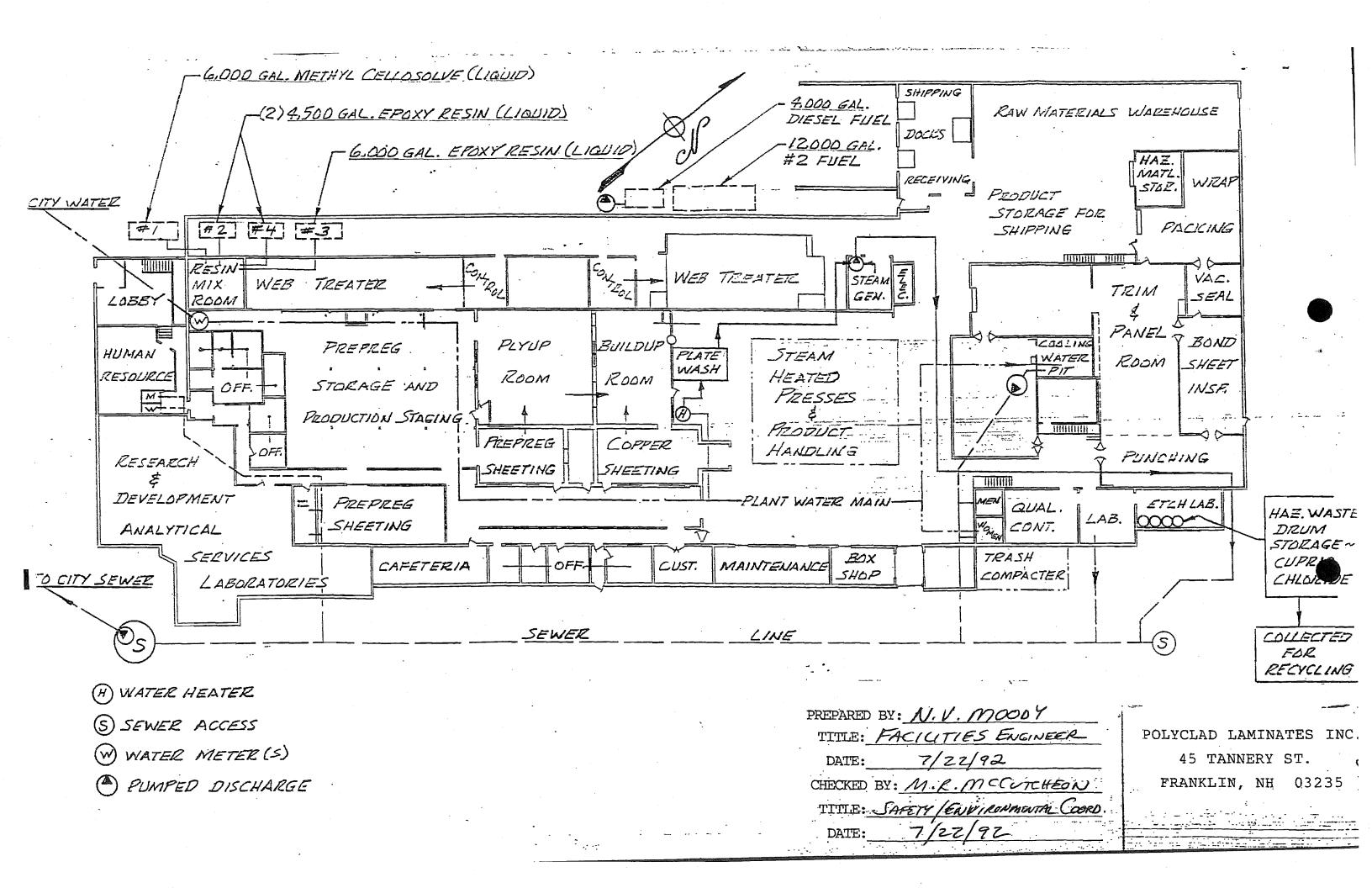
House Color: 4 GREEN

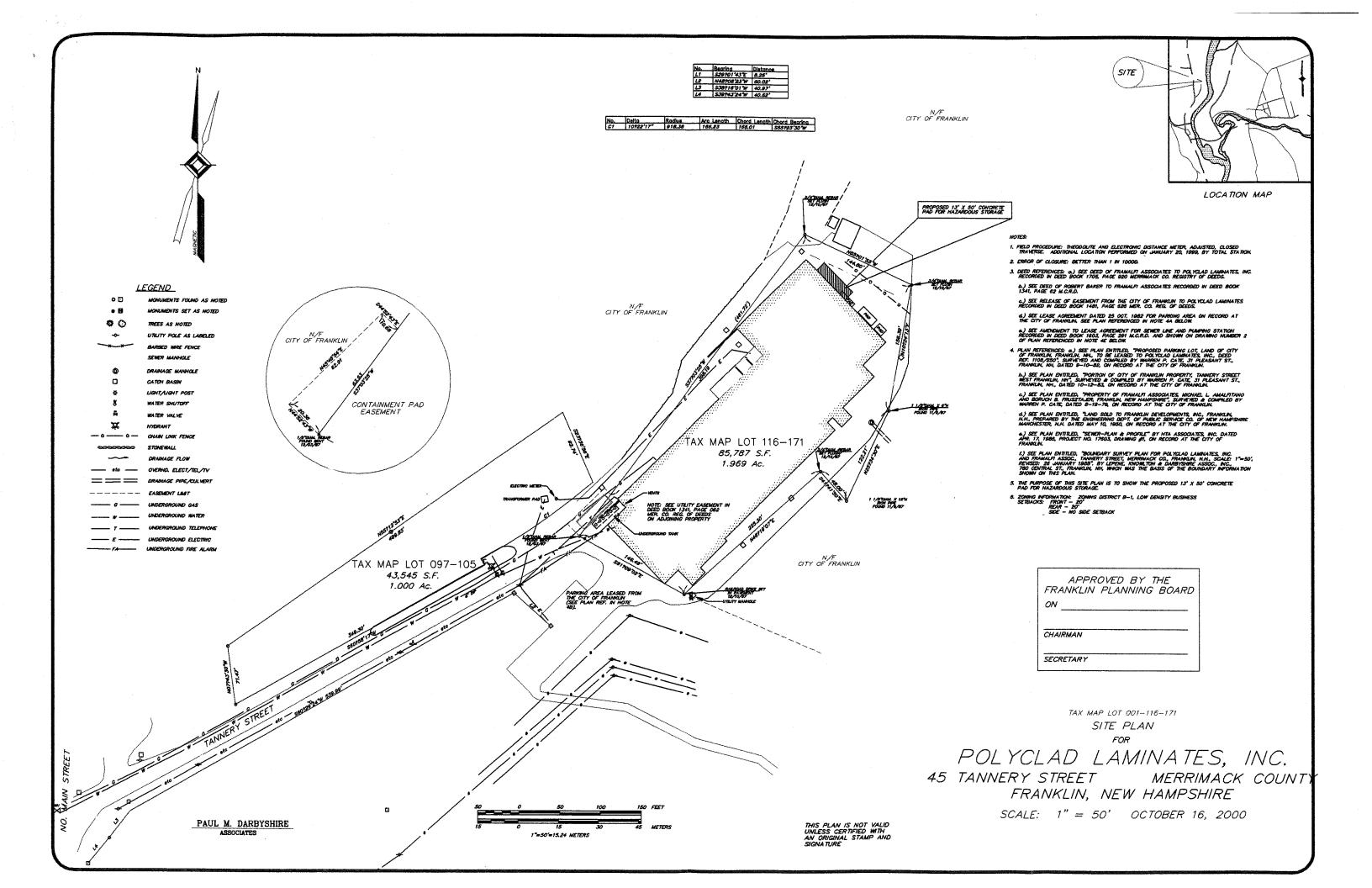
24 C


Qty Yr Size1 Size2 Grd Cond Ma




House Color: 7 TAN


MAP SHEET # M7


3/01/11 12:58:17 PM	RESIDENTIA	L ASSESSMEN	Т	FRA	NKLIN	, NEW HAMPSHIRE	į		EFFECT	IVE DATE OF	VALUE: API	RIL 1,	2010
24 STURTEVANT STREET	MAP/L	OT: 096-401	-01	ZONING:	В1	LIVING UN	IITS:	1	CLASS: R - 0	13 CARD	# 1 OF	1	
CURRENT OWNER/ADDRESS OVERLOCK JR, CARL J OVERLOCK, SUSAN M 24 STURTEVANT STREET FRANKLIN	NH 03235		LINEAR W.F.	1.000 0.930	0 0 0 L0 0	INFLUENCE FAC 0 0 0 0 CATION 0 0 0	:TORS	% -10	42,750 4,460	NBHD - LAND BUILDING TOTAL	ASSESSMEN' PRIOR 47,2 250,44 297,6	T INFO	CURRENT 47,200 258,400 305,600 HISTORY -
DEED BOOK: 2553 DEED PAGE: 1384 DEED DATE: 20030819			TOT. ACRE	1.930	_	·	TOTAL	LAND VALUE:	47,200		20100219 20090603 20050302	RD DI MS	INFO AT DOOR ENT. GAINED ENT. GAINED UPDATE
Sale info not verified	by assessor's			L)T				ADDITION DATA	•			
SALES DATA: Date Type Pric 20030819 LAND + BLDG DWELLING DATA:		PERMIT DA d Date # 20040216 R0	# Amount	Purpose 00 52X32 RANG		Lower Level A B C C D	Ç	First Floor Opn Frm Prch Frm Utlt Bld Opn Frm Prch	Second Floo		-loor <i>i</i>	Area 208 36 364	Value 7600 600 13200 00 00
Style: CAPE Story Ht. 1.00 Attic: FULL F Walls: ALUM/V Bedrooms: 4 Total Rooms: 7 Full Baths: 2 Half Baths: 1 Add'l Fixtures: 1 Total Fixtures: 11 Basement: FULL Fin Bsmt. Living Area: Basement Rec Room Area: Heating System: OIL Heating Type: BASIC FIREPLACE WB: 1 / Basement Garage (# cars Ground Fir Area: 1664 Total Living Area: 2330 Quality Grade: C+ Condition: AVERAGE Marketability: AV Year Built: 2004 Eff. Year Built: Unfinished Area: Unheated Area:	HOT WATER	/	COST APPROACH Base Price Plumbing Additions Unfin. Area Basement Attic Heat/AC Adj. FBLA Rec Rm Fireplace Bsmt. Gar. SUBTOTAL Grade Factor C & D Factor TOTAL RCN % Good Market Adj. Ecnom Obslcn Functn Obslcr Functn Obslcr Functn Constcr TOTAL RCNLD	208,68 0.9	\$ 0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	F G H		8 FA	26 OFP 52	6	6 FrU	0	00 00 00
Type Qty Yr Sizel S OP1 1 2004 6 RG3 1 2004 32 RG1 1 2004 28 RS1 1 2000 16 RS1 1 2004 12	12 C A 32 B A 48 B A 28 C A 12 C A	\$28 \$28 \$32 \$32 \$32 \$32	2,090 3,130 2,760 2,740 VALUE I 580 NOTES: COMM G, 8/03 S/	FLAG:5 ARAGES - PT1: ALE = 1.934 A	= NV C ONL)	7			52 OFP				
OUTE	BUILDING TOTAL	: \$66,400				<u></u>							

BACKGROUND INFORMATION

STREET EASEMENT - POLYCLAD, TANNERY STREET:

At the May 26, 1999 Planning Board meeting, site plan approval was granted with a condition that the construction of a containment basin be located on the West Side of the plant near the entrance. The purpose of the basin is to contain any possible chemical spillage resulting from trucks unloading material into the underground tanks. This proposal is considered by the EPA to be an improvement from the present transfer method.

The greater portion of the basin would be located in the Tannery Street right-of-way. The site plan was approved with the condition that Polyclad develop an easement document satisfactory to the City that would allow the encroachment. Required easement to be presented at a future City Council meeting.

SUGGESTED MOTION

STREET EASEMENT - POLYCLAD, TANNERY STREET

NO MOTION REQUIRED

March 19, 2008

James Kalanta - VP
22 Hedgefield Court
Orange, CT 06477
203-795-0554 - phone
203-795-0553 - fax
jkalanta@cooksonelectronics.com

To Whom It May Concern:

Please be advised that Quantum Construction Consultants, LLC has been retained by Cookson Electronics to submit permit forms and plans as necessary to the City of Franklin, NH for the demolition, cleanup and restoration of the damaged portion of our property located at 45 Tannery Street; Franklin, NH.

If you have any questions please feel free to contact me using the above contact information or my cell phone 203-645-7230.

Sincerely,

tas elik o

James Kalanta

Bros.

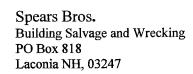
Ag Salvage and Wrecking

Box 818

Conia NH, 03247

Phone: 603-528-1035 Fax: 603-528-1035

Asbestos Management Plan For 45 Tannery St Franklin NH


Prepared by Deven Spears March 24, 2008

Prepared for

James Kalanta
Magenta Holdings, LLC
c/o Cookson Electronics
One Cookson Place
Providence RI 02903

Lisa M Martin Quantum Construction Consultants, LLC

Code Enforcement/Building Inspector City of Franklin NH

Phone: 603-528-1035 Fax: 603-528-1035

On March 24, 2008, a site visit was done to 45 Tannery St, Franklin NH. A visual inspection was conducted for any asbestos containing material (ACM) that could be collected and sampled safely. However, upon reviewing the structure there was nothing that appeared to be needed for sampling. What lies underneath the collapsed section of the building is currently inaccessible.

The plan of action for demolition will be to remove the collapsed section and separate the materials into three basic categories, one being wood, insulation, etc. The second category would be light iron and the third would be heavy iron. During the demolition and separation process if we should come across any material that may be ACM, we shall shut down and test the suspect material for ACM. We are licensed by the State of New Hampshire to test material for ACM. However, we are not licensed to remove it. If we do test something and it turns out to be ACM, we shall immediately notify the owner of the property and call in a licensed asbestos abatement company to remove the ACM. Every sample taken and tested shall be photographed and at the end of the job a final report will be given to the property owner and City of Franklin that will show all suspect material was tested and proven positive or negative for ACM, anything positive will be accompanied by a certificate of compliance from the removal company.

Should any person have any questions they may feel free to contact my self at 603-455-2865, or New Hampshire DES, Steven Cullinane 603 271-1370.

Yours truly,

Deven Spears

LIC# AI 000318

Spears Bros. Building Wrecking

Laconia NH

Spears Bros.
Building Salvage and Wrecking
PO Box 818
Laconia NH, 03247

116-171-00

Phone: 603-528-1035 Fax: 603-528-1035

spearsbrothers@verizon.net

Report Date: May 13, 2008 Inspector: Deven W. Spears Customer: Magenta Holdings, INC c/o Cookson Eletroines

Customer Address: 1 Cookson Place Providence RI 02903 Site Location: Polycald Building 45 Tannery St Franklin NH

Date of Site Inspection: 4/2-5/5/08

License Number AI 000318

Please call

455-2855

when you Read this Than You!

Asbestos Inspection Report

All square footage sizes are approximate only. Exact quantities can only be determined after dismantling. All materials listed below are in the misc. category and are non-friable, unless otherwise noted.

Sample Number Phase I Demo	Location	Description	Asbestos types and percent	Approximate Square Footage	Total percent Asbestos
	Metal Roof	gray paint		0 unknown	0
2	Gabel End Wall Back wall,	Joint Compound	(0 unknown	0
3	concrete floor Back wall,	12x12 tan tile	(0 520 sqft	0
	concrete floor	12x12 tan tile mastic	5% Chrysotile	520 sqft	5%
5	Roof	Roof over Maintenance Door, Rolled Roofing	5% Chrysotile	220 sqft	5%
•	Location Gabel End	Description	Lead Percentage	Approximate Square Footage	Total Lead Count
	Wall	Paint	0%	6 2000	0

Sample Number Phase II Demo	Location	Description	Asbestos types and percent	Approximate Square Footage	Total percent Asbestos
1 R	Room 1	Cove Base Masic		073 LF	0
2 R	loom 1	Joint Compound		0	0
3R	loom 2	Cove Base Masic		058 LF	0
4 R	loom 3	Cove Base Masic		084 LF	. 0
5 R	loom 3	Tile		0416 sqft	0
6R	loom 3	Tile Mastic		0416 sqft	0
7 R	loom 4	Tile		0 16 sqft	0
8R	loom 4	Tile Mastic		0 16sqft	0
9R	loom 4	Cove Base Masic		066 LF	0
R	loom 5	Tile Homogeneous to room 4		0 361 sqft	0
R	oom 5	Tile mastic Homogeneous to room 4		, 0361 sqft	0

	•		
Room 5	Cove Base Masic	074 LF	0
Room 6	Tile Homogeneous to room 4	098 sqft	0
	Tile mastic Homogeneous to		
Room 6	room 4	0 98 sqft	0
Room 6	Cove Base Masic	042 LF	0
10 Room 7	Cove Base Masic	042 LF	0
11 Room 7	Tile	0112 sqft	0
12 Room 7	Tile Mastic	0112 sqft	0
13 Room 8	Cove Base Masic	064 LF	0
14 Room 8	Tile	0 196 sqft	0
15 Room 8	Tile Mastic	0 196 sqft	0
16 Room 9	Cove Base Masic	017 LF	0
17 Room 9	Tile	0 128 sqft	0
18 Room 9	Tile Mastic	0 128 sqft	0
Room 10	Tile Homogeneous to room 9	084 sqft	0
	Tile Mastic Homogeneous to		_
Room 10	room 9	084 sqft	0
Room 11	Tile Homogeneous to room 9	080 sqft	0
	Tile Mastic Homogeneous to		
Room 11	room 9	080 sqft	0
D 44	Cove Base Masic	02015	0
Room 11	homogeneous to room 9	036 LF	0
19 Room 12	Tile	0 52 sqft	0
20 Room 12	Tile Mastic	0 52 sqft	0
Room 13	Cove Base Mastic	0 100 LF	0
21 Room 14	Homogeneous to room 9 Tile	0 100 EF 0 140 sqft	0
22 Room 14	Tile Mastic	0 140 sqft	0
23 Room 15	Tile	0 140 sqft 0 198 sqft	0
24 Room 15	Tile Mastic	0 198 sqft	_
25 Room 16	Tile	0 130 sqft 0 475 sqft	0
26 Room 16	Tile Mastic	0475 sqft	0
Room 17	Tile Homogeneous to room 9	0 146 sqft	0
1100111 17	Tile Mastic Homogeneous to	0 140 Sqlt	· ·
Room 17	room 9	0 146 sqft	0
	Tile top layer, Homogeneous	5 7 75 547.	•
Room 18	to room 9	0 456 sqft	0
	Tile mastic top layer,	•	
Room 18	Homogeneous to room 9	0456 sqft	0
27 Room 18	Bottom Layer Tile	0456 sqft	0
28 Room 18	Bottom Layer Tile Mastic	0456 sqft	0
Room 19	Tile, Homogeneous to room 9	0352 sqft	0
	Tile mastic, Homogenious to		
Room 19	room 9	0 352 sqft	0
29 Room 20	Cove Base Mastic	0147 LF	0
30 Room 21	Tile top layer	0537 sqft	0
31 Room 21	Tile Mastic, top layer	0537 sqft	0
32 Room 21	Tile, Bottom layer	0537 sqft	0
33 Room 21	Tile Mastic, Bottom Layer	0537 sqft	0

Room 22	Tile, Homogeneous to room 21 top layer	0551 sqft	0
	Tile Mastic, Homogeneous to	•	
Room 22	room 21 top layer	0551 sqft	0
34 Room 23	Tile,Top layer	0600 sqft	0
35 Room 23	Tile Mastic, top layer	0600 sqft	0
36 Room 23	Tile,Bottom Layer	0600 sqft	0
37 Room 23	Tile Mastic, Bottom Layer	0 600 sqft	0

QUANTUM CONSTRUCTION CONSULTANTS, LLC

27 LOCKE ROAD, CONCORD, NH 03301-5417 TEL: 603-224-0859 FAX: 603-224-3625

April 30, 2008

Mr. Charles Bodien Franklin Building Inspector 316 Central Street Franklin, NH 03235

Subject:

Demolition Permit D08-3, 116-171-0

Warehouse Building Collapse

45 Tannery Street Franklin, NH

amendment to plan recid 5/1/08: and okaged bes R. Lewis

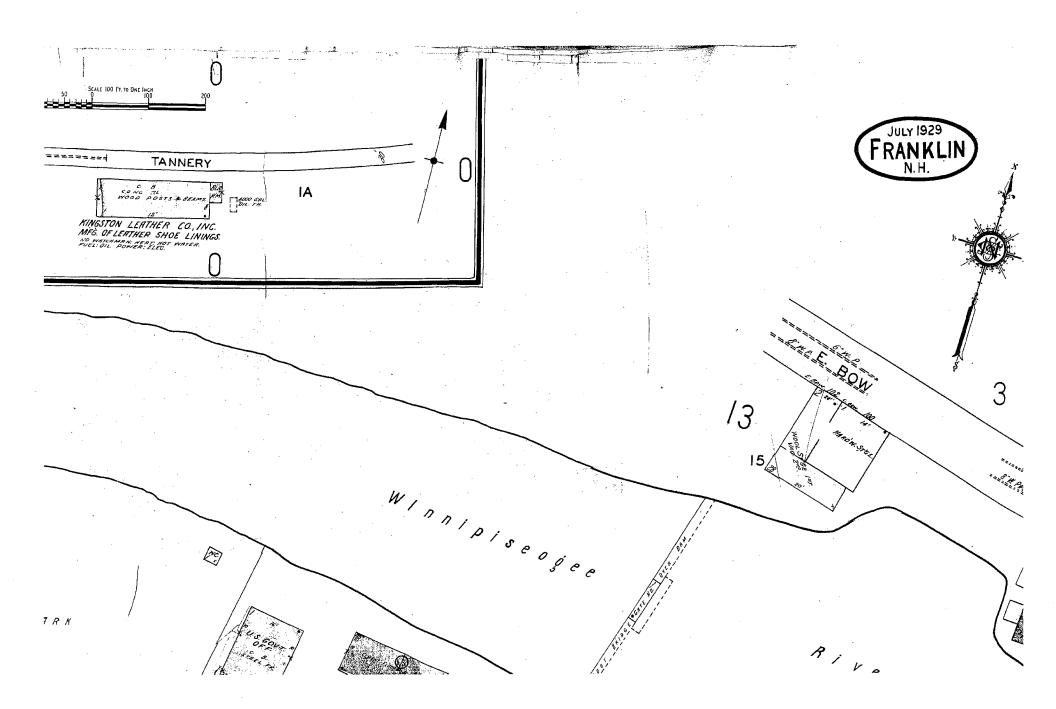
Dear Mr. Bodien:

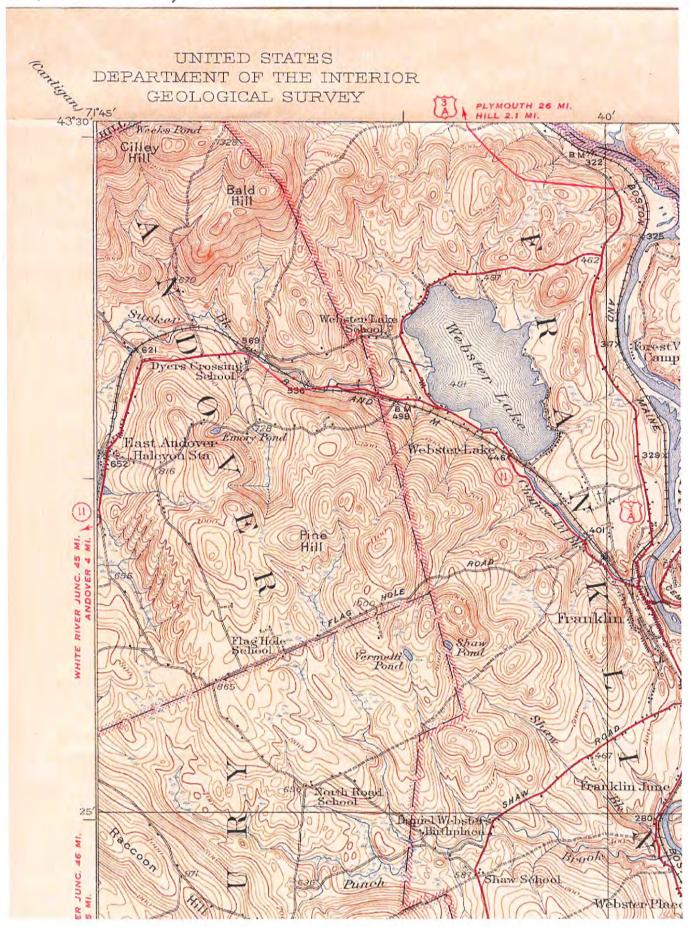
We have completed our evaluation of the remaining structures at 45 Tannery Street. The remaining wood-framed structure and appurtenant towers have essentially reached their expected useful life span. The building does not meet current code loading criteria, has damaged structural framing, and the cost to repair exceeds the benefit.

Therefore, on behalf of the Owner, we are hereby requesting an amendment to the demolition permit to include demolition of the old tannery wood-framed structure and towers as shown on the attached plan. The front two-story office building is to remain.

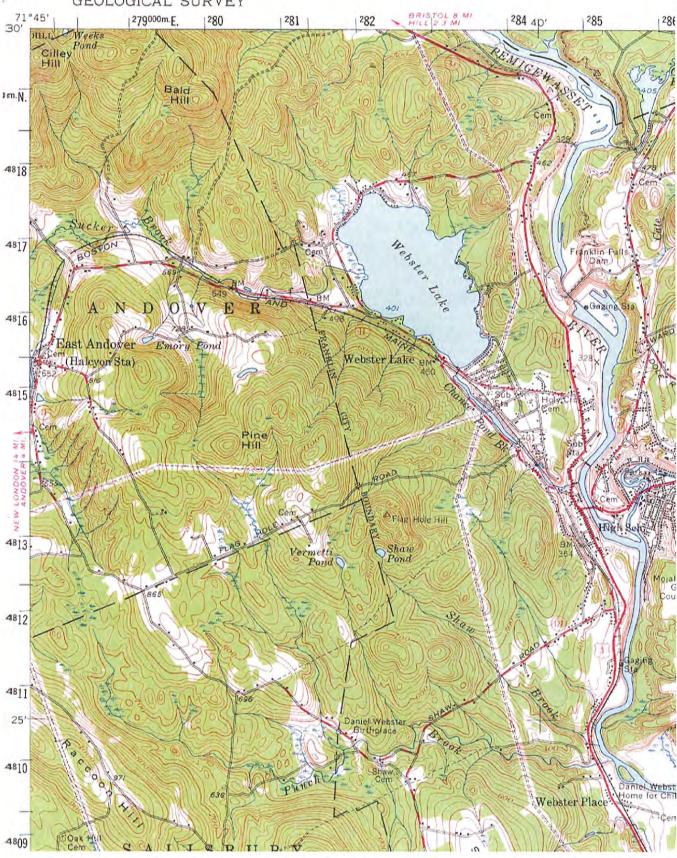
We request your approval as soon as possible, so that demolition may proceed without delay. Please do not hesitate to contact me at 603-224-0859, if you should have any questions.

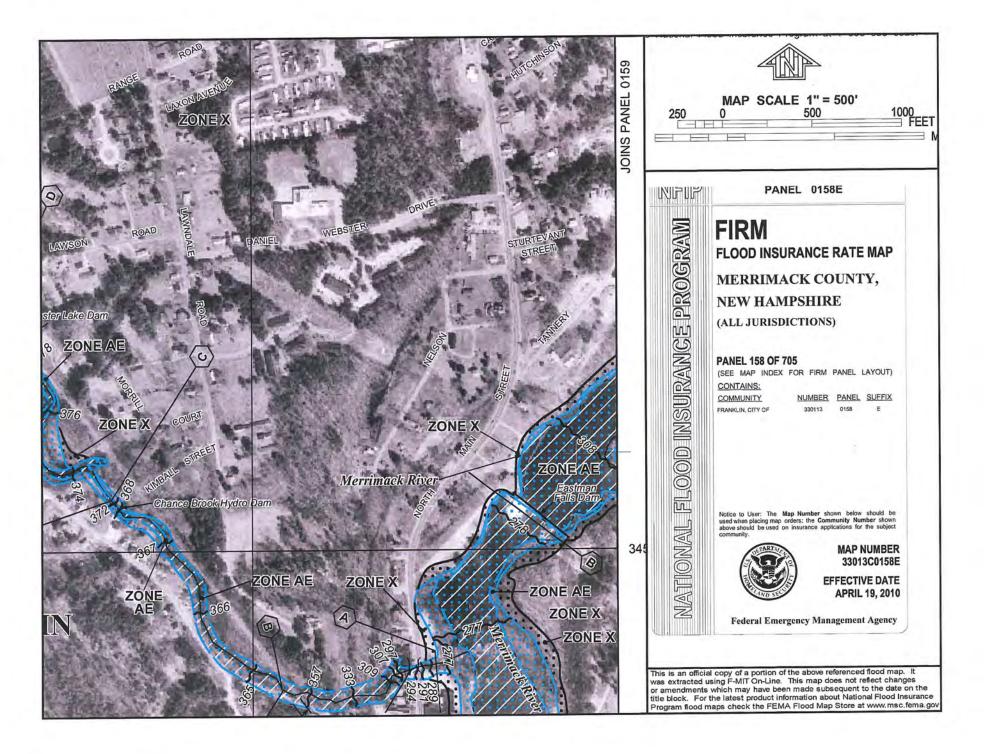
Sincerely,

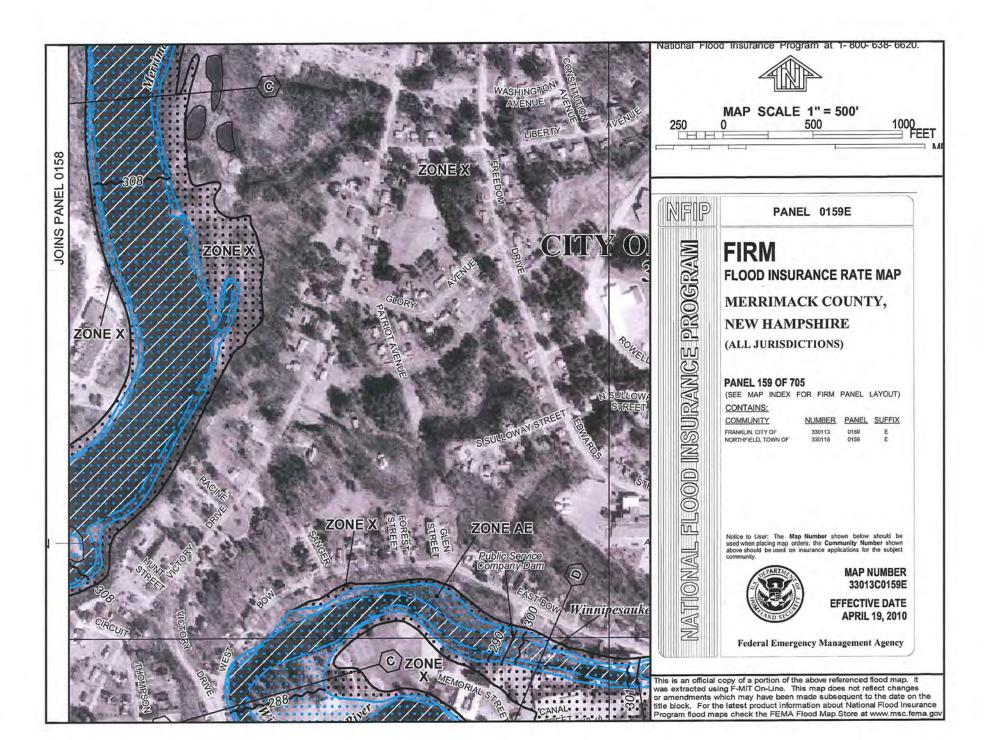

OUANTUM CONSTRUCTION CONSULTANTS, LLC


Lisa M. Martin, P.E.

President/CEO


Attachment: Revised Demolition Plan


cc. James Kalanta, Cookson Electronics



UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

LEGEND

SPECIAL FLOOD HAZARD AREAS (SFHAs) SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD

The 1% annual chance flood (100-year flood), also known as the base flood, is the flood that has a 1% chance of being equaled or exceeded in any given year. The Special Flood Hazard Area is the area subject to flooding by the 1% annual chance flood. Areas of Special Flood Hazard include Zones A, AE, AH, AO, AR, A99, V and VE. The Base Flood Elevation is the water-surface elevation of the 1% annual chance flood.

ZONE A No Base Flood Elevations determined.

ZONE AE Base Flood Elevations determined.

ZONE AH Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood

Elevations determined.

ZONE AO Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities

also determined.

ZONE AR Special Flood Hazard Area formerly protected from the 1% annual chance flood by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the 1% annual chance or

greater flood.

ZONE A99 Area to be protected from 1% annual chance flood by a Federal flood protection system under construction; no Base Flood Elevations

determined.

ZONE V Coastal flood zone with velocity hazard (wave action); no Base Flood

Elevations determined.

ZONE VE Coastal flood zone with velocity hazard (wave action); Base Flood

Elevations determined.

FLOODWAY AREAS IN ZONE AE

The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encroachment so that the 1% annual chance flood can be carried without substantial increases in flood heights.

OTHER FLOOD AREAS

ZONE X

Areas of 0.2% annual chance flood; areas of 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood.

OTHER AREAS

ZONE X Areas determined to be outside the 0.2% annual chance floodplain.

ZONE D Areas in which flood hazards are undetermined, but possible.

be used on insurance applications for the subject

MAP NUMBER 33013C0158E

EFFECTIVE DATE

ABBIE 46 6646

AWINE IN	MIESS VEISIN	med to be builde the 0.270 annual chance hopopoint.			
ZONE D	Areas in which flood hazards are undetermined, but possible.				
	COASTAL	BARRIER RESOURCES SYSTEM (CBRS) AREAS			
22.22	OTHERWIS	E PROTECTED AREAS (OPAs)			
CBRS areas	and OPAs are n	onnally located within or adjacent to Special Flood Hazard Areas.			
		1% annual chance floodplain boundary 0.2% annual chance floodplain boundary Floodway boundary Zone D boundary			
******	*******	CBRS and OPA boundary			
******	- T	Boundary dividing Special Flood Hazard Areas of different Base Flood Elevations, flood depths or flood velocities.			
5	13~~~	Base Flood Elevation line and value; elevation in feet*			
(EL 987)		Base Flood Elevation value where uniform within zone; elevation in feet*			
* References	to the North Ame	erican Vertical Datum of 1988 (NAVD 88)			
(A)—	——(A)	Cross section line			
23		Transect line			
97'07'30'	32"22'30"	Geographic coordinates referenced to the North American Datum of 1983 (NAD 83)			
4275	N (moon)	1000-meter Universal Transverse Mercator grid ticks, zone 19			
6000	000 FT	5000-foot grid values: New Hampshire State Plane coordinate system, (FIPSZONE 2800), Transverse Mercator			
DX	5510	Bench mark (see explanation in Notes to Users section of this FIRM panel)			
. N	11.5	River Mile			
	Re	MAP REPOSITORIES for to Map Repositories fist on Map Index			
		PERCENT DATE OF COMPANION			

EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP

FLOOD INSURANCE RATE MAP
April 19, 2010

EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL

For community map revision history prior to countywide mapping, refer to the Community Map History table located in the Flood Insurance Study report for this jurisdiction.

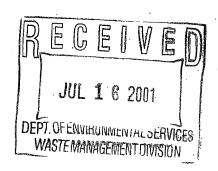
To determine if flood insurance is available in this community, contact your insurance

This is an official copy of a portion of the above referenced flood map. It was extracted using F-MIT On-Line. This map does not reflect changes or amendments which may have been made subsequent to the date on the title block. For the latest product information about National Flood Insurance Program flood maps check the FEMA Flood Map Store at www.msc.fema.gov

and the second s	ITS - [Complain								
Action Fiel	ld Record Quer	ry Window	Help						- 8 X
Site Number		Site Nar	ne	Compl	aint Site Ac	dens		CXT	
199902062	POLYCLAD LAM			45 T.	ANNERY ST	riiess	FRANKL	Site Town	The second
Date	e: 01-MAY-1990	Time.		Taken By: WIM	SATT	1	Type: PHONE	CALL	<u> </u>
Closed Date	e: 01-MAY-1990	Closed: 🔽	Ť				RSN: 5651	%	
		plaint Lodg	ed Agai	nst:			Complaint Lo	odged By:	
First / Last Name	(2) (# (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1				First/Last Name				
	POLYCLAD LAM		aaanistissa aasta aann	madestantantantantantantantantantantantantant	Address				***************************************
Address	: 45 TANNERY S1	 	unumaaaaaaaaaaaa	***************************************				an " gamananananananan	***************************************
own / State/Zip	I FRANKLIN	lkii.	1 ↓	n.	Town/State/Zip	2709 - Talanda Albanda Alba		<u> </u>	
Phone	<u> </u>	Į VI	1.7)		:/Business Phone I to be confidentia	Marie and a second and a second			
Complain	ere. Discontinuos de la companya de la c	***************************************		Hednester	ro de conidenta	II	one of the second s		
Description	ST ILL								
200									
Local Officials			T	Militaria Nacional de Caracteria de Caracteria de Caracteria de Caracteria de Caracteria de Caracteria de Cara					
Notified? Action Taken by		Agency:]		[Contact Person:			
Local Officials:									- All .
Investigated By:	: Ν /Δ	and the second second	¥	Date: [01-	14V 1000				
	3	CLEANER	است						
Finding:	7 HWI30-037 7	- CLEANED (OL BA CC)MPANY - MI: HCL - (JTY: 25 GALLON	S - DR: RECEIV	ED REPORT (INLY - CLOSED	, site.
Complaint Referred On:		Agency:				·			
SECTION IN				_		ontact Person:	1		
<<		>>	Items:	0 Digital Library:)	D Violation	Add	Modify 5	Save Site L	ist
At the first war of the same of the same	POWER TO THE WAY TO SELECT THE SECOND	[이야기하다] 등 등으로 하다.				million and the second	THE PART OF STREET AND STREET		*****************************
ecord: 2/4			kOSC> k	.ppc.					

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 1 1 CONGRESS STREET, SUITE 1100 BOSTON, MASSACHUSETTS 02114-2023 AD Alman


My 9EM

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

July 13, 2001

Mr. John Duclos, Supervisor Hazardous Waste Compliance Section New Hampshire Department of Environmental Services 6 Hazen Drive, P.O. Box 95 Concord, NH 03301

Dear Mr. Duclos:

On April 10, 2001, U. S. Environmental Protection Agency (EPA) conducted a compliance evaluation inspection at the Polyclad Laminates facility located at 45 Tannery St., Franklin, NH. The inspection was conducted to assess the facility's compliance with the State of New Hampshire's Hazardous Waste Rules. A copy of the inspection report is enclosed for your review.

EPA determined that the facility violated certain NH DES Hazardous Waste Rules pertaining to personnel training and the inspection of containers and general areas being used to store the containers. Specifically, information uncovered during the inspection indicates that Polyclad failed to train all employees involved in the facility's hazardous waste management program as required by Env-Wm 509.03(b), and failed to conduct and/or document inspections adequately as required by Env-Wm 509.02(a) and (a)(1).

As you are aware, members of your staff also performed a RCRA compliance evaluation inspection at Polyclad's other Franklin facility located at 40 Industrial Park Drive. Mr. James Gaffey of my staff has been in communication with your staff concerning the problems identified during both of these inspections. As previously discussed and agreed upon, the State of New Hampshire will use the information delineated in EPA's inspection report when developing their enforcement action against Polyclad Laminates.

Please provide us a copy of any actions taken. If you have any questions on this matter, or require any additional information, please contact James Gaffey of my staff at (617) 918-1753.

Sincerely,

Kénneth Rota, Chief RCRA Compliance Unit

Office of Environmental Stewardship

Enclosure

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION I - NEW ENGLAND 1 CONGRESS STREET SUITE 1100 BOSTON MA 02114-2023

MEMORANDUM

DATE:

June 5, 2001

SUBJ:

RCRA Inspection -

Polyclad Laminates

Franklin, NH

FROM:

James Gaffey, Environmental Engineer

RCRA Compliance Unit

THRU:

Ken Rota, Chief

RCRA Compliance Unit

TO:

File

I. <u>General Information</u>

A.

Facility Name:

Polyclad Laminates

45 Tannery St.

Franklin, NH 03235

В.

RCRA Contact:

Donald Maurer, Director of Corporate EH&S

603-934-5642

C.

Date of Inspection:

April 10, 2001

D.

<u>Purpose of Inspection</u>: RCRA Compliance Evaluation

E. .

Personnel Participating in Inspection:

U.S. EPA -

James Gaffey, RCRA Technical, OES

Drew Meyer, RCRA Technical, OES

Polyclad-

Donald Maurer

II. RCRA Reporting/Information Requirements

- * Facility ID Number: NHD099362048
- * Type of Operation: Large Quantity Generator
- * Notification of Hazardous Waste Activity: July 23, 1980

III. Facility Description

Founded in 1976, Polyclad has evolved into the international leader in the production of high performance laminates. In 1987, Polyclad was purchased by Cookson Group plc and became a member of Cookson Electronics. Specifically, Polyclad Laminates is an operating company of Polyclad Technologies, a sector of Cookson Electronics, which also includes Enthone and Cookson Fukuda.

Polyclad produces high performance laminates, prepregs, resin coated foils and dielectric solutions marketed to the printed wiring board and electronics packaging industry. Polyclad Laminates, Inc. headquartered is in Franklin, NH, and also has manufacturing facilities in New Hampshire, Massachusetts, California, Sweden, France, Germany, China and Taiwan.

Polyclad's 45 Tannery St. facility recently went through a reduction in force. Presently approximately 25 employees work out of this location. The property, roughly 2 acres, is owned by Polyclad. According to Mr. Maurer, the facility does not currently generate a lot of hazardous waste. It has been the company's practice to ship waste off-site approximately weekly. R.M. Jones is the transporter being used by Polyclad for shipping wastes from both Franklin NH facilities.

IV General Observations

Treater Hallway

The hallway included numerous containers. The majority of drums contained products. One area along a wall was identified by a sign which read, "Danger - Hazardous Waste". No Smoking signs were also posted. The area associated with this sign contained product drums of flammable liquids and a 55-gallon drum labeled as hazardous waste, rags + 621 resin. The label was dated 3/16/01. The drum also was marked with a DOT flammable liquid marker. A separate area within the hallway contained another drum labeled as hazardous waste, D001, D022, F003, F005. Other marking on the label identified the contents as epoxy, acetone, MEK, and varnish. The label was dated 3/6/01.

Numerous emergency equipment and personal protective equipment were noted in and around the treater hallway. Those items included: fire extinguishers, an emergency drench hose, an oxygen pack and SCBA. The area also included a telephone, intercom and fire alarm systems. Emergency contact information was posted on the wall adjacent to the telephone. The listed information included the emergency coordinator (identified as Mr. Maurer) and three alternates. An emergency spill kit containing various spill response items was located in the shipping dock area approximately 50 yards from the posted hazardous waste storage area.

The EPA inspectors toured the majority of the production work areas. No other hazardous waste containers were observed. Emergency evacuation routes were posted in several locations within the facility.

V. Record Review

The following records were reviewed by the inspection team at Polyclad's Industrial Park facility after the walk-through was completed.

Mr. Maurer is presently updating the facility's Hazardous Waste Management Plan. The Plan includes several chapters including sections titled, Storage Procedures, Inspections, Training, and Spill Control Equipment Requirements. Mr. Maurer is also working on a new integrated contingency plan for the facility.

Manifests

Manifests for shipments of hazardous waste (including universal waste) in 2000 and 2001 were reviewed. No problems were noted.

Waste Determination Documentation

Polyclad generated a small number of waste streams. Each waste stream appeared to be properly characterized.

Training

According to Mr. Maurer, he and Mr. David Willis have been the only persons receiving formal RCRA training for the last several years. Mr. Maurer also stated that he had just recently realized that RCRA training was needed for other facility employees who managed satellite accumulation waste. Mr. Maurer further stated that all employees had been receiving OSHA Hazcom training.

The updated training documentation included in the facility's Hazardous Waste Management Plan, which has not yet been implemented, appears adequate.

Inspection Logs

Mr. Maurer could not locate recent inspection logs in the facility files. The EPA inspectors requested a copy of the logs from October 2000 through the present if they were found subsequent to the inspection.

Contingency Plan

The current Contingency Plan included a table that identified chemicals stored on-site by name, their respective fire fighting class, and potential problems associated with responding to a fire. The plan also included minimal procedures describing how to assess and respond to a spill or release.

VI. Outbrief

After the completion of the record review, the inspection team conducted an outbrief of the inspection findings with Mr. Maurer.

Issues summarized during the outbrief include the following:

- the need to follow-through with the update of the facility's contingency plan and training program,
- the need to perform and document weekly inspections, and
- the need to adhere to the site specific container management procedures included in the facility's Hazardous Waste Management Plan.

RCRA INSPECTION CHECKLIST

(Generator Only)

Site Name: Polyclad Laminates	Inc.
Site Location: 45 Tannery Stree	t Franklin, N. H.
Mailing Address: <u>PO, Box 299</u> A	Franklin, N. H. 03235
E.P.A. I.D.# NHO 099362048 Air Resources PO-BP 2397 +	Phone Number: 934-5642
Permits Issued Applying for NPOES permit	Variances/Waivers: None
Inspectors: M. Galuszko R. Piric	>
Industry Representatives: Michael Mc.	Cutcheon Safety/Environmental
Coordinator	
Prior Inspections: 2-14-83	Previous Enf. Actions Nov/on \$3-42
Inspection Date: 5-/6-86	

I. PRE-INSPECTION MEETING:

A. General Information (process description, etc.)

The company takes fiberglass cloth, coats it w/ an epoxy resin in a dip-pan process, dries it w/ a hot air curing process, bepary is mixed of hectone and acctone is used in Cleaning the equipment. The coated fiberglass is collected on mills and is either precent into sheets for shipment or shipped as nolls.

Some is laminated of Cu spects in a hot press; these laminated boards are then end to size and shipped, Polyclad obes some test etching on a small scale in a quality control area. The company has 6 waste streams of concern: 1) Waste Flom Liquid (left over epoxy from dip tank tacetone from cleaning). 3. Waste Flom Solid (mass from aiping up waste flom Liquid) 3) Waste oxidizer-corrosive (Hosoy, Hooz, Cu Soy, 1691)

(cont., over)

	EPA waste #			ansporter	
n liquid	0001	8 drivus/yyo.	< 90 days	N.E. Solve	ents ->
		distribution of the second of			
am, solid	0001	1 drem/mo	2 90 days	N. E. Solve	nts ->
dizer Corrosive	0001	3 drawas/mo	6 90 days	N. E Solve	ints ->
ethylene Chloride	F001	13 drawn 1 mo	< 90 days	N. E. Solve	nts ->
	-				-
drolic Oil	MOOI	& dram / Mo	< 90 days	N. E. Solver	<u> </u>
		1			
504 Crystals	D002	2 drams/mo	< 90 days	Halmes Trans	o. Northland
		, , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·	(TNH0085)	275 Allan
					Providence,
Records		<u>.</u> .			-
1. Manifest	s [1905.04;	1905.06(e)(1	,2)]		
(Note: mani: Division p		l in Concord m	ay be checked	before the ins	spection by
a. Are all	required pa	arts completed	? ok		
b. Are ther	e any incor	rect shipping	names, number	rs? OK	
		ited correctly			
c. Are copi		, -		83 mly	
	fests held		emo Cobica in	UU = Unity	
d. Are mani			•		1-11-4-
d. Are mani			•	d any guar	terly reports.

(C. Records-conti	nue	ed)
-------------------	-----	------

2. Inspection Requirements [1905.06(f)(2), adopted 40 CFR 265.15]
a. Are hazardous waste inspections conducted? <u>yes</u>
b. Are wastes placed in tanks or containers or both? confainers (drums)
c. Is there a written inspection schedule? <u>Wes</u>
d. Is there a log or checklist used to record inspections? <u>Ves</u>
e. Does the schedule identify the types of problems to be looked for?
f. How often are inspections conducted? daily
3. Personnel Training [1905.06(f)(5), adopted 40 CFR 265.16]
a. Is there a Personnel Training Plan available for review? <u>yes</u>
b. Is the instructor trained in hazardous waste management? 1/es
c. Does training ensure effective response to emergencies? <u>yes</u>
d. Are annual reviews conducted? <u>yes</u>
e. job title/description/name of employee? <u>yes</u>
f. Is there a written description of training? Yes
g. Is training completed? Yes
h. Are records kept on file (3 years from termination) ? yes in specific personnel files.
4. Contingency Plan [1905.06(f)(5), adopted 40CFR 265, Subpart D]
a. Does the facility have a Contingency Plan?
b. Are there arrangements with local authorities? 485
c. Content:
i. emergency coordinator OK
ii. emergency procedures OK
iii. emergency equipment In adaquate (see Review Sheet I C. 2 43)
iv. evacuation plans Inadequate (See Review Sheet I.D. 1+3)
v. reporting Inadoquate (see Review Sheet V F. 5 + 6)

II. FACILITY TOUR:

A. Preparedness and Prevention [1905.06(f)(5), adopted 40 CFF	R, Subpart C]
1. Equipment	Mix Room	Storage Area
alarm system/internal communicati	ons Ok	No
(b) telephone at scene of operations	_ 60'	No.
Spill Control Kit C portable fire control equipment	OK	No
d 30' from drum d. spill control/decontamination	_ Ok *	OK .
e. adequate water for fire control	_Ok **	OK
built-in . 2. testing and maintenance of equipment	_Ok	
3 adequate aisle space between contain	ers ok	No
4. Arrangements with local authorities a. plant layout	<u>ok</u>	ok .
b. properties of hazardous wastes	OK	o k
B. General Requirements for Ignitables, Reac [1905.06(f)(2) adopted 40 CFR 265.17]		4
 separation of ignitable, reactive and incompatible wastes? "No Smoking" signs near ignitable and reactive wastes? 	<u>N/A</u> OK	N/A Ok
<pre>C. Storage Practices [1905.06(f)(6)]</pre>		· ·
1. Containers		
a. are there signs of leaks? I draw ω goen	OK	Ok
Cunnel (b) are bungs on or tight, lids closed	? No.*	ok
c. are there signs of heat/pressure?	·_ 0k	ok .
d. are containers corroded?	ok :	ok
2. Labeling (readily accessible) [1905.(06(f)(3), (f)(4)]	_
a. are wastes identified?	_ ok :	ok
b. are containers marked "hazardous wa	aste"? <u> 0</u> k	ok
c. are dates of accumulation marked?	06	ok

B. Storage Practices (continued)
4. Were any photographs taken? //o If so, what was the subject? //A
5. Is there potential for an imminent hazard, air or water discharge violation?
6. Is there any surface waters in the proximity? Yes If yes, what? <u>Pewigewasef Rwer</u>
7. Does storage/location pose a potential threat to human health or the environment? _/\(\sigma_0\)
Does the facility have an Elementary Neutralization Unit/ Wastewater Treatment Unit (ENU/WWTU)?
If yes: 1)has the company filed a notification form? 2)has a Permit-by-Rule (PBR) been approved? 3)does the facility comply with 40 CFR 266?
III. POST INSPECTION MEETING:
A. Review Discussed other inspected (by Polyclad) areas, accumulation dates status + handling of Cu Soy, Evacuation Alarm, Communications fro H. W. Storage area Inspection ing.
B. Explanation of Enforcement Procedures (LOI, LOD, NOV/OA, A.G.'s)
C. Requests for Information:
1. from the company Caple's of Cont. Plan, Personnel Training, Insp Sched
2. from DPHS, OWN None

NOTES AND DIAGRAMS

NHDES

The State of New Hampshire

DEPARTMENT OF ENVIRONMENTAL SERVICES

Thomas S. Burack, Commissioner

March 27, 2007

CERTIFIED MAIL 7000 1670 0001 2907 6701 RETURN RECEIPT REQUESTED

No. WMD 07-012

Isola USA Corp. 45 Tannery St. Franklin, NH 03235

Attn: Steve Whitehead, Decommissioning Officer

Re: Polyclad Laminates, Inc.

40 Industrial Park Road Franklin, New Hampshire EPA ID # NHD080027048

Dear Mr. Whitehead:

On January 11, 2007, the Department of Environmental Services, Waste Management Division ("DES") conducted an inspection of Polyclad Laminates, Inc., 40 Industrial Park Road ("Polyclad") in Franklin, NH. The purpose of the inspection was to determine Polyclad's compliance status relative to RSA Ch. 147-A and the New Hampshire Hazardous Waste Rules, Env-Wm 100-1100. The 40 Industrial Park Road facility ceased manufacturing operations on June 23, 2006 and is currently being decommissioned.

As a result of the inspection, the following deficiencies in your hazardous waste management program were documented:

1. Env-Wm 504.02(e) – Notification Requirements

Current DES notification records do not reflect the change in ownership.

Env-Wm 504.02(e) requires that a generator notify DES in writing of any changes to the information required in Env-Wm 504.02(b), including company ownership, within 30 days of the effective date of the change.

DES requests that Polyclad complete and submit the enclosed initial notification form in order to accurately reflect the change in company ownership and name. Please include with your initial notification request the associated \$100 notification fee.

Isola USA Corp.
Letter of Deficiency No. WMD 07-012
Page 2 of 4

2. Env-Wm 509.02(a)(1) – Inspection Requirements

At the time of the inspection, Polyclad failed to document inspections of the facility's hazardous waste storage areas during 36 of the 52 weeks during the previous year. Polyclad had not recorded an inspection since May 22, 2006.

Env-Wm 509.02(a)(1), which references 40 CFR 265.15, General Inspection Requirements, requires full quantity generators to conduct and document inspections of the facility, including the hazardous waste storage area(s). Additionally, 40 CFR Subpart I, Use and Management of Containers, stipulates that containers must be inspected at least weekly.

DES requested that Polyclad ensure that weekly inspections of its hazardous waste storage area are conducted and recorded in an inspection log.

At the time of the inspection, DES personnel verified that the main hazardous waste storage area contained no hazardous waste. Furthermore, Polyclad does not anticipate storing hazardous waste in the main storage area. No further action is required.

3. Env-Wm 509.03(g) - Satellite Storage Container Marking

At the time of the inspection, one (1) 5-gallon satellite storage container of hazardous waste aerosols stored in the QC Laboratory was not marked with the words "hazardous waste" or words that identify the contents of the container(s). See the attached Hazardous Waste Container Inventory.

Env-Wm 509.03(g) requires that at the time the satellite storage container(s) is first used to store wastes, the hazardous waste container(s) is marked with the words "hazardous waste" and words that identify the contents of the container(s).

DES requested that Polyclad properly mark all hazardous waste satellite storage containers at the time they are first used to store waste with the words "hazardous waste" and words that identify the contents of the container.

In a February 21, 2007 submittal, Stephen Taylor, Hazardous Waste Coordinator, stated that the container of hazardous waste aerosols had been properly labeled. No further action is required.

4. Env-Wm 512.01(a)(1) – Recordkeeping - Manifest Copies

At the time of the inspection, Polyclad did not have on file copies of 57 manifests used to ship hazardous waste in 2005. Polyclad failed to have both the original generator copy and the copy certified by the designated facility for all 57 manifests.

Isola USA Corp.
Letter of Deficiency No. WMD 07-012
Page 3 of 4

Env-Wm 512.01(a)(1) requires that the generator keep all manifest copies, including the original generator copy and the copy certified by the designated facility, for three (3) years from the date of signature by the generator.

DES requests that Polyclad obtain copies of the 57 manifests used to ship hazardous waste in 2005, and properly retain these copies and copies of manifests used for all future shipments of hazardous waste. Additionally, provide to DES copies of the 57 manifests certified by the designated facility.

DES believes the remaining portion of the cited deficiencies can be corrected and a report describing the corrective measures taken by Polyclad can be submitted within thirty (30) days of receipt of this letter. Supporting documentation that describes the measures taken to achieve compliance should be included with the report.

In the event compliance is not achieved within this period, DES may take further action against Polyclad including issuing an order requiring that the deficiencies be corrected, initiating an administrative fine proceeding, and/or referring the matter to the New Hampshire Department of Justice for imposition of civil penalties. In addition, DES personnel may re-inspect your facility at a later date to determine whether the facility has come into, and is maintaining, full compliance with the applicable rules. Fines may be pursued for any or all violations observed during this or subsequent inspections of the facility.

The written report as requested above should be addressed as follows:

Robert Bishop, Waste Management Specialist DES/WMD P.O. Box 95 Concord, NH 03302-0095

Enclosed you will find a copy of the completed Hazardous Waste Generator Inspection Report which documents the compliance status of your facility at the time of the inspection. This report may also be of value to you for use in determining future compliance with the New Hampshire Hazardous Waste Rules.

The State of New Hampshire Hazardous Waste Rules, as well as much other useful information, can be obtained from DES's website at http://www.des.state.nh.us/hwcs/, or by contacting the Public Information Center at (603) 271-2975.

As a service to New Hampshire's hazardous waste generators, the Division currently maintains a Hazardous Waste Assistance Hotline which is available for the public to contact our knowledgeable staff of hazardous waste inspectors. The hazardous waste staff members are available to answer questions concerning the New Hampshire Hazardous Waste Rules and the compliance issues which affect your hazardous waste management program, including the administrative plans and documents required under the Hazardous Waste Rules. The technical assistance available through the Hotline includes fact sheets that pertain to the management and

Isola USA Corp. Letter of Deficiency No. WMD 07-012 Page 4 of 4

recycling of specific wastes, summary sheets on specific sections of the Hazardous Waste Rules, copies of EPA and New Hampshire hazardous waste policies, regulatory interpretation letters and networking with other state or federal agencies to answer any questions at a national level. The Hotline is available Monday through Friday, 8:00 AM to 4:00 PM toll-free at (1-866) HAZ-WAST (in-state only) or at (603) 271-2942.

Should you have any questions regarding this letter, please contact the lead inspector, Robert Bishop, or Tod Leedberg, RCRA Compliance Supervisor, at 271-2942. Thank you for your cooperation.

Sincerely,

John J. Duclos, Administrator

Hazardous Waste Compliance Bureau

Waste Management Division

cc: DB/RCRA/LOD/Archives

Anthony P. Giunta, P.G., Director, WMD/ Paul L. Heirtzler, P.E., Esq., Administrator, WMP, WMD

Gretchen Hamel, Administrator, DES Legal Unit

Patrick Collins, Isola USA Corp., 165 South Price Road, Chandler, AZ 85224

Steve Taylor, Hazardous Waste Coordinator, Isola USA Corp., 45 Tannery St., Franklin, NH 03235

ec: JJD

Enclosure: Hazardous Waste Generator Inspection Report

RCRA C Site Identification Form

Hazardous Waste Generator Inspection Report

SITE INFORMATION	CONTACT INFORMATION
Facility Name: POLYCLAD LAMINATES INC	Name: STEPHEN TAYLOR
EPA ID: NHD080027048	Street: 45 TANNERY ST
Street: 40 INDUSTRIAL PARK RD City: FRANKLIN	
County: MERRIMACK State: NH Zip 03235 -	City: FRANKLIN
Gen Status: ACTIVE Notif Eff Date: 03/03/2006	State: NH Zip Code: 03235 -
Primary NAICS: 32613 Secondary NAICS:	Phone #: (603) 934-5642 Ext#: 5516
ADDRESS CORRESPONDENCE TO	INDUSTRY REPRESENTATIVE
Name: STEVE WHITEHEAD	Name(s): STEPHEN TAYLOR
Title: DECOMMISIONING OFFICER	PATRICK COLLINS, EH&S MANAGER
Street: 45 TANNERY ST	Company President:
City: FRANKLIN	Property Owner: ISOLA
State: NH Zip Code: 03235 -	Phone #: Ext#:
Phone #: Ext#:	
Listing of Individual Violations Noted at Your Facility:	
Class State Citation Main Description	RCRA Info
2 Env-Wm 504.02(e) Notification requirements	Secondary Description Code Information inaccurate GGR
1 Env-Wm 509.02(a)(1) Inspection requirements	No weekly inspections of GMC
2 Env-Wm 509.03(g) Labeling requirements	containers Not marked "Hazardous waste" GMC
2 Env-Wm 509.03(g) Labeling requirements	No description of contents GMC
1 Env-Wm 512.01(a)(1) Manifest requirements	Missing manifests (3 years) GMR
Past Ownership & Activity (years at site, name change, etc.): Manufacturing ceased within a week of June 23, 2006. The f construction in 1990.	acility was operated by Polyclad since it's
Number of years at facility as EH&S Coordinator: 0 No. of Employees: 10 No. of Shifts: 1	Shift Hours:
	ted Facility Type: FQG1(LQG)
Inspection Ending Date: 01/11/2007 Confir	med FacilityType: FQG1(LQG)
Prior Inspections: 03/08/2001 Limited Perm	nits Issued:
Permit S	Status:
Enforcement Actions: Letter of Deficiency # WMD-01-11 Wain Administrative Fine # 01-139	ver Granted:
Is the site within a wellhead protection area? N/A	
DEO.	gandes, Tammy
· · · · · · · · · · · · · · · · · · ·	

Inspector's Initials: RBB 3/123/4

HAZARDOUS WASTE GENERATOR INSPECTION REPORT

Inspection Date: 01/11/2007 EPA ID: NHD080027048 DBA Name:POLYCLAD LAMINATES INC I. PRE_INSPECTION MEETING. 1.General Information: YES a) Does the facility receive any hazardous wastes from off-site? YES b) Does the facility discharge to a sewer system? If yes: i. What POTW accepts the discharge? Franklin ii.What industrial wastes are discharged None NÓ c) Does the facility have any industrial discharges to a septic system or drywell? YES d) Does the facility have floor drains? If yes: i.Where do they discharge to e) Does the facility have no unauthorized treatment, storage or disposal of hazardous waste on -site? YES f) Does the facility manage its wastes so there is no threat to environmental health and safety? YES YES g) Does the facility manage its wastes so it does not pose an imminent hazard? Comments: Floor Drain in the Lamination Area 2. Process Description/Waste Summary: Founded in 1976, Polyclad has evolved into the international leader in the production of high performance aminates. In 1987, Polyclad was purchased by Cookson Group plc and became a member of Cookson Electronics. Specifically, Polyclad Laminates is an operating company of Polyclad Technologies, a sector of Cookson Electronics, which also includes Enthone and Cookson Fukuda. Polyclad produces high performance laminates, prepregs, resin coated foils and dielectric solutions marketed to the printed wiring board and electronics packaging industry. Polyclad Laminates, Inc. is headquartered in Franklin, NH, and also has other manufacturing facilities in New Hampshire, Massachusetts, California, Sweden, France, Germany, China and Taiwan. The 40 Industrial Park Drive facility was purchased by Isola in 2006. The facility ceased operations on June 23, 2006. Since the shutdown of the facility Isola has decommisioned and removed almost all of the equipment and chemicals out of the facility. Isola anticipates the completion of the decommisioning to occur by February 1, 2007. Waste Stream Summary Status of Waste Stream Waste Stream **Determination Method** Adequate Waste Name Regular X Intermittent Analysis X Gen. knowledge No X Yes Labpack/Clean-up Debris

Inspector's Initials: RBB 3/23/67

HAZARDOUS WASTE GENERATOR INSPECTION REPORT

EPA ID: NHD080027048 DBA Name: POLYCLAD LAMINATES INC	Inspection Date: 01/11/2007
3. Storage Practices	
a) How many main hazardous waste storage areas are on site?	0
b) How many satellite storage areas are on site?	1
c) How many tanks are used to store hazardous waste?	0
4. Recycling:	
a) Is the generator recycling any hazardous waste on-site?	NO
b) is the generator recycling any hazardous waste off-site?	NO
c) What is the hazardous waste that is being recycled?	
d) How is the hazardous waste being recycled?	
e) Is the hazardous waste being managed on-site as a valuable product?	N/A
5. Used Oil:	
a) Is the facility a used oil generator?	YES
 b) Is the facility a used oil marketer? Definition: Sends oil directly to burner; Receives oil from a generator and produces, processes or blends oil including persons sending blended or processed used oil to broker; Persons, including transporters, who take ownership of the oil they coprocess or blend used oil. 	s or other intermediaries:
c) Is the facility a used oil burner?	NO
6. Universal Waste:	
 a) Does the facility generate Universal Waste (lamps, batteries, CRT's, an Hg Devices, Pesticides) 	itifreeze, YES
b) Does the facility accept any Universal Waste from off-site?	NO
Comments: Universal waste are transported to the 45 Tannery Street facility.	
. Notification Requirements:	
a) Has the generator obtained an EPA ID# prior to conducting hazardous v	waste activities? YES
b) Is the generator status for the facility correct?	YES
c) Is the current Notification form accurate?	NO
d) Has the generator submitted the quarterly activity report and/or the requ	•
W Generator Inspection Report Page 3 of 5	03/26/2007

Inspector's Initials: RBB 3/2

HAZARDOUS WASTE GENERATOR INSPECTION REPORT

EPA ID:	NHD080027048	DBA Name:POLYCLAD LAMINATES INC	Inspection Date:	01/11/2007

8.	Lim	ited	Perm	iits:

a) If the facility is an FQG and treats hazardous waste and/or has a process that generates a hazardous waste sludge, do they have a limited permit?

_		_	_	_
	N	1	Δ	
	1 1	11	$\overline{}$	

	Inspection Modules	
SQG Extended Storage		7. Tanks
2. FQG Requirements	X	All Existing New
3. FQG Records Review Module	X	8. Used Oil
4. Contingency Plan (FQG only)		Generator Marketer Burner
5. Limited Permit (FQG only)		9. Trip Summary
6. Universal Waste		

II. FACILITY TOUR:

- 1. Photographs:
 - a) Were any photographs taken?

b) If so, which camera was used?

C,	Photographer?

Y	ES	

CONVENTIONAL

Bishop, Bob

РНОТО#	DESCRIPTION
1	Polyclad 1
2	UW Bulbs
3	Acetone Drum 1
4 .	Acetone Drum 2
5	Waste
6 .	Press Pit
7	Haz Waste Aerosols
8	UN Container Marking
9	Outside Drums
10	2 Part Crack Filler
. 11	UW Bulbs 2

2. Manifest Review:

- a) Are all the appropriate and correct waste codes or descriptions of wastes identified on all manifests?
- b) Are all required documents held for three years?

NO

c) Is the Monthly Summary of Hazardous Waste Generator Activity correct according to the inspector?

YES

3. SQG Training Requirments:

a) Has the Small Quantity Generator (SQG) met the requirements for Self-Certification of Compliance N/A

Inspector's Initials: RBB 3/23/67

HAZARDOUS WASTE GENERATOR INSPECTION REPORT

EPA ID: NHD080	027048 D	BA Name: POLYCLAD LAM	·	nspection Date:	01/11/2007	
III. POST INSPI		EETING:				
		efing completed?			· .	YES
Persons present:		Bishop, Bob Stephen Taylor	Calligande	s, Tammy		

1.

Hazardous Waste Compliance Section Hazardous Waste Generator Inspection Report Inspector's Initials: RBB 3/23/07

FQG RECORDS REVIEW MODULE

EPAID:

NHD080027048

DBA Name:

POLYCLAD LAMINATES INC

Inspection Date:

01/11/2007

Records (Inspection Logs and land ban)

	Container inspection requirements.								
	a)	Have all weekly inspections of the main storage area(s) been conducted?	NO						
		17 out of 17 non-compliance for past 17 weeks							
		36 out of 52 non-compliance for past 1 year							
	b)	If required (>10 gallons), are monthly inspections of the satellite storage area(s) being conducted?	N/A						
	c)	Is there a written inspection schedule?	YES						
	d)	Is there a log or checklist used to record inspections?	YES						
	e)	Does the inspection log include:							
		i. Frequency of inspections? (containers- weekly)	YES						
		ii. Notation for observing leaks?	YES						
		iii. Notation for observing deterioration due to corrosion or other factors?	YES						
•	•	iv. Date and time of inspection?	YES						
		v. Name of the inspector?	YES						
		vi. Notation of observations?	YES						
	٠	vii. Date & nature of repairs or remedial actions?	YES						
2.	Lan	d Ban:							
	a)	Has the generator met the requirements under land disposal restrictions?	YES						
Comments:		I operations on June 23, 2006.							

QC Laboratory

Hazardous Waste Compliance Section Hazardous Waste Generator Inspection Report Inspector's Initials: RBB 3/23/67

Hazardous Waste Container Inventory Report of Non-Compliance

EPA ID: NHD080027048

DBA Name: POLYCLAD LAMINATES INC

Inspection Date: 01/11/2007

Storage Area Location: SATELLITE

Total Number of Containers

container?

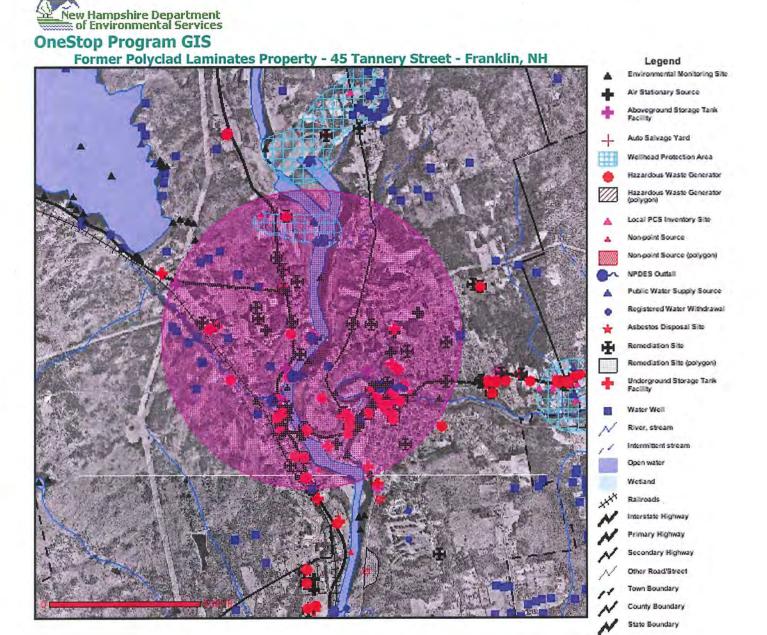
Haz Waste 1

Used Oil 0

Univ. Waste 0

Your facility was found to be out of compliance for the following containers in the above Storage Area Location

ID# Type Type Size Waste		Size	Units	Description of Contents	Area(s) out of compliance	
1	НŴ	DF.	5	GAL		Is the container labeled or marked with the words "Hazardous Waste"?
	•		•	. •		Is the container labeled or marked with the words describing the contents of the

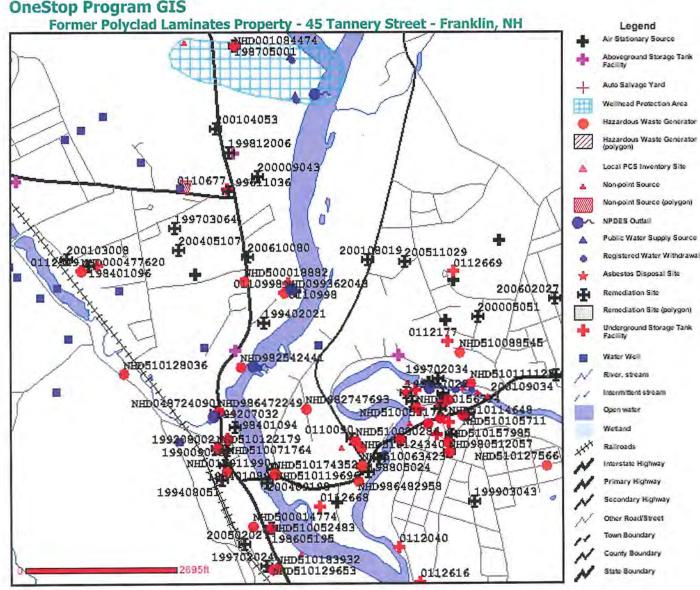


RCL. C SITE IDENTIFICATION FC. M Notification of Hazardous Waste Activity

NH DES Waste Management Division-RIMS PO Box 3900, Concord NH 03302-3900 (603) 271-2901 or (603) 271-2921 Shaded box for NH DES Office Use Only

Effective Date Compared Comp	mptly, please include provide subsequent no atification information. Name: ress: wn: me: E	ttion (to obtain l activities). <i>To</i> le the \$100 fee otification and/	e (if applic or update b	Number fat your n	For hazardous waste, including totification is processed porting data (to update site	
Submittal and Effective Date To p univ profice To p idem 2. Site Name Company N 3. Site Location Information City or Tow County Nam 4. Site Land Type 5. NAICS Code(s) (available at www.naics.com) 6. Site Contact City or Tow County Nam C	provide initial notificativersal waste or used of mptly, please include provide subsequent notification information) Name: ress: wn: me: me:	the stion (to obtain activities). To the \$100 fee the \$100 fee otification and the state of the	an EPA ID ensure the cif application update before update before all E	Number fat your mable). iennial rep State: Zip Co	box. For hazardous waste, including otification is processed Forting data (to update site	
2. Site Name Company N 3. Site Location Information City or Tow County Name 4. Site Land Type 5. NAICS Code(s) (available at www.naics.com) C. 6. Site Contact Company N City or Tow County Name County N	Name: ress: vn: me:	. Reason:	al [State: Zip Co	de:	
3. Site Location Information City or Tow County Nan 4. Site Land Type 5. NAICS Code(s) (available at www.naics.com) County Nan Count	ress: vn: me:	□ Municip:	В.	Zip Co		
City or Tow County Nar 4. Site Land Type 5. NAICS Code(s) (available at www.naics.com) C. 6. Site Contact First and Let	vn: me: e □ Federal	□ Municip:	В.	Zip Co		
County Nar 4. Site Land Type 5. NAICS Code(s) (available at www.naics.com) 6. Site Contact County Nar A. C. First and Le	me: e	□ Municip	В.	Zip Co		
4. Site Land Type	e □ Federal	□ Municip	В.			
5. NAICS Code(s) (available at www.naics.com) C. 6. Site Contact First and Le		□ Municip	В.	State	□ Other	
(available at www.naics.com) C. Site Contact First and Let	ast Name:		В.		_ CHET	
5. Site Contact First and L.	ast Name:		D.			
	ast Name:		D.			
			Title:			
	ber and Extension:		Email a	ddress:		
Street or P. Address						
City or Tow	'n:					
State:			Zip Coo	le:		
ie Bite	e's Legal Owner:		Date Be	came Ow	ner (mm/dd/yyyy):	
(List additional owners in the omments section.)	O. Box:		Phone N	lumber:		
City or Town	n:		State:		Zip Code:	
Owner Type		Federal [Municipa	l 🗆 s	tate 🗆 Other	
o. Legal Operator hame of Site	<u> </u>		Date Became Operator (mm/dd/yyyy):			
(List additional operators in the mments section.)	·		Phone N	umber:		
City or Town	n:		State:		Zip Code:	

		F	CPA ID No.	•	-	
10. Description of Hazardous Wastes. Ple waste numbers and <u>estimated</u> monthly vol <u>Source codes</u> can be found in Appendix A	ume of the haz	iste name (ex zardous waste	cluding universal v handled at your si	te. Use all was	te codes for	each waste stream.
Waste Name		Source	EPA/State H			nated Monthly
		Code	Waste Nu	ımbers		Volume
					(include	unit of measure)
			,			
			<u>.</u>			
			-			
						·
			-			
				. ` .		
		•				
				•		
				,		
			· ·			
				_	·	
						,
11. Certification Programs: All hazard the appropriate certification program do A. FQG Certification; Hazardou your primary Certified Hazardous	s Waste Coo Waste Coord	A or B below ordinator Contraction (HWC)	w. ertification: Ple C).	ase list the cer	tificate nu	•
B. SQG Self-Certification: Pleas	e list the date	of your last	SQG self certific			if applicable*.
* See instruction page 4 for SQG	implementati	on schedule	•	Month		ear
12. Comments:					-	,
	ı.			•		
			·		,	
			•		·	
·	•				,	
				• •		
13. Form Certification.	· · · · · · · · · · · · · · · · · · ·		•			
I certify under penalty of law that this docu a system designed to assure that qualified p person or persons who manage the system, is, to the best of my knowledge and belief false information, including the possibility of	ersonnel properson or those person, true, accurate	erly gather an ons directly re e, and comple	d evaluate the info esponsible for gathe ete. I am aware the	ormation submicering the information at there are significant.	tted. Based nation, the i	on my inquiry of the aformation submitted
Signature of owner, operator,	Printed na	ı <u>me</u> of own	er, operator,	Official	Title	Date Signed
or authorized representative	or auth	orized rep	resentative			(mm-dd-yyyy)


Map Scale = 1:51517 (1" = 0.8 miles or 4293 feet)

The information contained in the OneStop Program GIS is the best available according to the procedures and standards of each of the contributing programs and of the GIS. The different programs are regularly maintaining the information in their databases. As a result, the GIS may not always provide access to all existing information, and it may occasionally contain unintentional inaccuracies. The Department can not be responsible for the misuse or misinterpretation of the information presented by this system.

Map prepared 3/16/2011 2:22:27 PM

Map Scale = 1: 25758 (1" = 2147 feet or 0.4 miles)

The information contained in the OneStop Program GIS is the best available according to the procedures and standards of each of the contributing programs and of the GIS. The different programs are regularly maintaining the information in their databases. As a result, the GIS may not always provide access to all existing information, and it may occasionally contain unintentional inaccuracies. The Department can not be responsible for the misuse or misinterpretation of the information presented by this system.

Map prepared 3/16/2011 2:40:23 PM

Air Stationary Sources Features returned: 7 of 603.

MASTER ID	SITE ID	SITE NAME	ADDRESS	TOWN
<u>1623</u>	3301300057	FRANKLIN BUSINESS CENTER	20 CANAL STREET	FRANKLIN
<u>1631</u>	3301300018	FRANKLIN REGIONAL HOSPITAL	15 AIKEN AVENUE	FRANKLIN
<u>1641</u>	3301300031	POLYCLAD LAMINATES/TANNERY ST.	45 TANNERY STREET	FRANKLIN
<u>1613</u>	3301390481	SAU #18 - BESSIE C. ROWELL SCHOOL	20 ROWELL DRIVE	FRANKLIN
<u>44894</u>	3301390479	SAU #18 - FRANKLIN HIGH SCHOOL	115 CENTRAL STREET	FRANKLIN
44894	3301390480	SAU #18 - FRANKLIN MIDDLE SCHOOL	200 SANBORN STREET	FRANKLIN
44894	3301390482	SAU #18 - PAUL A. SMITH SCHOOL	41 DANIEL WEBSTER DRIVE	FRANKLIN

Asbestos Disposal Sites

Features returned: 1 of 312.

MAST ER II	SITE ID	SITE NAME	ADDRESS	TOWN	PROJE CT TYPE	PROJECT MANAGE R	WORKLO AD PRIORIT Y	RIS K	PERMI T#	TA X MA P	TA X LO T
4490	200007059	FORMER JP STEVENS MILL	38 E BOW	FRANKLIN	ASBEST	UNASSIG	3	NDY	NA	117	31
		(FORMER ADS 16)	ST		OS	NED					8

AST Facilities

Features returned: 6 of 1348.

MASTER ID	SITE ID	SITE NAME	ADDRESS	TOWN	NUM. TANKS	TAX MAP	TAX LOT
<u>16545</u>	981206A	A D & G FUEL CO INC	27 HILL RD	FRANKLIN	4	001	095-011
<u>16549</u>	940851A	BENSON AUTO CO INC	28 N MAIN ST	FRANKLIN	4	98	081
<u>1623</u>	960821A	FRANKLIN BUSINESS CENTER	20 CANAL ST	FRANKLIN	0	117	153
<u>16567</u>	9812137	PSNH EASTMAN FALLS SUBSTATION	269 N MAIN ST	FRANKLIN	2	97	71
<u>16568</u>	9812139	PSNH FRANKLIN SUBSTATION	WEST BOW ST	FRANKLIN	1	116	051
<u>16569</u>	9812002	PSNH WEBSTER SUBSTATION	ROUTE 11	FRANKLIN	5	76	001

Automobile Salvage Yards (Features returned: **0**)

Hazardous Waste Generators

Features returned: 33 of 7161. Currently displaying records 1 through 25.

MASTE R ID	SITE ID	SITE NAME	ADDRESS	TOWN	STATUS	ТҮРЕ	SIZE
<u>1610</u>	NHD001084474	ACME STAPLE CO INC	87 HILL RD	FRANKLIN	ACTIVE	RCRA REGULATED	SQG(CESQG)
0	NHD510174352	ADAMS AUTO	32 CENTRAL ST	FRANKLIN	DECLASSIFIED	RCRA REGULATED	NONE
16547	NHD510111123	ALGONQUIN POWER STATION	35 E BOW ST	FRANKLIN	INACTIVE	STATE REGULATED	SQG(CESQG)

<u>44919</u>	NHD510156714	ALGONQUIN POWER SYSTEM	40 MEMORIAL ST	FRANKLIN	INACTIVE	RCRA REGULATED	NONE
44921	NHD500018882	BEAUCHINE AUTO SERVICE	392 N MAIN ST	FRANKLIN	ACTIVE	RCRA REGULATED	SQG(CESQG)
<u>16549</u>	NHD018911990	BENSON AUTO CO INC	28 N MAIN ST	FRANKLIN	ACTIVE	RCRA REGULATED	SQG(CESQG)
<u>0</u>	NHD510183932	BILL HAMELS CAR CARE	213 S MAIN ST	FRANKLIN	DECLASSIFIED	RCRA REGULATED	NONE
<u>1622</u>	NHD510063423	CASTLE MOTORS	168 CENTRAL ST	FRANKLIN	INACTIVE		SQG(CESQG)
44893	NHD018912329	CITY SIDE CLEANERS	333 CENTRAL ST	FRANKLIN	DECLASSIFIED	RCRA REGULATED	NONE
<u>44952</u>	NHD510080286	CLEAN HARBORS HHWC	43 W BOW ST	FRANKLIN	INACTIVE	RCRA REGULATED	SQG(CESQG)
1641	NHD099362048	COOKSON AMERICA	45 TANNERY ST	FRANKLIN	INACTIVE	RCRA REGULATED	FQG1(LQG)
1615	NHD986473619	CUMBERLAND FARMS 2806	233 CENTRAL ST	FRANKLIN	INACTIVE	RCRA REGULATED	NONE
16550	NHD986482958	DOWNEAST AUTO REPAIR	155 CENTRAL ST	FRANKLIN	DECLASSIFIED	RCRA REGULATED	NONE
<u>44899</u>	NHD500018676	F M PIPER PRINTING LLC	338 CENTRAL ST	FRANKLIN	DECLASSIFIED	RCRA REGULATED	NONE
<u>1623</u>	NHD510114648	FRANKLIN BUSINESS	20 CANAL ST	FRANKLIN	DECLASSIFIED	RCRA REGULATED	NONE
<u>1631</u>	NHD510088545	FRANKLIN REGIONAL HOSPITAL	15 AIKEN AVE	FRANKLIN	ACTIVE	RCRA REGULATED	FQG2(SQG)
<u>1634</u>	NHD510122179	FRANKLIN SUNOCO	120 N MAIN ST	FRANKLIN	INACTIVE	STATE REGULATED	SQG(CESQG)
<u>1636</u>	NHD510071764	INSULFAB PLASTICS INC	155 N MAIN ST	FRANKLIN	INACTIVE	OUT OF STATE	NONE
<u>55899</u>	NHD510129653	LAKES REGION AUTO REPAIR	213A S MAIN ST	FRANKLIN	INACTIVE	STATE REGULATED	SQG(CESQG)
<u>44944</u>	NHD500014774	MERRIMACK CLEANERS ASSOCIATES	123 S MAIN ST	FRANKLIN	DECLASSIFIED	RCRA REGULATED	NONE
<u>44949</u>	NHD982747693	MIL-COM INDUSTRIES INC	52 THOMPSON PK	FRANKLIN	INACTIVE	RCRA REGULATED	SQG(CESQG)
1612	NHD980512057	NEW ENGLAND TELEPHONE CO	FRANKLIN ST	FRANKLIN	INACTIVE	RCRA REGULATED	SQG(CESQG)
<u>44953</u>	NHD510128036	NORELL FOUNDRY & MACHINE INC	187 CHANCE POND RD	FRANKLIN	INACTIVE	RCRA REGULATED	NONE
44924	NHD048724090	NORPLEX OAK	174 N MAIN ST	FRANKLIN	DECLASSIFIED	RCRA REGULATED	SQG(CESQG)
<u>1639</u>	NHD000477620	NORPLEX OAK	RANGE RD	FRANKLIN	DECLASSIFIED	RCRA REGULATED	SQG(CESQG)

Local PCS Inventory (Features returned: **0**)

Non-point Sources Features returned: 11 of 2564.

SITE ID	SITE NAME	ADDRESS	TOWN	SITE TYPE
330	SD			122-03
329	SD			122-02
328	SD			122-01
2237	MS	KIDDER GRAVEL PIT		122-15
342	SC	PUBLIC WORKS BUILDINGS		122-12
338	SD	TOWN HALL AND LIBRARY		122-11
337	SD	TOWN HALL AND LIBRARY		122-10
336	SD	TOWN HALL AND LIBRARY		122-09
335	SD	TOWN HALL AND LIBRARY		122-08
334	SD	TOWN HALL AND LIBRARY		122-07
333	SD	TOWN HALL AND LIBRARY		122-06

NPDES OutfallsFeatures returned: 5 of 413.

PERMIT#	ID#	FACILITY	TOWN	WATER BODY NAME	STATUS	ТҮРЕ
NH0022748	0022748	ADVANCE CIRCUIT SYSTEMS, INC.	FRANKLIN	IND	CHANCE POND BROOK	INACTIVE
NH0021903	0021903	CONTROL MOLDING, INC.	FRANKLIN	IND	WINNIPESAUKEE RIVER	INACTIVE
NH0021709	0021709	POLYCLAD LAMINATES, INC.	FRANKLIN	IND	PEMIGEWASSET RIVER	INACTIVE
NH0000370	0000370	PSNH - EASTMAN FALLS	FRANKLIN	IND	PEMIGEWASSET RIVER	ACTIVE
NH0022438	0022438	ACME STAPLE COMPANY, INC.	W. FRANKLIN	IND	PEMIGEWASSET RIVER	APPLIED FOR

Remediation Sites
Features returned: 44 of 9451.
Currently displaying records 1 through 25.

MASTE R ID	SITE ID	SITE NAME	ADDRESS	TOWN	PROJECT TYPE	PROJECT MANAGER	WORKLOA D PRIORITY	RISK	PERMIT#	TAX MAP	TAX LOT
<u>16545</u>	199812006	A D & G FUEL CO INC	27 HILL RD	FRANKLI N	IRSPILL	CLOSED	3	8	NA		
1610	198705001	ACME STAPLE COMPANY	RTE 3A	FRANKLI N	HAZWAST E	BOWEN	3	2	GWP- 19870500 1-F-004 GWP- 19870500 1-F-003 GWP- 19870500 1-F-002 GWP- 870501-F- 001	95	402, 403, 404
1611	199207032	ADVANCE CIRCUIT	174 N MAIN ST	FRANKLI N	HAZWAST E	CLOSED	3	8	NA		

		SYSTEMS INC				70 · · · · · · · · · · · · · · · · · · ·	,				
<u>16547</u>	i	ALGONQUIN POWER SYSTEM	40 MEMORIAL STREET	N	IRSPILL,	CLOSED, CLOSED, CLOSED	3, 3, 3	8, 8, 8	NA, NA, NA		
<u>16548</u>		ANGELL PROPERTY	175 CENTRAL STREET	FRANKLI N	LUST	CLOSED	3	8	NA	SECTIO N 2 MAP 117	266
<u>16549</u>		BENSON AUTO CO INC	28 N MAIN ST	FRANKLI N	UIC	CLOSED	3	8	NA .	98	81
61156	200602027	BOSWORTH PROPERTY	129 CHESTNUT STREET	FRANKLI N	OPUF	CLOSED	3	8	NA		
1622	199906054	CASTLE MOTORS	168 CENTRAL ST	FRANKLI N	HAZWAST E	CLOSED	3	8	NA		
<u>1622</u>	199906054	CASTLE MOTORS	168 CENTRAL ST	FRANKLI N	LUST	CLOSED- AUR	3	8	NA	2-117	274
51106	200009043	CHARLIE BERUBE PROPERTY	8 LINCOLN ST.	FRANKLI N	OPUF	CLOSED	3	8	NA		
1615	199003013	CUMBERLAN D FARMS 2806	239 CENTRAL ST	FRANKLI N	LUST, UIC	CLOSED, CLOSED	3, 3	8, 8	GWP- 19900301 3-F-003 GWP- 900313-F- 002 TSWP- 19900301 3-002 GWP- 900313-F- 001 TSWP- 19900301	SECTIO N 3 MAP 117	76
<u>54212</u>	200005051	DAN HUGHES RESIDENCE	34 BEATON ST	FRANKLI N	OPUF	CLOSED	3	8	NA		
<u>16553</u>	199703064	EDWARD PELCZAR RESIDENCE	3 LILY LN.	FRANKLI N	OPUF	CLOSED	3	8	NA	901	054
<u>62372</u>	199306005	FAIRPOINT	76 FRANKLIN ST	FRANKLI N	LUST	CLOSED	3	8	NA	03-117	181
1639	198401096	FEDD HOLDINGS OF NH	91 RANGE RD	FRANKLI N	HAZWAST E, HAZWAST E	CLOSED, CLOSED	3, 3	8, 8	NA, NA	1	77/420
44907	200007059	FORMER JP STEVENS MILL (FORMER ADS 16)	38 E BOW ST	FRANKLI N	ASBESTOS	UNASSIGNE D	3	NDY	NA	117	318
<u>1660</u>	199203032	FRANKLIN CITGO	80 N MAIN ST	FRANKLI N	LUST	CLOSED	3	8	NA	1-098	096
<u>1627</u>	199306026	FRANKLIN	59 W BOW	FRANKLI	LUST	CLOSED	3	8	NA	02-117	296

		FIRE STATION	ST	N							
1627	199306026	FRANKLIN FIRE STATION	59 W BOW ST	FRANKLI N	HAZWAST E	UNASSIGNE D	3	6	GWP- 19930602 6-F-002 GWP- 19930602 6-F-001	02-117	296
1629	199408010	FRANKLIN S MAIN ST IRVING	221 S MAIN ST	FRANKLI N	LUST	CLOSED	3	8	NA		
<u>1634</u>	199208002	FRANKLIN SUNOCO	120 N MAIN ST	FRANKLI N	LUST	CLOSED	3	8	NA	1-098	99
<u>61795</u>	200610080	FRENCH RESIDENCE	387 N MAIN ST	FRANKLI N	OPUF	CLOSED	3	8	NA		
<u>16558</u>	199903043	GARY DELISLE	46 VIEW STREET	FRANKLI N	OPUF	CLOSED	3	8	NA		
54603	200104053	GERMAIN RESIDENCE	46 HILL ST	FRANKLI N	OPUF	CLOSED	3	8	NA		
<u>16559</u>	199702034	GHI ASSOCIATES , INC.		FRANKLI N	HAZWAST E	CLOSED	3	8	NA	117	318&362

UST FacilitiesFeatures returned: 28 of 4735.
Currently displaying records 1 through 25.

MASTE R ID	SITE ID	SITE NAME	ADDRESS	TOWN	NUMBE R OF ACTIVE TANKS	TAX MAP	TAX LOT
<u>1611</u>	0112548	ADVANCE CIRCUIT SYSTEMS INC	174 N MAIN ST	FRANKLIN	0	SEC 1	SHEET 97 LOT 54
1613	0112669	BESSIE ROWELL ELEM SCHOOL	ROWELL DR	FRANKLIN	0	02-116	151
1622	0110597	CASTLE MOTORS	168 CENTRAL ST	FRANKLIN	0	02-117	274
<u>1615</u>	0110744	CUMBERLAND FARMS 2806	239 ŒNTRAL ST	FRANKLIN	3	03-117	076
62372	0220527	FAIRPOINT	76 FRANKLIN ST	FRANKLIN	1	03-117	181
<u>1639</u>	0112549	FEDD HOLDINGS OF NH	91 RANGE RD	FRANKLIN	0	1-077	420
<u> 1639</u>	0112549	FEDD HOLDINGS OF NH	91 RANGE RD	FRANKLIN	0	1-77	420
<u>1623</u>	0115227	FRANKLIN BUSINESS CENTER	20 CANAL ST	FRANKLIN	1		
<u> 1660</u>	0112195	FRANKLIN CITGO	80 N MAIN ST	FRANKLIN	3	1-098	096
<u> 1624</u>	0114933	FRANKLIN CITY HALL	316 CENTRAL ST	FRANKLIN	0		
<u> 1627</u>	0110090	FRANKLIN FIRE STATION	59 W BOW ST	FRANKLIN	2	02-117	296
<u>1630</u>	0112668	FRANKLIN JR/SR HIGH SCHOOL	115 CENTER ST/RTE 3	FRANKLIN	1	02-117	406
<u>1631</u>	0112177	FRANKLIN REGIONAL HOSPITAL	15 AIKEN AVE	FRANKLIN	2	2-116	020
<u>1629</u>	0111242	FRANKLIN S MAIN ST IRVING	221 S MAIN ST	FRANKLIN	7	01-099	006
<u>1632</u>	0113043	FRANKLIN SAVINGS BANK	287 CENTRAL STREET	FRANKLIN	0	2-117	170
<u> 1634</u>	0111027	FRANKLIN SUNOCO	120 N MAIN ST	FRANKLIN	6	01-098	100

<u>1636</u>	0110031	INSULFAB PLASTICS	155 N MAIN ST	FRANKLIN	0	1-97	103
<u>1637</u>	0113615	JJ NEWBERRY #6146	384 CENTRAL ST	FRANKLIN	0	02-117	152
1640	0110673	PACKERS OUTLET	195 CENTRAL ST	FRANKLIN	0	02-117	263
<u>1641</u>	0110998	POLYCLAD LAMINATES INC	45 TANNERY ST	FRANKLIN	0	1-116	171
1641	0110998	POLYCLAD LAMINATES INC	45 TANNERY ST	FRANKLIN	0	1-116	171
1646	0113592	REGAL AUCTION SERVICES	349 CENTRAL ST	FRANKLIN	0	03-117	055
1647	0111708	RIVERS EDGE SERVICE CENTER	150 S MAIN ST	FRANKLIN	0	01-098	068
<u>1648</u>	0110677	ROBERTS MARKET FMR FRANKLIN CONV & GAS	2 HILL RD	FRANKLIN	2	01-096	104
<u>1626</u>	0112196	SHOP EXPRESS	449 CENTRAL ST	FRANKLIN	2	03-117	163

Environmental Monitoring Sites
Features returned: 59 of 15802.
Currently displaying records 1 through 25.

Click o	STATION n the ID link to view sampling results.	PROJECTS
ID: NAME: TOWN: TYPE: WATERBO	02-WIN RTE 3 & 11 BRIDGE FRANKLIN RIVER/STREAM ODY ID: NHIMP700020203-07 YES	AMBIENT RIVER MONITORING PROGRAM (ARMP) [NHDES]
ID: NAME: TOWN: TYPE: WATERB	01-PMI RTE 3/11 BRIDGE FRANKLIN RIVER/STREAM ODY ID: NHRIV700010804-14 YES	AMBIENT RIVER MONITORING PROGRAM (ARMP) [NHDES]
ID: NAME: TOWN: TYPE: WATERB ID: ACTIVE:	WIR-001 48 CONCRETE CULVERT OFF RIVER ST FRANKLIN CULVERT NHRIV700020203-18 YES	MERRIMACK INVESTIGATIONS [NHDES]
ID: NAME: TOWN: TYPE: ACTIVE:	WIR-050 12 AND 8 CAST IRON PIPES IN CANAL FRANKLIN PIPE YES	MERRIMACK INVESTIGATIONS [NHDES]
ID: NAME: TOWN:	WIR-150 18 CMP BELOW LIBRARY LAWN AND SHRUBS FRANKLIN	MERRIMACK INVESTIGATIONS [NHDES]

<u> </u>		
TYPE: ACTIVE:	PIPE YES	
ID: NAME: TOWN: TYPE: WATERBO	WIR-250 MILL ST FRANKLIN PIPE DDY ID: NHRIV700020203-18 YES	MERRIMACK INVESTIGATIONS [NHDES]
ID: NAME: TOWN: TYPE: ACTIVE:	WSB-001 12 CONCRETE PIPE FRANKLIN PIPE YES	MERRIMACK INVESTIGATIONS [NHDES]
ID: NAME: TOWN: TYPE: ACTIVE:	PMR-100 24 GRANITE PIPE AT END OF PEMI STREET FRANKLIN PIPE YES	MERRIMACK INVESTIGATIONS [NHDES]
ID: NAME: TOWN: TYPE: ACTIVE:	PMR-030 18 CONCRETE PIPE FRANKLIN PIPE YES	MERRIMACK INVESTIGATIONS [NHDES]
ID: NAME: TOWN: TYPE: ACTIVE:	PMR-020 30 CAST IRON PIPE FRANKLIN PIPE YES	MERRIMACK INVESTIGATIONS [NHDES]
ID: NAME: TOWN: TYPE: ACTIVE:	PMR-015 CATCH BASIN FRANKLIN CATCH BASIN YES	MERRIMACK INVESTIGATIONS [NHDES]
ID: NAME: TOWN: TYPE: WATERB	UMMP-01 #1 PEMIGEWASSET RIVER FRANKLIN RIVER/STREAM ODY ID: NHRIV700010804-14 YES	UPPER MERRIMACK MONITORING PROGRAM [UPPER MERRIMACK RIVER LOCAL ADVISORY COMMITTEE]
ID: NAME:	WIR-1790A 8 RED CLAY PIPE	MERRIMACK INVESTIGATIONS [NHDES]

TOWN: TYPE: ACTIVE:	FRANKLIN PIPE NO	
ID: NAME: TOWN: TYPE: ACTIVE:	WIR-1790B 8 RED CLAY PIPE FRANKLIN PIPE NO	MERRIMACK INVESTIGATIONS [NHDES]
ID: NAME: TOWN: TYPE: ACTIVE:	WIR-1800 4 CAST IRON PIPE FRANKLIN PIPE NO	MERRIMACK INVESTIGATIONS [NHDES]
ID: NAME: TOWN: TYPE: ACTIVE:	WIR-1810 4 CAST IRON PIPE FRANKLIN PIPE NO	MERRIMACK INVESTIGATIONS [NHDES]
ID: NAME: TOWN: TYPE: ACTIVE:	WIR-1820 12 GREEN PVC PIPE FRANKLIN PIPE NO	MERRIMACK INVESTIGATIONS [NHDES]
ID: NAME: TOWN: TYPE: ACTIVE:	WIR-1830 6 CAST IRON PIPE FRANKLIN PIPE NO	MERRIMACK INVESTIGATIONS [NHDES]
ID: NAME: TOWN: TYPE: ACTIVE:	WIR-1840 6 RED CLAY PIPE FRANKLIN PIPE NO	MERRIMACK INVESTIGATIONS [NHDES]
ID: NAME: TOWN: TYPE: ACTIVE:	WIR-1850 6 RED CLAY PIPE FRANKLIN PIPE NO	MERRIMACK INVESTIGATIONS [NHDES]
ID: NAME: TOWN: TYPE: ACTIVE:	WIR-1860 6 RED CLAY PIPE FRANKLIN PIPE NO	MERRIMACK INVESTIGATIONS [NHDES]

ID: NAME: TOWN: TYPE: ACTIVE:	WIR-770 6 WHITE PVC PIPE FRANKLIN PIPE NO	MERRIMACK INVESTIGATIONS [NHDES]
ID: NAME: TOWN: TYPE: ACTIVE:	WIR-780 2-3 CAST IRON PIPE FRANKLIN PIPE NO	MERRIMACK INVESTIGATIONS [NHDES]
ID: NAME: TOWN: TYPE: ACTIVE:	WIR-790A 4 CAST IRON PIPE FRANKLIN PIPE NO	MERRIMACK INVESTIGATIONS [NHDES]
ID: NAME: TOWN: TYPE: ACTIVE:	WIR-790B 4 CAST IRON PIPE FRANKLIN PIPE NO	MERRIMACK INVESTIGATIONS [NHDES]

Conservation Lands Features returned: 6 of 4480.

TRACT#	TRACT NAME	REPORTED ACRES	STATUS	PRIMARY AGENCY	PROTECTION LEVEL	PRIMARY PROTECTION TYPE	PUBLIC ACCESS
122-006 -	FRANKLIN FALLS RESERVOIR	-999	3	23000	1	FO ·	1
122-007 -	FRANKLIN WELLFIELD	8.8	3	13060	2 A	FO	5
122-008 -	FRANKLIN WELLFIELD	23.1	3	13060	2A	FO	5
122-009 -	CITY OF FRANKLIN LAND	11.2	3	13060	1	FO	1
122-010 -	GREAT GAINS MEMORIAL FOREST	643.3	3	13060	1	FO	1
122-011 -	RIVER STREET RIVER FRONTAGE	-999	3	13060	1	FO	1

Wellhead Protection Area

Features returned: 1 of 1683.

MASTER ID SYSTEM ID	SOURCE ID(S)	SYSTEM NAME	ADDRESS TOWN	
<u>52839</u> 0851010	1, 2	FRANKLIN WATER WORKS	43 W BOW ST FRANKLI	N

Public Water Supply Sources Features returned: 2 of 5295.

MASTER ID	PWS ID	SYSTEM NAME	ADDRESS	TOWN	SYSTEM ACTIVE	SOURCE ACTIVE	SYSTEM: TYPE	SOURCE TYPE	WELL	RECORD SOURCE / WATER TYPE	TION
<u>52839</u>	0851010- 001	FRANKLIN WATER WORKS	43 W BOW ST	FRANKLIN	A	A	С	G	GPW	SG	7000
<u>52839</u>	0851010- 002	FRANKLIN WATER WORKS	43 W BOW ST	FRANKLIN	Α	Α	С	G	GPW	SG	7000

Registered Water Withdrawals Features returned: 9 of 1872.

SD ID	NAME	FACILITY	ADDRESS	TOWN	WATER BODY	USE TYPE	USE SUB- TYPE	ACTION
20145- D01	PUBLIC SERVICE CO OF NH	EASTMAN FALLS HYDRO	NORTH MAIN STREET	FRANKL IN	PEMIGEWASSET RIVER	SW	RV	RT
20145- S01	PUBLIC SERVICE CO OF NH	EASTMAN FALLS HYDRO	NORTH MAIN STREET	FRANKL IN	PEMIGEWASSET RIVER	SW	RV	WL
20357- S02	FRANKLIN WATER WORKS	FRANKLIN WATER WORKS		FRANKL IN	ACME WELL #1	GW	WG	WL
20357- S03	FRANKLIN WATER WORKS	FRANKLIN WATER WORKS		FRANKL IN	ACME WELL #2	GW	WG	WL
20472- D01	CONTROL MOLDING INC		SMITH & CANAL STREET	FRANKL IN	WINNEPESAUKEE RIVER	SW	RV	RT
20472- S01	CONTROL MOLDING INC		SMITH & CANAL STREET	FRANKL IN	WINNEPESAUKEE RIVER	SW	RV	WL
20483- D01	ALGONQUIN POWER SYSTEMS	STEVENS MILL	SMITH & CANAL STREET	FRANKL IN	WINNIPESAUKEE RIVER	SW	RV	RT
20483- S01	ALGONQUIN POWER SYSTEMS	STEVENS MILL	SMITH & CANAL STREET	FRANKL IN	WINNIPESAUKEE RIVER	SW	RV	WL
20620- S01	FRANKLIN FALLS HYDRO CORP	FRANKLIN FALLS DAM	MAIN STREET	FRANKL IN	WINNIPESAUKEE RIVER	SW	RV	WL

Water Well Inventory Features returned: 17 of 62000.

WRB#	OWNER	ADDRESS	TOWN
087.0157	JEFF MARCEAU	CLARK ST	FRANKLIN
087.0026	J. BECKFORD	41 NELSON ST	FRANKLIN
087.0027	R. NADEAU	25 LAWSON AVE	FRANKLIN
087.0080	G. FIELD	254 CHANCE POND RD	FRANKLIN
087.0090	S. TRIPP	11 FLAG HOLE RD	FRANKLIN
087.0116	R. MERRILL	236 CHANCE POND RD	FRANKLIN
087.0123	R. MORWAY	16 KIDDER AVE	FRANKLIN
087.0004	D. NADEAU	270 CHANCE POND RD	FRANKLIN

087.0142	M. PAQUIN	228 CHANCE POND RD	FRANKLIN
087.0255	G & Y BUILDERS LLC	58 LAKE AVE	FRANKLIN
087.0175	LAKEVIEW CONSTRUCTION	CLARK ST	FRANKLIN
087.0176	C. BARTZ	34 FLAG HOLE RD	FRANKLIN
087.0247	POLY CLAD LAMINATES	45 TANNERY ST	FRANKLIN
087.0253	K GROESSER BUILDERS	25 FINCH DR	FRANKLIN
087.0087	C & L. READ	45 LAKE AVE	FRANKLIN
087.0107	R. DAVIS	31 WEBSTER LAKE RD	FRANKLIN
087.0127	R. MARCOUX	187 SUMMIT ST	FRANKLIN

PHASE I ENVIRONMENTAL ASSESSMENT AND LIMITED COMPLIANCE REVIEW

POLYCLAD LAMINATES, INC.
45 TANNERY STREET
WEST FRANKLIN, NEW HAMPSHIRE
DELTA PROJECT NO. 0503015P

Prepared for:

Cookson Electronics, Inc.
One Cookson Place
Providence, Rhode Island 02903
(401) 228-8813

Prepared by:

Delta Environmental Consultants, Inc. 17 Main Street Hopkinton, MA 01581 USA (508) 544-2888

August 19, 2005

TABLE OF CONTENTS

1.0	INTRODUCTION	
	1.1 Purpose and Scope of Services	
	1.2 User Reliance	
2.0	SUBJECT PROPERTY DESCRIPTION	2
3.0	USER-PROVIDED INFORMATION	3
	3.1 Title Records	3
	3.2 Environmental Liens or Activity and Use Limitations	
	3.3 Specialized Knowledge	3
	3.4 Valuation Reduction for Environmental Issues	
4.0		
4.0	RECORDS REVIEW	
	4.1 Subject Property Geology4.2 Historical Land Use Information	
	4.2.1 Historical Sources	
	4.2.2 Historical Summary	
	4.2.3 Historical and Topographic Maps	
	4.2.4 Aerial Photographs	
	4.2.5 City Directories	
	4.2.7 Local Government Property Records	
	4.3 Regulatory Review	
	4.3.1 Sources	9
	4.3.2 Subject Property	
	4.3.3 Adjacent and Nearby Properties	
	4.3.4 Surrounding Properties	
	·	
5.0	SITE RECONNAISSANCE	14
	5.1 Methodology and Limiting Conditions	
	5.3 Observations	
	5.4 Subject Property Discussion	
	5.4.1 Aboveground Chemical or Waste Storage, Distribution Systems	
	5.4.2 Underground Chemical or Waste Storage, Distribution Systems	
	5.4.3 Electrical Transformers	18
	5.4.5 Other Notable Features	
	5.5 Current Uses of Adjoining Properties	
	5.6 Limited Environmental Compliance Review	
	5.6.1 Environmental Topics	
	5.6.2 Occupational Health and Safety Topics	20
6.0	INTERVIEWS	21
7 0	FINDINGS AND OPINION	22
	7.1 Recognized Environmental Conditions	
	7.2 Historical Recognized Environmental Conditions	
	7.3 De Minimis Conditions	22
8.0	CONCLUSION(S) AND RECOMMENDATIONS	23
	8.1 Phase I Environmental Assessment Findings	23
	8.2 Limited Environmental Compliance Review Findings	24
9.0	LIMITATIONS OF ENVIRONMENTAL ASSESSMENTS	24
	9.1 Subject Property Data Review	24
	9.2 Subject Property Reconnaissance	
	9.3 Interpretation of Results – Final Report	24
10 (O QUALIFICATIONS AND SIGNATURES OF ENVIRONMENTAL PROFESSIONALS	25

Page ii

TABLE OF CONTENTS (CONT.)

List of Figures

Figure 1	Subject Property Location Map
Figure 2	Subject Property Vicinity Map
Figure 3	Subject Property Layout Map

	List of Appendices
Appendix A	Tax Assessor Documents
Appendix B	Environmental Data Resources, Inc. Radius Map with GeoCheck®
Appendix C	Historical Topographic Maps
Appendix D	Aerial Photographs
Appendix E	City Directory Abstract
Appendix F	Sanborn® Fire Insurance Map
Appendix G	Underground Storage Tank Closure Documents
Appendix H	Subject Property Photographs
Appendix I	Chemical Inventory List
Appendix J	Environmental Permits
Appendix K	Project Team Profiles

PHASE I ENVIRONMENTAL ASSESSMENT AND LIMITED COMPLIANCE REVIEW

POLYCLAD LAMINATES, INC. 45 TANNERY STREET WEST FRANKLIN, NEW HAMPSHIRE DELTA PROJECT NO. 0503015P

1.0 INTRODUCTION

1.1 Purpose and Scope of Services

Delta Environmental Consultants, Inc. (Delta) was retained by Cookson Electronics, Inc. (Cookson Electronics) to perform a Phase I Environmental Assessment (EA) and Limited Compliance Review at the Polyclad Laminates, Inc. (Polyclad) site located at 45 Tannery Street, West Franklin, New Hampshire (subject property) (**Figure 1**). The Polyclad facility includes manufacturing, warehouse, and office space.

The objective of this assessment was to identify recognized environmental conditions associated with the property according to American Society for Testing and Materials (ASTM) E 1527-00 Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process. The Limited Compliance Review was conducted to determine general facility compliance with federal, state, or local environmental and health and safety legal requirements with an emphasis on significant issues of non-compliance and significant unresolved compliance issues.

The ASTM E 1527-00 standard defines the term *recognized environmental condition* as meaning "the presence or likely presence of any hazardous substances or petroleum products on a property under conditions that indicate an existing release, a past release, or a material threat of a release of any hazardous substances or petroleum products into structures on the *property* or into the ground, ground water, or surface water of the *property*. The term includes hazardous substances or petroleum products even under conditions in compliance with laws. The term is not intended to include *de minimis* conditions that generally do not present a material risk of harm to public health or the environment and that generally would not be subject to an enforcement action if brought to the attention of appropriate governmental agencies. Conditions determined to be *de minimis* are not recognized environmental conditions."

This Phase I EA was conducted utilizing currently accepted professional standards and in general accordance with ASTM E 1527-00. Significant scope-of-work additions, deletions, or deviations to ASTM E 1527-00 are noted below or stated in the body of this report. Unless listed below, none of the traditional non-scope considerations, listed in ASTM E 1527-00 under Section 12.1.4, were requested by the User to be completed as part of this Phase I EA.

West Franklin, New Hampshire Delta Project No. 0503015P

Page 2

Whenever possible, supporting documentation has been provided as appendices to this report. Selected documentation referenced in this report may not be presented due to copyright restrictions or cost considerations.

1.2 User Reliance

This report is for the use and benefit of, and may be relied upon by, Cookson Electronics.

2.0 SUBJECT PROPERTY DESCRIPTION

SUBJECT PROPERTY DESCRIPTI	ON
Subject Property Name	Polyclad Laminates, Inc.
Subject Property Owner	Polyclad Laminates, Inc.
Subject Property Address	45 Tannery Street, Franklin, New Hampshire 03235
Subject Property Parcel ID	116-171-00 (building site); 116-175-00 (vacant parcel to northeast); 097-105-00 (paved parking lot to southwest)
Subject Property Location	The subject property is located at latitude and longitude coordinates 43°27'0.4" north and 71°39'25.6" west, respectively. The subject property is located on the east end of Tannery Street, in the City of Franklin, Merrimack County, New Hampshire (Figure 1).
Subject Property Operations	The facility manufactures raw materials used to make multi-layer circuit boards. These materials are called prepreg. Prepreg is made by passing fiberglass cloth through a dip tank filled with epoxy resin. The epoxy resins are formulated in mixing tanks in a dedicated mix room. Once coated, the fiberglass fabric is dried in a heated oven tower. The resin partially hardens and sticks to the fiberglass cloth. The equipment used for this process is fully automated and is called a Takuma treater. There are two treaters in the facility; one is currently inactive. The facility is identified under SIC code 3083: manufacturing laminates, plastics, plate, and sheet.
Property Size	Includes three lots: the building site, 1.97 acres; a vacant parcel to northeast, 3.3 acres; and a paved parking lot to southwest, 1.0 acres. Total acreage is 6.27 acres. The building site is depicted on Figures 2 and 3 . The vacant and paved parcels are depicted on Figure 2 and on the tax maps in Appendix A .
Land Area Description	The area of the subject property is zoned low density business and commercial district; surrounding properties are mainly wooded, vacant lots. The Pemigewasset River is located north and east of the subject property. The land along the river is heavily wooded and drops off sharply to the river. The Polyclad building is located in the approximate center of the 1.97 acre lot, with paved parking or access roads on all sides. The Polyclad parcel to the north (3.3 acres) is mostly wooded, with approximately one acre of unpaved parking and no structures. The Polyclad parcel to the southwest (one acre) is a paved parking lot.

Page 3

SUBJECT PROPERTY DESCRIPTION		
The building is mainly one-story, slab-on-grade construction with office warehouse and manufacturing space, the majority of which is currently vaca (Figure 3). The office areas are two-story. Square footage as supplied Cookson Electronics is 61, 261 square feet. Tax assessor documents indicate to building was constructed in 1930; however historical information indicates in building construction around 1950 with an addition to the northeast in 1980.		
Zoning	B-1, Low Density Business and Commercial District	
Subject Property Topographic Relief	The developed lots are graded and relatively flat. There is an overall gradient to the southeast. The land drops off to the river to the east and south.	

Property information was obtained from the City of Franklin Tax Assessor's Office and Zoning Administrator. Copies of the tax maps, property record cards and zoning map are included in **Appendix A**.

3.0 USER-PROVIDED INFORMATION

The "User" as defined in this assessment is Cookson Electronics.

3.1 Title Records

The User did not provide any recorded land title records pertaining to the subject property.

3.2 Environmental Liens or Activity and Use Limitations

The User did not identify any environmental liens or use limitations currently recorded against the subject property.

3.3 Specialized Knowledge

The User did not provide any specialized knowledge pertaining to the subject property.

3.4 Valuation Reduction for Environmental Issues

The User did not provide any actual knowledge that the purchase price of the subject property is significantly less than the purchase price of comparable properties.

3.5 Owner, Property Manager, and Occupant Information

The User indicated the subject property is occupied by Polyclad, a manufacturer of copper clad laminates.

Page 4

4.0 RECORDS REVIEW

4.1 Subject Property Geology

Subject property geology can influence the susceptibility to, and relative magnitude of, environmental impacts and liabilities associated with on- and off-site sources of contamination. The following provides physical setting information for the subject property and surrounding area:

PHYSICAL SETTING	Source				
Topography	Topography				
Site Elevation	Approximately 347 feet above mean sea level (msl).				
Surface Runoff/ Topographic Gradient	The developed lots are graded and relatively flat. There is an overall gradient to the southeast. The land drops off to the east and the south to the river below.	Franklin, New Hampshire, Quadrangle, 7.5-Minute Series Topographic Map, United States Geological Survey			
Closest Surface Water	The Pemigewasset River is less than 200 feet east of the Polyclad building. The Pemigewasset River flows to the south at this location.	(USGS), 2000			
FEMA Map	FEMA Map				
Flood Zone	Flood zone information was not available for the area of the subject property.	Environmental Data Resources, Inc. (EDR) Radius Map with GeoCheck [®]			
Subsurface Characteris	stics				
Soils/Surficial Deposits	Soils across the subject property are mapped primarily as the Occum fine sandy loam. This soil type is typified by deep, well-drained soils with moderately coarse textures.	EDR Radius Map with GeoCheck			
Bedrock	Bedrock in the area of the subject property consists of Silurian-aged metamorphic rocks. These rocks consist of aluminous schist, quartzite, calcsilicate granofels and bimodal metavolcanic rocks. The depth to bedrock in the area of the subject property is estimated at 50 to 100 feet below the ground surface.	Generalized Bedrock Geologic Map of New Hampshire, USGS, New Hampshire Department of Environmental Services, 1997			
Ground Water	The regional depth to ground water is estimated at less than 30 feet below the ground surface and the groundwater flow direction in the vicinity of the subject property is estimated to the east-southeast. Local water supply wells are finished in bedrock at depths of 96 to 500 feet below the ground surface.	EDR Radius Map with GeoCheck			

West Franklin, New Hampshire Delta Project No. 0503015P

Page 5

PHYSICAL SETTING INFORMATION FOR SUBJECT PROPERTY AND SURROUNDING AREA		Source
National Wetlands Inventory Map		
Wetland Conditions	There are no federally mapped wetlands on or in the immediate vicinity of the subject property.	EDR Radius Map with GeoCheck

A portion of the *Franklin, New Hampshire Quadrangle,* 7.5-Minute Series Topographic Map, USGS, 2000, is included as **Figure 1**. A search in the *EDR Radius Map with GeoCheck* report for water wells did not identify any water wells on or adjacent to the subject property. Forty water wells were located within a 1-mile radius of the subject property. A copy of the *EDR Radius Map with GeoCheck* report is included in **Appendix B**.

4.2 Historical Land Use Information

4.2.1 Historical Sources

According to the ASTM standard, all obvious uses of the subject property must be identified from the present back to either the subject property's first obvious developed use or back to 1940, whichever is earlier. Information sources consulted to evaluate past and present land use activities at the subject property include the following:

- Historical topographic maps, obtained from EDR;
- Aerial photographs, obtained from the Merrimack County Soil Conservation District and City of Franklin, EDR collection searched;
- City directories, obtained from EDR and the New Hampshire State Library;
- Sanborn Fire Insurance Maps, obtained from EDR; and
- Property records from the City of Franklin and Merrimack County.

4.2.2 Historical Summary

Based on available historical data, the subject property was undeveloped until approximately the early 1950s when a portion of the existing building was constructed. The subject property was occupied by Hingston Leather Inc. from 1953 to 1961 and by Lois Versa Leather Inc. (manufacturer of leather shoe linings) from 1964 to 1979. Polyclad has operated at the facility since 1979, and completed an addition to the north side of the building in 1980. The lot on the north side of the building, owned by Polyclad, does not appear to ever have been developed except for a drum storage shed utilized by Polyclad. The lot owned by Polyclad on the north side of Tannery Street does not appear to ever have been developed except as a paved parking area for Polyclad employees.

Page 6

Based on a compilation of the historical sources, historical land uses on adjoining properties are summarized in the table below. Current adjoining property uses are depicted on **Figure 2**.

DIRECTION	HISTORICAL USE OF ADJOINING PROPERTIES
North	Wooded land then the Pemigewasset River
South	Undeveloped, paved parking leased by Polyclad
East	Wooded land then the Pemigewasset River
West	Undeveloped, further west/northwest is residential

A brief discussion of the findings from each of the historical sources is presented in **Sections 4.2.3 through 4.2.7**.

4.2.3 Historical and Topographic Maps

Early topographic maps were constructed by physically observing and surveying the land. In the early 1950s, topographic and land use maps were constructed with the aid of aerial photographs. Topographic maps depicted geologic surface features, roads, buildings, and other above-ground structures. Portions of the *Franklin, New Hampshire* 7.5-Minute Series Topographic Maps for the years 1987 and 2000 were provided by EDR. Copies of the maps are presented in **Appendix C**. The following summarizes the topographic map review:

Map Year	SUMMARY OF HISTORIC AND TOPOGRAPHIC MAPS	
	Subject Property: The existing industrial building is depicted.	
1987	Surrounding Area: Tannery Street is depicted; there are no buildings immediately adjacent to the subject property. Residences are present to the north and west.	
2000	Subject Property: Unchanged	
2000	Surrounding Area: Unchanged	

4.2.4 Aerial Photographs

Aerial photographs of the subject property and surrounding area for the years 1946, 1953, 1974, 1986, and 1993 were obtained from the Merrimack County Soil Conservation Service. An aerial photograph for the year 1979 was obtained from the City of Franklin Assessor's office. Copies of available photographs are presented in **Appendix D**. The following is a summary of the aerial photographs review:

YEAR	APPROXIMATE SCALE	SUMMARY OF AERIAL PHOTOGRAPHS
1946. 1953	Unknown	Subject Property: There appears to be a structure on the northeast end of the subject property; the remainder of the property is undeveloped and is generally cleared land with scattered trees.
1940, 1955		Surrounding Area: Tannery Street is present and extends north along the Pemigewasset River. There is mainly residential development and vacant land in the area.
		Subject Property: The existing building is present on the subject property. The resolution of the photos does not allow further observations.
1979/1981	Unknown	Surrounding Area: Tannery Street appears to end at the Polyclad facility. The resolution of the photos does not allow further observations.
1986	Unknown	Subject Property: The existing building is present on the subject property; an addition is apparent on the north end of the building. The other two lots appear undeveloped.
		Surrounding Area: There are no buildings immediately adjacent to the subject property. There are structures further north and west.
1996	Unknown	Subject Property: The existing building is easily visible on the subject property. There is exterior storage on the north side of the building. Parking areas are visible on the southwest lot. East and north of the building along the river are wooded.
		Surrounding Area: Tannery Street extends just to the Polyclad facility. There is a parking area south of the building on the south side of Tannery Street. Nearby areas appear wooded or residential.

4.2.5 City Directories

City directories include business and residential listings arranged by street and address. Listings typically are reviewed to identify names of facilities suggesting use, generation, storage, treatment, or disposal of potentially hazardous materials or petroleum products. EDR searched Manning's City Directory for 1964 and did not find Tannery Street listed. A copy of the EDR City Directory Abstract is included in **Appendix E**.

City directories were reviewed by Delta at the New Hampshire State Library (603-271-6823) in Concord, New Hampshire. The only directories available for Franklin, New Hampshire were H.A. Manning directories, available intermittently for the years 1939-1979 and 1988/1989. Tannery Street was not listed in the 1939 to 1952 directories. Hingston Leather Inc. was listed at 45 Tannery Street from 1953 to 1961.

Polyclad Laminates, Inc.

45 Tannery Street

West Franklin, New Hampshire

Delta Project No. 0503015P

Page 8

Lois Versa Leather Inc. was listed at 45 Tannery Street from 1964 to 1979. Polyclad Laminates was

listed at 45 Tannery Street in 1988. No other listings (business or residential) were located on Tannery

Street.

4.2.6 Sanborn Fire Insurance Maps

Sanborn Fire Insurance (Sanborn) Maps were historically published to assist the fire insurance industry in

assessing the potential for fire and explosion hazards associated with developed properties. As a result,

these maps often provide information pertaining to potential environmental concerns including, but not

limited to, the number, location, size, and contents of liquid storage tanks, locations of chemical storage

areas, and location and number of hydraulic hoists. In addition, Sanborn maps provide cultural

information such as building type and construction, addresses, and types and locations of utilities.

A Sanborn map was available for the subject property for the year 1964. A copy of the Sanborn map is

presented in Appendix F.

The map depicts the original building outline on the subject property occupied by Lois Versa Leather Inc.,

manufacturer of leather shoe linings. There is a 4,000-gallon oil tank shown outside the north side of the

building, north of the boiler room. Surrounding properties are not depicted on the map.

4.2.7 Local Government Property Records

4.2.7.1 Tax Assessor Records

Property information was obtained from the City of Franklin Tax Assessor's Office. Copies of the tax

maps and property record cards are included in **Appendix A**. The following information is included:

• Polyclad owns three parcels on the east end of Tannery Street. The parcel numbers are:

o 116-171-00 (building site – 1.97 acres);

o 116-175-00 (vacant parcel to northeast – 3.3 acres); and,

o 097-105-00 (paved parking lot to southwest – 1.0 acres).

The Polyclad facility is listed as constructed in 1930 with new construction in 1978 and 1980 and

improvements in 2000 (replace shed), 2003 (interior renovation, demolition), and 2004

(warehouse).

There is a parking area leased from the City of Franklin on the southwest end of the building.

4.2.7.2 Fire Department

Chief Clarenback, Franklin City Fire Department (603-934-2205): Chief Clarenback indicated that he had

been with the fire department for 15 years and he was not aware of any releases at the facility which

have affected the soil or ground water. There have been a few incidents where the wrong products were

mixed in the tanks; however the incidents were confined to the tanks. There was a hydrochloric acid spill

which was confined to the room. There was one incident in the 1980s which required the fire department to block a manhole drain. The storm drain was concrete lined to the river. Chief Clarenback could not recall if the material reached the drain; however he indicated the material did not reach the river. Chief Clarenback indicated all of their records are filed by date and not address therefore a file search of their records would not be feasible.

4.2.7.3 City of Franklin Health Officer, Code Enforcement and Zoning Administrator

The City of Franklin offices for the Health Officer, Code Enforcement and Zoning Administrator was contacted regarding records for leaks/spills or emergency response calls involving hazardous materials (603-934-2341). The offices do not perform any type of routine inspections, only emergency response in conjunction with the fire department. These records would be maintained at the fire department offices. A zoning map obtained from the Zoning Administrator offices indicated the area of 45 Tannery Street is zoned B-1, Low-Density business and Commercial District. This zoning designation is generally present along the Pemigewasset River south of the subject property; to the north is residential zoning. A copy of the zoning map is provided in **Appendix A**.

4.3 Regulatory Review

<u>4.3.1 Sources</u>

A review of regulatory files for sites of environmental concern in the vicinity of the subject property was performed by EDR, a private regulatory research firm. A copy of the EDR report summarizing the results of the review is presented as **Appendix B**. Spill sites, leak sites, and other sites listed by the Environmental Protection Agency (EPA) and other regulatory agency files within various radii of the subject property meeting or exceeding the ASTM E 1527-00 search radii are identified in the EDR report. The EDR file review for the subject property included the following databases:

SUMMARY OF FEDERAL AND STATE AGENCY DATABASE FINDINGS			
REGULATORY DATABASE	MINIMUM SEARCH DISTANCE	SITE LISTED	TOTAL FACILITIES LISTED
Federal			
National Priorities List (NPL) 1 mile No 0			0
Proposed NPL Sites (PROPOSED NPL)	1 mile	No	0
Comprehensive Environmental Response, Cleanup, and Liability Information System (CERCLIS)	½ mile	No	0
No Further Remedial Action Planned sites removed from CERCLIS (CERC-NFRAP)	¼ mile	No	0

Page 10

SUMMARY OF FEDERAL AND STATE AGE	NCY DATABASE FINDING	3S	
REGULATORY DATABASE	MINIMUM SEARCH DISTANCE	SITE LISTED	TOTAL FACILITIES LISTED
Corrective Action Report (CORRACTS)	1 mile	No	0
Resource Conservation and Recovery Information (RCRA) – Treatment, Storage and Disposal Facility (TSDF)	½ mile	No	0
RCRA – Registered large quantity generator of hazardous waste (RCRA LQG)	1/4 mile	Yes	0
RCRA – Registered small quantity generator of hazardous waste (RCRA SQG)	1/4 mile	No	2
Emergency Response Notification System (ERNS)	Property	Yes	0
Superfund Consent Decrees (CONSENT)	1 mile	No	0
Record of Decision (ROD)	1 mile	No	0
Delisted NPL Sites (DELISTED NPL)	1 mile	No	0
Facility Index System (FINDS)	Property	Yes	0
Hazardous Materials Information Reporting System (HMIRS)	Property	No	0
Material Licensing Tracking System (MLTS)	Property	No	0
Mines Master Index File (MINES)	1/4 mile	No	0
Federal Superfund Liens (NPL Liens)	Property	No	0
PCB Activity Database System (PADS)	Property	No	0
Indian Reservations (INDIAN RESERV)	1 mile	No	0
Uranium Mill Tailings Site (UMTRA)	½ mile	No	0
Engineering Controls Sites List (US ENG CONTROLS)	½ mile	No	0
Open Dump Inventory (ODI)	½ mile	No	0
Formerly Used Defense Sites (FUDS)	1 mile	No	0
Department of Defense Sites (DOD)	1 mile	No	0
RCRA Administrative Action Tracking System (RAATS)	Property	No	0
Toxic Release Information System (TRIS)	Property	Yes	0
Toxic Substances Control Act (TSCA)	Property	No	0
Federal Insecticide, Fungicide, Rodenticide Act: Section 7 Tracking System (SSTS)	Property	No	0
Federal Insecticide, Fungicide, Rodenticide Act/TSCA Tracking System (FTTS)	Property	No	0
US Brownfields (US BROWNFIELDS)	½ mile	No	0
Sites with Institutional Controls (US INST CONTROL)	½ mile	No	0
State			•
- Ciuro			

Delta Project No. 0503015P

SUMMARY OF FEDERAL AND STATE AGENCY DATABASE FINDINGS				
REGULATORY DATABASE	MINIMUM SEARCH DISTANCE	SITE LISTED	TOTAL FACILITIES LISTED	
Solid Waste Facilities/Landfill Sites (State Landfill)	½ mile	No	0	
Leaking Underground Storage Tank Incidents (LUST)	½ mile	No	4	
Registered Underground Storage Tanks (UST)	1/4 mile	Yes	1	
Site Remediation and Ground Water Hazard Inventory Listing (ALLSITES)	½ mile	No	10	
Voluntary Cleanup Program Sites (VCP)	½ mile	No	0	
Registered Aboveground Petroleum Storage Tanks (AST)	Property	No	0	
Leaking Aboveground Storage Tank Incident Reports (LAST)	Property	No	0	
Spill Sites in NH (NH SPILLS)	Property	No	0	
Sites with Activity and Use Restrictions (Inst Control)	½ mile	No	0	
NH Brownfields (BROWNFIELDS)	½ mile	No	0	

4.3.2 Subject Property

Two Site Reports were also available from EDR that contained additional regulatory information for the subject property. The Site Reports are included in **Appendix B** with the EDR file review. The subject property is identified on the FINDS, RCRA-LQG, TRIS, ERNS, and UST databases. The FINDS listing identifies the facility in the following databases: Aerometric Information Retrieval Systems/AIRS Facility System; National Emissions Inventory; RCRIS; and TRIS.

Polyclad is a licensed large quantity hazardous waste generator under EPA ID No. NHD099362048. Seven types of wastes were identified for the last biennial reporting period for the year ending 2001. Hazardous wastes produced at the facility in 2001 include D001 (ignitable wastes), D002 (corrosive wastes), D009 (cadmium), D022 (chloroform), D035 (methyl ethyl ketone), and F003 and F005 (spent nonhalogenated solvents). The HAZNET listing describes the following hazardous wastes shipped from the facility: solvent waste, methyl ethyl ketone, toluene, and dimethyl formamide.

Hazardous waste violations were reported, as the result of an inspection on May 16, 1986. The area of violations included the following: Generator – All Requirements (oversight). Compliance was achieved for the violations by September 25, 1986. Additional hazardous waste violations were reported, as the result of an inspection on April 10, 2001. The area of violations included the following: Personnel Training Records and Generator Inspection Schedule and Log. Compliance was achieved for the violations by February 20, 2002.

Delta Project No. 0503015P

One listing was found for Polyclad Laminates on the ERNS database. The listing involved a 1991 release of approximately 100 gallons of hydraulic oil from a portable tanks spill in the parking lot. The spill was cleaned up with absorbent material.

The UST database lists the following registered USTs for the Polyclad facility:

TANK ID	STATUS	Product	CAPACITY (GALLONS)	INSTALLATION DATE	REMOVAL DATE	
1	Removed	Methyl Cellosolve	6,000	1983	December 12, 1998	
2	Filled in Place	CS 350 and Acetone (Epoxy Resin)	4,500	1980	June 8, 1999	
3	Filled in Place	PM-DMF (Epoxy Resin)	4,500	1980	June 8, 1999	
4	Filled in Place	CS 350 and Acetone (Epoxy Resin)	6,000	1980	June 8, 1999	
5	Removed	Gasoline/Diesel	4,000	1983	November 10, 1992	
6	Removed/Possibly Closed in Place	#2 Heating Oil	12,000	1983	November 10, 1992	
7	Active	Epoxy Resin	13,500	1998		

The approximate UST locations are shown on **Figure 3**. Delta performed a file review at the New Hampshire Department of Environmental Services (NHDES) to obtain further information and documentation of the UST closures. Documents obtained from the NHDES are included in **Appendix G**. Following is a summary of the UST closure information.

TANK ID	COMMENTS	
1	The NHDES approved closure of the tank in a letter dated March 26, 1999. Tank 7 was installed in the same location after removal of Tank 1.	
2	and samples obtained below the tanks prior to abandonment. Low levels of volatile organic compounds (VOCs) were found in one soil sample below Tank 4; however, only styrene exceeded NHDES soil	
3		
4	under Tank 4 did not indicate the presence of any VOCs. The tanks were closed in place on June 8, 1999. The NHDES approved closure of the tanks in a letter dated October 4, 1999.	

45 Tannery Street
West Franklin, New Hampshire
Delta Project No. 0503015P

Page 13

TANK ID	COMMENTS
5	Only the Tank Closure Report form for Tanks 5 and 6 was available at the NHDES office. The form indicates Tank 6 was closed in place; the NHDES UST database indicates that Tank 6 was removed. The
6	form also indicates only field screening was conducted during removal of Tank 5, no soil samples were collected. No field screening or soil sampling were conducted in the area of Tank 6. There was not an official closure letter from the NHDES for these tanks located during the file review. Both tanks passed tank tightness tests in November, 1991.

Based on the above information appropriate sampling and closure requirements were followed for Tanks 1, 2, 3, and 4 and closure has been granted by the NHDES. The status of Tanks 5 and 6 is unclear and there is no evidence of confirmatory sampling during tank closure. Facility personnel indicate both Tanks 5 and 6 were closed in place.

The 1964 Sanborn map indicates the presence of a 4,000-gallon oil UST in the general vicinity of Tanks 5 and 6. Further information regarding this UST was not available. Facility personnel were not aware of any existing USTs when Polyclad purchased the subject property in 1979. Tanks 1 through 7 were installed by Polyclad in 1980 and later.

4.3.3 Adjacent and Nearby Properties

The EDR database search identified three environmentally regulated properties within ¼ mile of the subject property. All three sites are mapped ½ to ¼ mile north-northwest of the subject property. Two of the facilities are RCRA-SQG facilities with no violations reported. The other facility had three USTs removed; two in 1991 and one in 2004. Given the locations of these facilities, there is a potential that soil or ground water impacts at the facilities could affect the environmental quality of the subject property; however, there are no reported leaks or spills at the three facilities.

4.3.4 Surrounding Properties

The EDR database search identified 13 environmentally regulated properties within ¼ mile to 1 mile of the subject property. Nine of these facilities are located south of the subject property or southeast, across the Pemigewasset River. Based on the inferred southeasterly ground water flow direction in the area of the subject property and the location of the river, it is unlikely that these facilities would affect the environmental quality of the subject property.

Four environmentally regulated properties were identified within ¼ mile to 1 mile west or north of the subject property. Two of the sites were listed on the ALLSITES database and are closed. One additional site, Roland Michelin Property, 9 Daisy Lane, 1,750 feet to the northwest, has an open listing on the

Delta Project No. 0503015P

Page 14

ALLSITES database. Oak Material Group, 91 Range Road, 2,660 feet west-northwest, is listed on the SHWS, UST, and ALLSITES databases. The SHWS and ALLSITES listings are closed and the USTs have been removed or closed in place at the facility. Bases on the status of these sites and the distances involved, it is unlikely that these facilities would affect the environmental quality of the subject property.

4.3.5 Orphan Properties

The EDR report also included a listing of 26 orphan sites that potentially could be in the vicinity of the subject property. Orphan sites are sites that are listed in the databases searched, however insignificant information is available to EDR in order to accurately map the sites. Delta reviewed the available information regarding these sites and noted that two of the listings were for Polyclad Laminates; these listings are for the facility on Industrial Park Drive. One listing located on Tannery Street, Lakes Region Artesian Well, is listed as closed on the ALLSITES database.

5.0 SITE RECONNAISSANCE

5.1 Methodology and Limiting Conditions

The subject property reconnaissance consisted of visual and/or physical observations of: the subject property and improvements; adjoining facilities as viewed from the subject property; and the surrounding area based on visual observations made during the trip to and from the subject property. Unimproved portions of the subject property were observed along the perimeter. Building exteriors were observed along the perimeter from the ground, unless described otherwise. Building interiors were observed as they were made safely accessible, unless described otherwise.

Information contained in the following tables is based on a visual reconnaissance performed as set forth below, interviews, and other references presented in the following sections. **Figure 2** is a vicinity map; representative subject property photographs are presented in **Appendix H**; and a building layout map is included as **Figure 3**. Per the request of Mr. Rod Finne of Polyclad, photographs were not taken in the resin mix room.

5.2 General Subject Property Setting

SUBJECT PROPERTY RECONNAISSANCE		
Field Personnel	Ms. Ruma Neogy	
Reconnaissance Date & Time	August 4, 2005 at 8 a.m.	
Weather	Sunny, hot	
Escort	Mr. Rod Finne, Director of Operations, Polyclad Laminates, Inc.	

Page 15

SUBJECT PROPERTY RECONNA	ISSANCE				
Subject Property Description	subject Property Description				
Subject Property Name	Polyclad Laminates, Inc.				
Subject Property Owner	Polyclad Laminates, Inc.				
Subject Property Address	45 Tannery Street, Franklin, New Hampshire 03235				
Property Size	Includes three lots: the building site, 1.97 acres; a vacant parcel to northeas 3.3 acres; and a paved parking lot to southwest, 1.0 acres. Total acreage 6.27 acres. The building site is depicted on Figures 2 and 3 . The vacant an paved parcels are depicted on Figure 2 and on the tax maps in Appendix A .				
Land Area Description	The area of the subject property is zoned low density business and commerce district; surrounding properties are mainly wooded, vacant lots. The Pemigewass River is located north and east of the subject property. The land along the river heavily wooded and drops off sharply to the river. The Polyclad building is locate in the approximate center of the 1.97 acre lot, with paved parking or access road on all sides. The Polyclad parcel to the north (3.3 acres) is mostly wooded, will approximately one acre of unpaved parking and no structures. The Polyclad parcel to the southwest (one acre) is a paved parking lot.				
Description of Structures	The building is mainly one-story, slab-on-grade construction with office, warehous and manufacturing space, the majority of which is currently vacant (Figure 3). To office areas are two-story. Square footage as supplied by Cookson Electronics 61, 261 square feet. Tax assessor documents indicate the building ware constructed in 1930; however historical information indicates initial building construction around 1950 with an addition to the northeast in 1980.				
Subject Property Topographic Relief	The developed lots are graded and relatively flat. There is an overall gradient to the southeast. The land drops off to the river to the east and south.				
Subject Property Area Utilit	Subject Property Area Utilities				
Water	City of Franklin				
Sanitary Sewer	Sewer City of Franklin				
Wastewater	No process wastewater				
Storm Water	Discharge to on-site catch basins outfalls to Pemigewasset River				
Electricity	Public Service of New Hampshire (PSNH)				
Natural Gas	Keyspan				
Building Heating	Combination of natural gas and electricity				
Building Air Conditioning	ir Conditioning Electrical air conditioning for offices				
Solid Waste	Waste Management				

Page 16

5.3 Observations

Information contained in the following table is based on a visual reconnaissance performed as set forth below, interviews, and other references presented in the following sections. Additional explanation for items marked "Yes" is provided following the table.

CATEGORY	ITEM OR FEATURE	ITEM OR FEATURE OBSERVED?	LOCATION
	Miscellaneous small volumes ≤ 5 gallons	No	
Aboveground Chemical or Waste Storage, Distribution Systems	Evidence of aboveground storage tanks	Yes	Interior
	Drums, barrels, and/or containers ≥ 5 gallons	Yes	Interior and Exterior
	Solid waste or scrap dumpster	Yes	Exterior
	Evidence of USTs or ancillary UST equipment	Yes	Exterior
	Records of former USTs	Yes	Exterior
Underground Chemical or Waste Storage, Drainage or Collection Systems	Sumps, oil/water separators, cisterns, catch basins, and/or dry wells	No	
	Septic tanks and/or leach fields	No	
	Pipeline markers	No	
Electrical	Pad- or pole-mounted transformers	Yes	Exterior
Transformers/PCBs	Records of former hydraulic equipment	Yes	Interior
	Stressed vegetation	No	
	Stained soil	No	
	Stained pavement or similar surface	No	
	Leachate and/or waste seeps	No	
Evidence of Releases or	Trash, debris, and/or other waste materials	No	
Potential Releases	Dumping or disposal areas	No	
	Construction/demolition debris, and/or dumped fill dirt	No	
	Surface water discoloration, odor, sheen, and/or free floating product	No	
	Strong, pungent, or noxious odors	No	
	Surface water control structure	Yes	Exterior
	Heat Equipment	No	
Other Notable Subject Property Features	Wells	No	
	Floor drains	No	
	Potential asbestos containing building materials	No	

Polyclad Laminates, Inc.

45 Tannery Street

West Franklin, New Hampshire

Delta Project No. 0503015P

Page 17

5.4 Subject Property Discussion

The Polyclad facility employs approximately 25 employees and operates three shifts Monday through

Friday. Polyclad performs the following operations at the subject property facility:

The facility manufactures raw materials used to make multi-layer circuit boards. These materials are

called prepreg. Prepreg is made by passing fiberglass cloth through a dip tank filled with epoxy resin.

The epoxy resins are formulated in mixing tanks in a dedicated mix room. Once coated, the fiberglass

fabric is dried in a heated oven tower. The resin partially hardens and sticks to the fiberglass cloth.

White fiberglass cloth changes to yellow prepreg with coated epoxy resin. The equipment used for this

process is fully automated and is called a Takuma treater (Photo 7). There are two treaters in the facility;

one of the treaters is inactive. Each treater is enclosed in a total encloser. The emissions from the

treater are exhausted to separate thermal oxidizers (Photo 8). The air emissions from the treaters are

currently permitted under NHDES Air Resources Division.

All of the manufacturing processes in the building are planned to be discontinued by December 2005.

A major portion of the building space is used for storage of scrap materials and equipment parts to be

removed. At present, only one Takuma treater is used to manufacture prepeg materials. Future plans

are to move this production line to the other Polyclad facility in Franklin. Only the research and

development laboratory operations and warehouse space will be left in this building.

5.4.1 Aboveground Chemical or Waste Storage, Distribution Systems

All containers of raw materials were labeled and stored in good condition. All hazardous waste was

labeled, including accumulation start dates, and stored in good condition in the Flammable Storage Shed

(Figure 2 and Photo 5). No satellite accumulation containers are stored outside of the Flammable

Storage Shed. Minor staining was observed around the shed. A chemical inventory list supplied by the

facility is included in **Appendix I**.

Interior aboveground tanks are located primarily in the mixing room. The mixing room contains

approximately two 600-gallon aboveground tanks. Per the request of Mr. Finne, photographs were not

taken in the resin mix room.

Empty 55-gallon raw material drums are stored in an open shed north of the main building (Figure 2 and

Photo 6). Approximately 50 drums were stored in the drum storage shed. No staining or other evidence

of a release was observed in or around the shed; however the drums are stored on wood pallets on the

ground surface. A trash compactor/solid waste dumpster is located on the northeast side of the building.

5.4.2 Underground Chemical or Waste Storage, Distribution Systems

Records of former USTs were reviewed at the facility during the site visit. This information is included in **Section 4.3.2**. The only active tank is Tank 7, a 13,500-gallon UST located at the southwest side of the building. It has three compartments; each with a 4,500-gallon capacity. Two of the compartments hold epoxy resin and the third compartment holds solvent. The UST is tested annually; the latest test, March 5, 2004, indicated passing results. The area around Tank 7 was found in good condition, with no evidence of spills or releases (**Photos 9 and 10**).

5.4.3 Electrical Transformers

One pad-mounted transformer is located outside the building, in the parking lot at the entrance of the building. No staining was observed on or around the transformer. The transformer is maintained by PSNH and labeled as "non- PCB".

5.4.4 Evidence of Releases or Potential Releases

No evidence of releases or potential releases was observed.

5.4.5 Other Notable Features

Storm water catch basins are located in the access road around the building. Storm water discharges to on-site catch basins and then outfalls to the Pemigewasset River

No floor drains are located in the warehouse/manufacturing or process coating areas.

The building interior was observed for potential asbestos-containing materials (ACMs). Delta observed no suspect ACMs. Based on the age of the building, there is a potential that ACMs are present.

5.5 Current Uses of Adjoining Properties

Land use activities adjoining the subject property include:

DIRECTION	DESCRIPTION OF ADJOINING PROPERTIES	
North	Wooded land then a 50-foot deep sharp drop to the Pemigewasset River	
South	Paved parking for Polyclad leased from the City of Franklin	
East	Wooded land then a 50-foot deep sharp drop to the Pemigewasset River	
West	Empty lot owned by city, residential area	

Polyclad Laminates, Inc.

45 Tannery Street

West Franklin, New Hampshire

Delta Project No. 0503015P

Page 19

5.6 Limited Environmental Compliance Review

The Polyclad facility and facility records were reviewed for general compliance with federal, state, and

local environmental and health and safety requirements. All related documents are organized in one

three-ring binder and are readily accessible on site. Copies of pertinent documents are included in

Appendix J.

5.6.1 Environmental Topics

Air Permitting: The two process coaters (Takuma treaters) and dryers and the thermal oxidizers are

currently permitted under permit # FP-S-0243. There are no notices of violation associated with this

permitted facility and operations. All of the applicable permits were reviewed and were determined to be

current. Copies of the air emissions permits are included in **Appendix J**.

Wastewater Treatment and Discharge: No industrial wastewater is generated in the Polyclad facility.

Storm Water Discharge Permit: Storm water catch basins are located in the access road around the

building. Storm water discharges to on-site catch basins and then outfalls to the Pemigewasset River.

The facility stores empty drums outside in a covered shed. Storm Water Notice of Intent # NHR05A515

from the EPA is included in **Appendix J**.

Generator Status and Waste Management: Polyclad is a licensed large quantity hazardous waste

generator under EPA ID No. NHD099362048. Polyclad produces waste oil and solvated resin waste and

empty containers/drums. Mr. Finne provided a sample copy of the Hazardous Waste Manifest submittal

to NHDES in year 2005. A review of the manifest indicates the facility is operating in compliance with its

RCRA-LQG permit.

This assessment has revealed no recent violations of the hazardous waste generator permit. Previous

hazardous waste violations were reported, as the result of an inspection on May 16, 1986. Compliance

was achieved for the violations by September 25, 1986. Additional hazardous waste violations were

reported, as the result of an inspection on April 10, 2001. Compliance was achieved for the violations by

February 20, 2002.

Container Management and Labeling: All containers of raw materials were labeled and stored in good

condition. All hazardous waste was labeled, including accumulation start dates, and stored in good

condition in the Flammable Storage Shed. No satellite accumulation containers are stored outside of the

Flammable Storage Shed.

Polyclad Laminates, Inc.

45 Tannery Street

West Franklin, New Hampshire

Delta Project No. 0503015P

Page 20

Toxic Chemicals: Polyclad uses toxic chemicals that are reported annually via Form R and Tier II

reporting to the EPA.

Recordkeeping and Training: According to Mr. Finne, employees are trained for job-specific health and

safety issues upon hiring, and unit managers have short weekly or bi-weekly safety training meetings.

A monthly training schedule related to environmental and safety issues was reviewed.

PCB Management: Mr. Finne is not aware of any PCB-containing materials on the subject property, and

none were observed by Delta during the site visit.

General Environmental Liability Issues: Mr. Finne is not aware of any general environmental liability

issues associated with the Polyclad facility, and none were observed by Delta during the site visit.

Past Violations or Citations: Mr. Finne is not aware of any past environmental violations or citations,

including US EPA 104(e) requests for information or 106(e) letters. No hazardous waste generator

license violations were identified during this assessment. As stated above hazardous waste violations

from 1986 and 2001 are in compliance.

Emergency Planning and Community Right to Know Act (EPCRA): The Polyclad facility is subject to

EPCRA reporting requirements.

Spill Prevention Control and Countermeasures (SPCC) Plans: Polyclad facility is not subject to SPCC

reporting requirements.

5.6.2 Occupational Health and Safety Topics

Compliance with Occupational Safety & Health Administration (OSHA) Standards: Mr. Finne is not aware

of any OSHA non-compliance, and no incidents of non-compliance were identified during this

assessment.

Section 104(e) of CERCLA, 42 U.S.C. § 9604(e) allows EPA to seek from potentially responsible parties information about hazardous materials that may have been disposed of at a Superfund site. For many companies a CERCLA section 104(e)

request is their first information about potential involvement at a new Superfund site.

² Section 106(a) of CERCLA provides that, once a determination is made that there may be an imminent and substantial endangerment to the public health or the environment because of an actual or threatened release of a hazardous substance from a facility, an order or requirement is issued to secure such relief as may be necessary to abate the danger or threat.

Polyclad Laminates, Inc.

45 Tannery Street

West Franklin, New Hampshire

Delta Project No. 0503015P

Page 21

OSHA-Required Written Programs, Procedures, and Training: As stated in Section 5.6.1, employees are

trained for job-specific health and safety issues upon hiring, and unit managers have short weekly or

bi-weekly safety training meetings. A checklist for new employees indicates that environmental and

safety issues are reviewed upon hire; a copy of the checklist and the Basic Safety Rules are maintained

in the Human Resources Department. Confined spaces exist at the Polyclad facility.

General Health and Safety Liability Issues: Policies and procedures are in place for multiple health and

safety issues.

Past OSHA Citations or Violations: Mr. Finne is not aware of any OSHA citations or violations for the

subject property.

Accident History and Recordkeeping: Accident reporting procedures are in place in the Human

Resources Department. No work-related injuries or illnesses were reported for 2004, and none have

occurred in 2005.

Asbestos/Lead Liability: Mr. Finne is not aware of any ACMs or lead-based paints at the Polyclad facility,

and no suspect materials or paints were observed by Delta during the site visit. A lead/asbestos survey

has not been done at the subject property while under the ownership of Polyclad. Mr. Finne reported that

the building was freshly painted and sided with new metal siding in 1979 before Polyclad started

manufacturing operations in the building.

Engineering Controls: Engineering controls, including ventilation systems, machine guarding, and other

systems to control significant hazards, were observed to be in place and generally appeared to be

functioning properly.

Fire Safety/Life Safety: An Emergency Action Plan is in place for accidents, fire, bomb threats, power

failure, and weather-related emergencies.

6.0 INTERVIEWS

Mr. Rod Finne, Director of Operations, Polyclad Laminates, Inc.: Mr. Finne was interviewed during the

site reconnaissance. Information obtained from Mr. Finne is included throughout this report.

7.0 FINDINGS AND OPINION

7.1 Recognized Environmental Conditions

The ASTM E 1527-00 standard defines the term *recognized environmental condition* as "the presence or likely presence of any hazardous substances or petroleum products on a property under conditions that indicate an existing release, a past release, or a material threat of a release of any hazardous substances or petroleum products into structures on the *property* or into the ground, ground water, or surface water of the *property*". This assessment has identified the following recognized environmental conditions in connection with the subject property:

- The facility has had seven registered USTs. One UST (Tank 7) is currently active. Four of the USTs (Tanks 1, 2, 3, and 4) have been removed or closed in place in accordance with NHDES requirements and have received closure letters from the NHDES. Two USTs (Tanks 5 and 6) did not have soil sampling or analysis conducted when the USTs were closed and there is no official closure letter from the NHDES for the tanks. There are conflicting reports on whether Tanks 5 and 6 were closed in place or removed. Lack of closure documentation and soil sampling data for Tanks 5 and 6 is a recognized environmental condition.
- The 1964 Sanborn map indicates the presence of a 4,000-gallon oil UST in the general vicinity of Tanks 5 and 6. Further information regarding this UST was not available. Facility personnel were not aware of any existing USTs when Polyclad purchased the subject property in 1979. The past presence of the oil UST and the unknown status is a recognized environmental condition.
- Empty drums are stored on wood pallets in a shed on the north side of the subject property. The shed has a dirt floor. The potential for residual material in the drums to spill onto the ground surface is a recognized environmental condition.

7.2 Historical Recognized Environmental Conditions

The ASTM E 1527-00 standard defines the term *historical recognized environmental condition* as an "environmental condition which in the past would have been considered a recognized environmental condition, but which may or may not be considered a recognized environmental condition currently". This assessment has identified the following historical recognized environmental condition in connection with the subject property:

Historical information indicates the subject property was occupied by Hingston Leather Inc. and Lois Versa Leather Inc. from at least 1953 to 1979. Based on the historical information, operations at the facility included leather manufacturing and possibly tanning operations. These practices have the potential to impact the environmental quality of the soil and ground water at the subject property. Former property use as a leather manufacturer/possible tanning facility is a historical recognized environmental condition.

7.3 De Minimis Conditions

The ASTM E 1527-00 standard defines the term *de minimis conditions* as conditions that "generally do not present a material risk of harm to public health or the environment and that generally would not be the

subject of an enforcement action if brought to the attention of appropriate governmental agencies". This assessment has identified the following de minimis condition in connection with the subject property:

Based on the age of the building, there may be lead based paint or ACMs present. Formal lead
or ACM surveys of the building have not been conducted. The potential presence of lead-based
paints or ACMs is a de minimis condition.

8.0 CONCLUSION(S) AND RECOMMENDATIONS

8.1 Phase I Environmental Assessment Findings

This assessment has identified the following conditions in association with the subject property:

- The facility has had seven registered USTs. One UST (Tank 7) is currently active. Four of the USTs (Tanks 1, 2, 3, and 4) have been removed or closed in place in accordance with NHDES requirements and have received closure letters from the NHDES. Two USTs (Tanks 5 and 6) did not have soil sampling or analysis conducted when the USTs were closed and there is no official closure letter from the NHDES for the tanks. There are conflicting reports on whether Tanks 5 and 6 were closed in place or removed. Lack of closure documentation and soil sampling data for Tanks 5 and 6 is a recognized environmental condition.
- The 1964 Sanborn map indicates the presence of a 4,000-gallon oil UST in the general vicinity of Tanks 5 and 6. Further information regarding this UST was not available. Facility personnel were not aware of any existing USTs when Polyclad purchased the subject property in 1979. The past presence of the oil UST and the unknown status is a recognized environmental condition.
- Empty drums are stored on wood pallets in a shed on the north side of the subject property. The shed has a dirt floor. The potential for residual material in the drums to spill onto the ground surface is a recognized environmental condition.
- Historical information indicates the subject property was occupied by Hingston Leather Inc. and Lois Versa Leather Inc. from at least 1953 to 1979. Based on the historical information, operations at the facility included leather manufacturing and possibly tanning operations. These practices have the potential to impact the environmental quality of the soil and ground water at the subject property. Former property use as a leather manufacturer/possible tanning facility is a historical recognized environmental condition.
- Based on the age of the building, there may be lead based paint or ACMs present. Formal lead
 or ACM surveys of the building have not been conducted. The potential presence of lead-based
 paints or ACMs is a de minimis condition.

Delta recommends that a subsurface assessment of the area surrounding Tanks 5 and 6 be conducted to assess the potential for impacts to the soil or ground water from petroleum products in the tanks and any associated piping or pump islands. Confirmation should also be obtained as to whether Tanks 5 and 6 were closed in place or removed and whether these actions were performed in accordance with NHDES requirements. The subsurface assessment should also assess the area of the oil UST indicated on the Sanborn map.

Near surface sampling of the soils in the drum storage area should be conducted to determine whether spills/leaks have occurred in the area in the past.

Polyclad Laminates, Inc.

45 Tannery Street

West Franklin, New Hampshire

Delta Project No. 0503015P

Page 24

Further evaluation of historical practices related to leather manufacturing operations at the subject

property should be conducted to assess the potential for adverse environmental impacts to the soil and

ground water.

8.2 Limited Environmental Compliance Review Findings

After completing an environmental, health and safety regulatory review of the facility's operations, the

facility appeared to be in compliance with major environmental, health and safety regulatory areas.

9.0 LIMITATIONS OF ENVIRONMENTAL ASSESSMENTS

The recommendations contained in this report represent Delta's professional opinions based upon the

currently available information and are arrived at in accordance with currently acceptable professional

standards. This report is based upon a specific scope of work requested by the client. The contract

between Delta and its client outlines the scope of work, and only those tasks specifically authorized by

that contract or outlined in this report were performed. This report is intended only for the use of Delta's

client and anyone else specifically identified in writing by Delta as a user of this report. Delta will not and

cannot be liable for unauthorized reliance by any other third party. Other than as contained in this

paragraph. Delta makes no express or implied warranty as to the contents of this report.

9.1 Subject Property Data Review

Delta obtained, reviewed, and evaluated information available from the property owner and local, state, or

federal public entities. Delta's conclusions, opinions, and recommendations are based, in part, on this

information. Delta's services do not include the verification of the accuracy or authenticity of this

information.

9.2 Subject Property Reconnaissance

Delta performed a subject property reconnaissance to document current conditions. As every effort was

made to conduct the subject property reconnaissance within the project time and budget allotted, Delta

focused on property areas deemed more likely to exhibit hazardous materials conditions while other

areas may have received limited attention.

9.3 Interpretation of Results – Final Report

Delta's report is based upon the information provided to Delta and Delta's observations made during the

subject property reconnaissance. Given the inherent limitations of environmental assessment work, Delta

does not guarantee that the subject property is free of hazardous or potentially hazardous materials or

conditions, or that latent or undiscovered conditions will not become evident in the future. Delta's report

Polyclad Laminates, Inc.

45 Tannery Street

West Franklin, New Hampshire

Delta Project No. 0503015P

Page 25

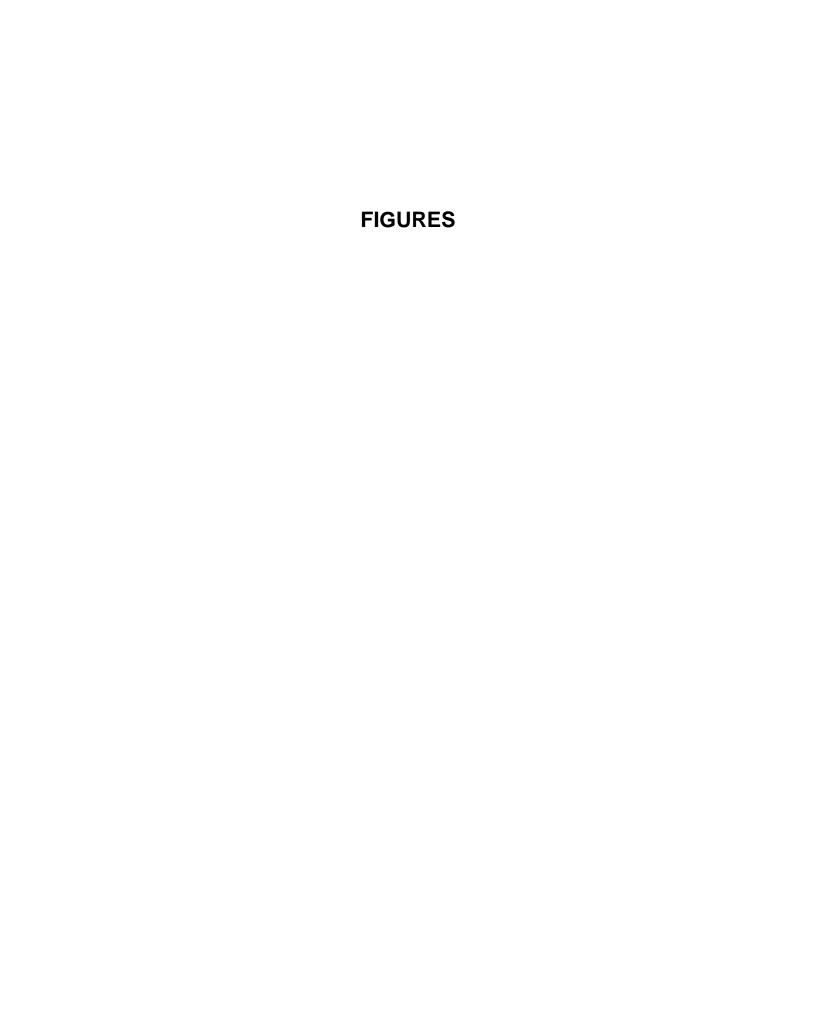
is prepared in accordance with the proposal and the standard terms and conditions presented in the Service Agreement between Delta and Cookson Electronics, and no other warranties, representations, or certifications are made.

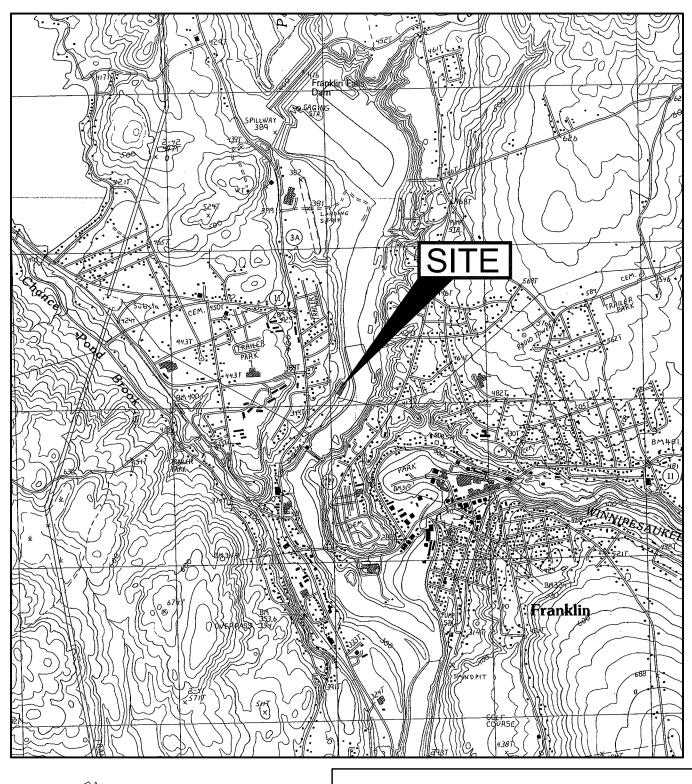
10.0 QUALIFICATIONS AND SIGNATURES OF ENVIRONMENTAL PROFESSIONALS

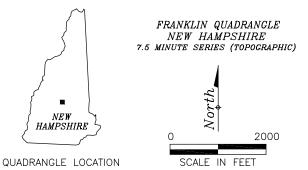
Professional profiles of project team members are presented in **Appendix J**.

This report was prepared by **DELTA ENVIRONMENTAL CONSULTANTS**, **INC.**

Bunda A Oppernar Date: Sept. 21, 2005

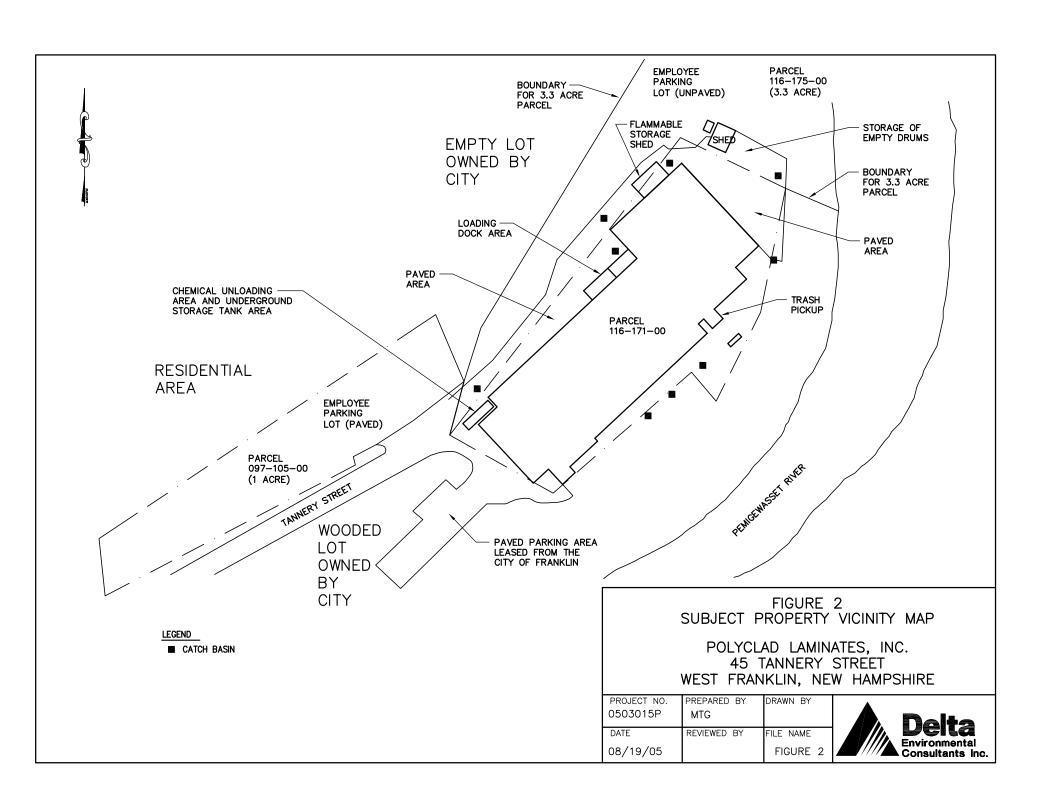

Linda Opperman Project Scientist


Reviewed by:


Daniel Pierce, P.E.

mjw.081905

Global Account Manager



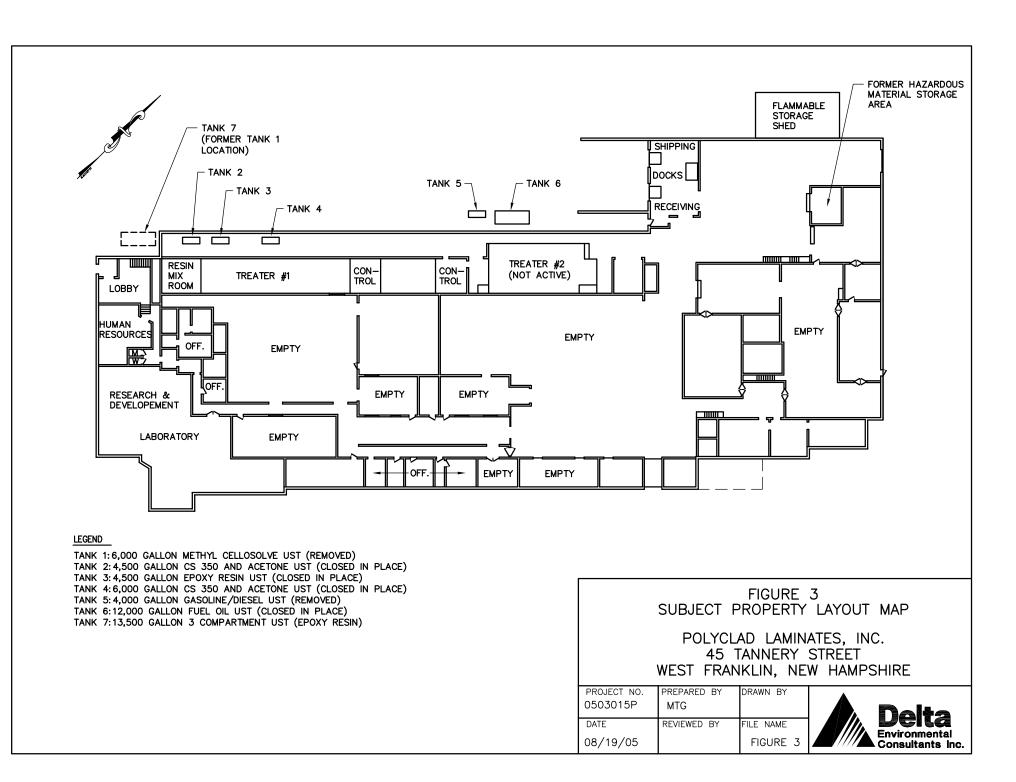
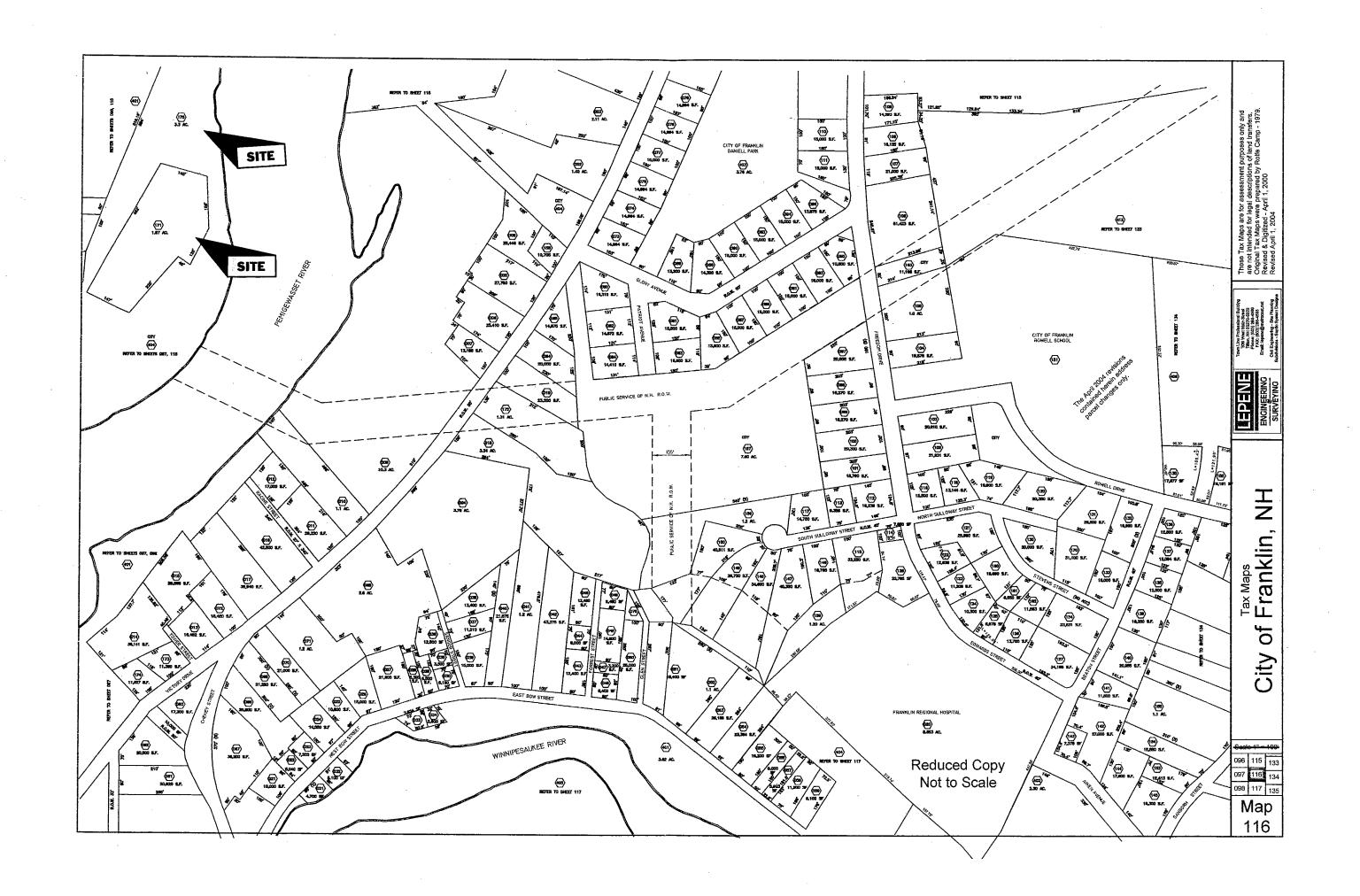
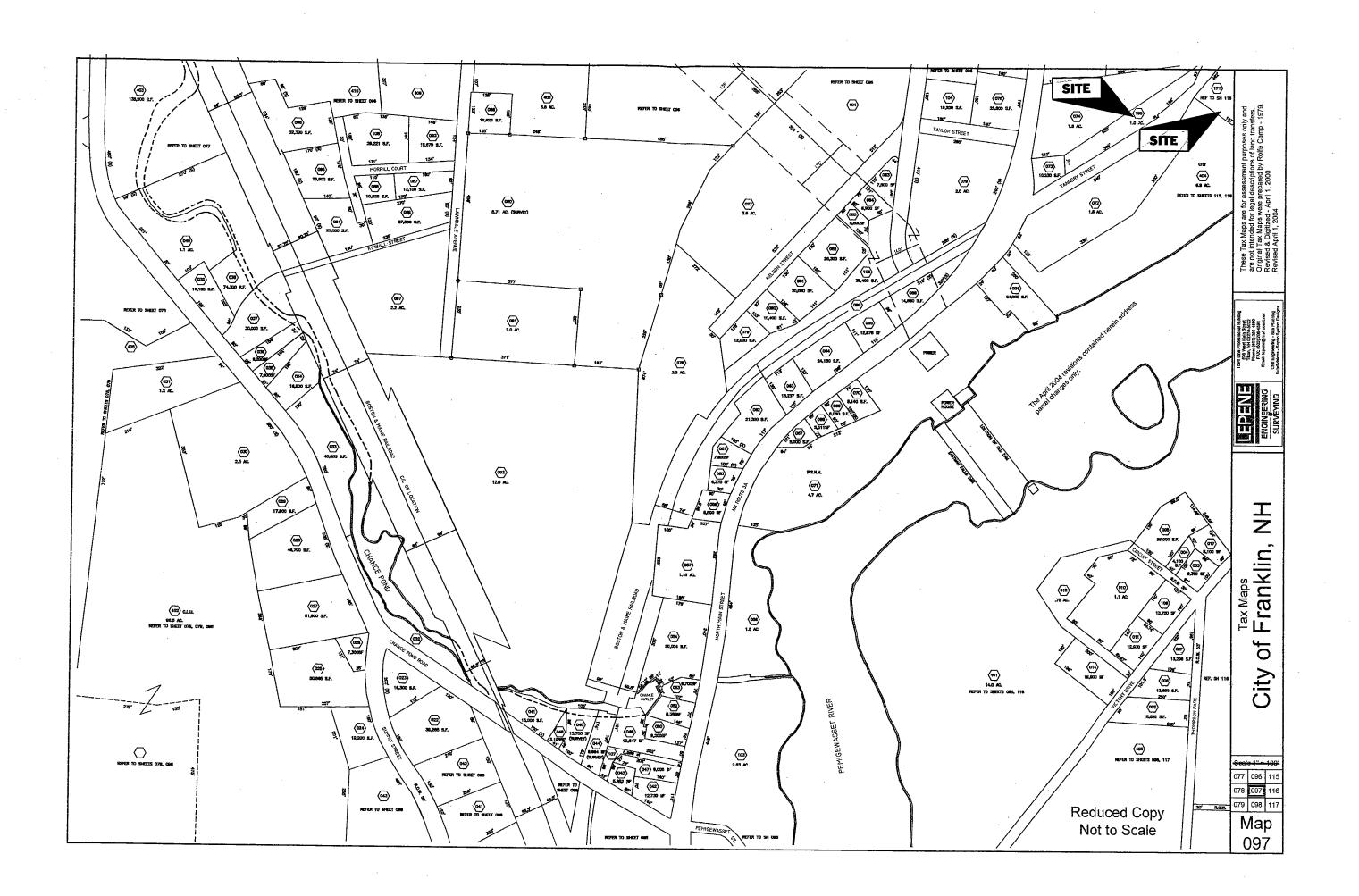


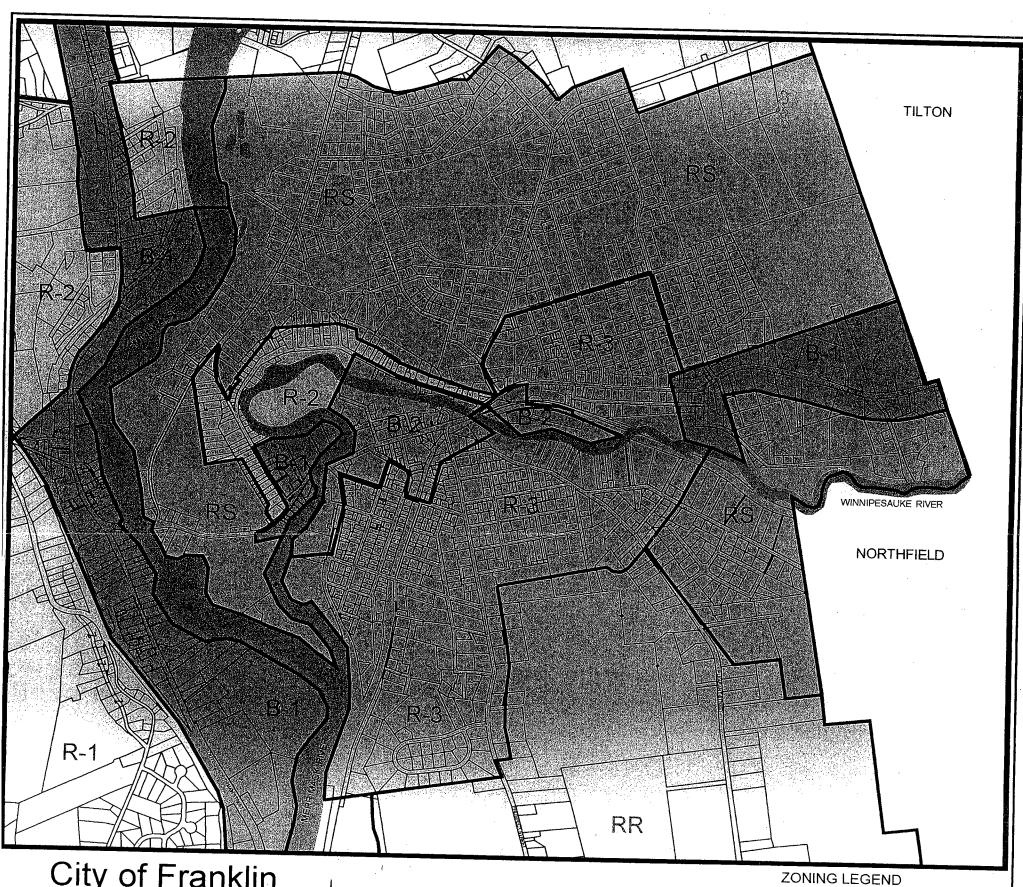
FIGURE 1 SUBJECT PROPERTY LOCATION MAP POLYCLAD LAMINATES, INC. 45 TANNERY STREET WEST FRANKLIN, NEW HAMPSHIRE

PROJECT NO.	PREPARED BY		
0503-015	LO		
DATE	REVIEWED BY		
8/15/05			

APPENDIX A


Tax Assessor Documents


00045 TANNERY STREET Parcel ID: 110	6-171-00	SHEET # 101	Living	Units	Class: I - 40	O Zoning: B1 Card	# 1 of 1
CURRENT OWNER/ADDRESS POLYCLAD LAMINATES INC	LAND DATA: TYPE SIZE		NFLUENCE(S)	FACTOR	LAND VALUE	Neighborhood ASSESSMENT INF PRIOR	
ATTN: ACCOUNTS PAYABLE FRANKLIN NH 03235-2507	PRIMARY 1.970	0 0 0 0 0	0 0 0		98,500	LAND 98,500 BUILDING 1,278,800 TOTAL 1,377,300	98,500 1,087,700 1,186,200
DEED BOOK: DEED PAGE: DEED DATE: LAST UPDATE: 20050629	TOTAL ACREAGE:		OTAL LAND VALU	E:	98,500	- DATA COLLEC 20040413 20010205	TION INFORMATION - RS ENT.GAINED ET ENTRY + SIGN ENT.GAINED
SALES DATA: DATE TYPE PRICE CODE		COST APPROAC		TRUCTURE T	YPE: 401		
OTHER FEATURES/ATTATCHED IMPROVEMENTS STUC/CODE MEASUREMENTS IDENT.UNITS		LEVELS US	,	HEATING	A/C W/H AREA	SF RATE RCN %	GOOD RCNLD
EE1 1 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AREA 104 15237	01 TO 01 8 01 TO 01 8 02 TO 02 8 01 TO 01 4 01 TO 01 4 TO TO	2 82 2 156 4 707	HOT AIR HOT AIR HOT AIR HOT AIR NONE NONE NONE	CENTRA24 744 CENTRA12 2356 CENTRA12 37208	93.61 220,550 114.37 85,090 72.37 170,500 26.97 1,003,500 27.33 416,430	.50 110,280 .50 42,550 .50 85,250 .50 501,750 .70 291,500
A 28 MSN & G 3100 E 15 MTL B EE1 50 F C RS2 288 G H I	13231	YEA # UA # UA # E # 2	LDING # R BUILT NITS LITY GRADE DENT UNITS FFICIENCIES -BEDROOMS -BEDROOMS -BEDROOMS	1930 1 1 C+		TOTAL UNADJ.RCNLD AVE % GOOD GRADE FACTOR # IDENT UNITS FUNC/ECON FACTOR RCNLD	1,031,330 0.54 1.08 1 1.00 1,113,800
			YARD ITEM DETA			WALLE	
	76	DESCRIPTION	WIDTH LENGTH OR SIZ	H QUAN. ZE	YEAR PHYS. FL BUILT COND. UT	JNC. VALUE TIL.	
31 13 ML 35 35 100 114 127	142	SH6 RS2 FN1 PA1 RS2 CP6 OTHER IMPROV	24 30 10 13 6 270 1 2000 17 16 8 13) 1) 1	1980 NORMAL NO 1980 NORMAL NO 1980 NORMAL NO 1978 NORMAL NO	ORMAL 2,280 ORMAL 1,050 ORMAL 2,270 ORMAL 2,000 ORMAL 2,000 ORMAL 2,000 ORMAL 470	
		PERMIT DATA: DATE #	PRICE	PUF	TOTAL OBY/YARD V		
22 ₈ 46 78 19 19	TL alie	20040625 R04 20031028 R03 20001010 C-8	38-00	,000 ,000	PROD TO WREHSE INT RENOS/DEMO TO REPLACE SHED W MA	NCOME APPROACH SUMMARY: DIAL RENTABLE SQUARE FE ARKET RENT/SQUARE FOOT: DIENTIAL GROSS INCOME:	
		NOTES: 45 TANNERY S	STREET		0'	DTAL EXPENSES (INCL. MN) DTAL NET OPERATING INCO! VERALL RATE: NCOME INDICATED VALUE:	GMNI.): ME: 72.37


EFFECTIVE DATE OF VALUE: ARPIL 1, 2005

	MARKETAL / TROUBLET TO EXTENSE	, , , , , , , , , , , , , , , , , , , ,		
00033 TANNERY STREET Parcel ID:	116-175-00 SHI	ET # 101 Living Units	Class: C - 391	Zoning: B1 Card # 1 of 1
CURRENT OWNER/ADDRESS	LAND DATA:		1	Neighborhood ID: 304.00
POLYCLAD LAMINATES INC	TYPE SIZE	LAND INFLUENCE(S) FACTOR	LAND VALUE	ASSESSMENT INFORMATION:
ATTN: ACCOUNTS PAYABLE	WATERFRONT 1.000 FRESIDUAL 2.300	OPOGRAPHY REST-NONCONF -50	25,000 11,500	PRIOR CURRENT
FRANKLIN NH 03235-2507		Ó		LAND 36,500 36,500 BUILDING 76,500 76,500
				TOTAL 36,500 36,500 - DATA COLLECTION INFORMATION -
DEED BOOK: DEED PAGE: DEED DATE: LAST UPDATE: 20050629	TOTAL ACREAGE: 3.30	OO TOTAL LAND VALUE:	36,500	20010205 ET UNIMP.PARCEL ENT.GAINED ENT.GAINED
SALES DATA: DATE TYPE PRICE CODE				<u></u>
OTHER FEATURES/ATTATCHED IMPROVEMENTS		COST APPROACH DETAIL:	YPE:	
STUC/CODE MEASUREMENTS IDENT_UNITS		LEVELS USE PERIMETER HEATING	A/C W/H AREA	SF RATE RCN % GOOD RCNLD
ANTA ANTA	AREA	TO NONE	NONE NONE NONE NONE NONE NONE	
'SKETCH DATA: AREA * D A E	AREA	TO NONE	NONE NONE	
A E E E E E E E E E E E E E E E E E E E		BUILDING # YEAR BUILT # UNITS QUALITY GRADE # IDENT UNITS # EFFICIENCIES # 1-BEDROOMS # 2-BEDROOMS # 3-BEDROOMS		TOTAL UNADJ.RCNLD AVE % GOOD GRADE FACTOR # IDENT UNITS FUNC/ECON FACTOR RCNLD
		OUTBUILDING/YARD ITEM DETAIL:		
		DESCRIPTION WIDTH LENGTH QUAN. YOUR SIZE	YEAR PHYS. FUNG BUILT COND. UTII	
			NONI NONI NONI NONI NONI	E E E E
		OTHER IMPROV		_
		PERMIT DATA: DATE # PRICE PUR	TOTAL OBY/YARD VALI	
			тот	OME APPROACH SUMMARY: AL RENTABLE SQUARE FEET:
			MARI	KET RENT/SQUARE FOOT: ENTIAL GROSS INCOME:
		NOTES: 3.3 AC PEMI RIVER	TOT	AL EXPENSES (INCL. MNGMNT.): AL NET OPERATING INCOME: RALL RATE: OME INDICATED VALUE:

	OMMERCIAL/INDUSTRIAL PROP 	SHEET # 10		ng Units		337 Zoning:	B1 Card #	1 of 1
CURRENT OWNER/ADDRESS	LAND DATA:	1.0	ND INFLUENCE(S)	FACTOR	LAND VALUE		eighborhood ID: SESSMENT INFORMA	
POLYCLAD LAMINATES INC	PRIMARY 1.000		O INFLUENCE(S)	-80	10,000	۸3.		RRENT
ATTN: ACCOUNTS PAYABLE FRANKLIN NH 03235-2507	FRIPARI 1.500	0	0 0 0 0	50	10,000	LAND BUILDING TOTAL	10,000 20,000 30,000	10,000 20,000 3 0,000
DEED BOOK: DEED PAGE: DEED DATE: LAST UPDATE: 20050629	TOTAL ACREAGE:	1.000	TOTAL LAND VA	LUE:	10,000		DATA COLLECTION 20010213 TO	UNIMP.PARCEL ENT.GAINED ENT.GAINED
SALES DATA: DATE TYPE PRICE CODE								
OTHER FEATURES/ATTATCHED IMPROVEMENTS		COST APP	ROACH DETAIL:	STRUCTURE T	YPE:			
STUC/CODE MEASUREMENTS IDENT.UNITS		LEVELS	USE PERIMETE	R HEATING	A/C W/H ARE	EA SF RATE	RCN % GOO	D RCNLD
SKETCH DATA: AREA	AREA	TO TO TO TO TO TO TO		NONE NONE NONE NONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE NONE NONE			
* DE E E E E E E E E E E E E E E E E E E			BUILDING # YEAR BUILT # UNITS QUALITY GRADE # IDENT UNITS # EFFICIENCIES # 1-BEDROOMS # 3-BEDROOMS		-	TOTAL UNA AVE % GOO GRADE FAC # IDENT U FUNC/ECON RCNLD	NITS	
		OUTBUILD	ING/YARD ITEM DE	TAIL:				
		DESCRIPT	ION WIDTH LENG OR S		YEAR PHYS. BUILT COND.	FUNC. VA	LUE	
		PA1	200	00 1	1980 NORMAL	NONE NONE NONE NONE	,000	
		OTHER IM	PROV			NONE		
		PERMIT D DATE	ATA: # PRICE	PUR	TOTAL OBY/YARD	VALUE: 20 INCOME APPROA	,000 CH SUMMARY:	
		NOTES: TANNERY	STREET PARKING			IPOTENTIAL GRO	S (INCL. MNGMNT. RATING INCOME:):

City of Franklin Downtown Zoning Мар

Scale 1" = 500'

Printed April 14, 2004

ENGINEERING CMI Engineering - Site Planning Subdivisions - Septic System Deelg

DISCLAIMER: Zoning lines and designations as shown hereon are based on a compilation of zoning maps provided by the City of Franklin Planning & Zoning Department. Lepene Engineering assumes no responsibility for any inaccuracies of zones or zoning lines shown. Please verify specific zoning designations for individual lots with the Franklin Planning & Zoning Administrator.

- B-1 Low-Density Business and Commercial District High-Density Business and Commercial District С Conservation District
- Lake Protection District LP 1-1 Industrial District
- 1-2 Light Industrial District Rural Residential District RR R-1
 - Low-Density Residential District R-2 High-Density Residential District
- One-,Two- and Three-Family Residential District R-3 Single-Family Residential District RS
 - Refers to zone lines that follow property lines.

APPENDIX B

Environmental Data Resources, Inc. Radius Map with GeoCheck®

The EDR Radius Map with GeoCheck®

Polyclad Laminates, Inc. 45 Tannery Street West Franklin, NH 03235

Inquiry Number: 1469641.11s

July 19, 2005

The Standard in Environmental Risk Management Information

440 Wheelers Farms Road Milford, Connecticut 06460

Nationwide Customer Service

Telephone: 1-800-352-0050 Fax: 1-800-231-6802 Internet: www.edrnet.com

TABLE OF CONTENTS

SECTION	PAGE
Executive Summary	ES1
Overview Map.	2
Detail Map.	3
Map Findings Summary	4
Map Findings	6
Orphan Summary	36
EPA Waste Codes.	EPA- 1
Government Records Searched/Data Currency Tracking	GR-1
GEOCHECK ADDENDUM	
Physical Setting Source Addendum	A-1
Physical Setting Source Summary	A-2
Physical Setting Source Map.	A-8
Physical Setting Source Map Findings.	A-9
Physical Setting Source Records Searched	A-69
Orphan Details	OD-1

Thank you for your business.
Please contact EDR at 1-800-352-0050
with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2005 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

A search of available environmental records was conducted by Environmental Data Resources, Inc. (EDR). The report meets the government records search requirements of ASTM Standard Practice for Environmental Site Assessments, E 1527-00. Search distances are per ASTM standard or custom distances requested by the user.

TARGET PROPERTY INFORMATION

ADDRESS

45 TANNERY STREET WEST FRANKLIN, NH 03235

COORDINATES

Latitude (North): 43.450100 - 43° 27' 0.4" Longitude (West): 71.657100 - 71° 39' 25.6"

Universal Tranverse Mercator: Zone 19 UTM X (Meters): 285001.3 UTM Y (Meters): 4814014.0

Elevation: 347 ft. above sea level

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property: 43071-D6 FRANKLIN, NH Source: USGS 7.5 min quad index

TARGET PROPERTY SEARCH RESULTS

The target property was identified in the following government records. For more information on this property see page 6 of the attached EDR Radius Map report:

Site	Database(s)	EPA ID	
45 TANNERY ST 45 TANNERY ST FRANKLIN, NH	ERNS	N/A	
POLYCLAD LAMINATES INC 45 TANNERY ST FRANKLIN, NH 03235	FINDS RCRA-LQG TRIS UST	03235PLYCL45	

DATABASES WITH NO MAPPED SITES

No mapped sites were found in EDR's search of available ("reasonably ascertainable ") government records either on the target property or within the ASTM E 1527-00 search radius around the target property for the following databases:

Proposed NPL..... Proposed National Priority List Sites

System

CERCLIS No Further Remedial Action Planned

CORRACTS..... Corrective Action Report

RCRA-TSDF...... Resource Conservation and Recovery Act Information

STATE ASTM STANDARD

FEDERAL ASTM SUPPLEMENTAL

CONSENT..... Superfund (CERCLA) Consent Decrees

ROD...... Records Of Decision

Delisted NPL...... National Priority List Deletions

HMIRS..... Hazardous Materials Information Reporting System

MLTS..... Material Licensing Tracking System

MINES Mines Master Index File
NPL Liens Federal Superfund Liens
PADS PCB Activity Database System
INDIAN RESERV Indian Reservations

DOD....... Department of Defense Sites

RAATS...... RCRA Administrative Action Tracking System

Rodenticide Act)/TSCA (Toxic Substances Control Act)

STATE OR LOCAL ASTM SUPPLEMENTAL

LAST..... Listing of All Sites
NH Spills.... Listing of All Sites

BROWNFIELDS DATABASES

US BROWNFIELDS....... A Listing of Brownfields Sites
US INST CONTROL...... Sites with Institutional Controls
Inst Control....... Activity and Use Restrictions
VCP......... Voluntary Cleanup Program Sites

BROWNFIELDS..... Brownfields Sites

SURROUNDING SITES: SEARCH RESULTS

Surrounding sites were identified.

Elevations have been determined from the USGS Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified. Sites with an elevation equal to or higher than the target property have been differentiated below from sites with an elevation lower than the target property.

Page numbers and map identification numbers refer to the EDR Radius Map report where detailed data on individual sites can be reviewed.

Sites listed in **bold italics** are in multiple databases.

Unmappable (orphan) sites are not considered in the foregoing analysis.

FEDERAL ASTM STANDARD

RCRAInfo: RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. RCRAInfo replaces the data recording and reporting abilities of the Resource Conservation and Recovery Information System(RCRIS). The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Conditionally exempt small quantity generators (CESQGs) generate less than 100 kg of hazardous waste, or less than 1 kg of acutely hazardous waste per month. Small quantity generators (SQGs) generate between 100 kg and 1,000 kg of hazardous waste per month Large quantity generators generate over 1,000 kilograms (kg) of hazardous waste, or over 1 kg of acutely hazardous waste per month. Transporters are individuals or entities that move hazardous waste from the generator offsite to a facility that can recycle, treat, store, or dispose of the waste. TSDFs treat, store, or dispose of the waste.

A review of the RCRA-SQG list, as provided by EDR, and dated 05/20/2005 has revealed that there are 2 RCRA-SQG sites within approximately 0.25 miles of the target property.

Equal/Higher Elevation	Address	Dist / Dir Map ID P	age
BEAUCHINE AUTO SERVICE	392 N MAIN ST	1/8 - 1/4NNW B4 1	-
LABRANCHE RUDOLPH INC	394 N MAIN ST	1/8 - 1/4NNW B5 1	

STATE ASTM STANDARD

SHWS: The State Hazardous Waste Sites records are the states' equivalent to CERCLIS. These sites may or may not already be listed on the federal CERCLIS list. Priority sites planned for cleanup using state funds (state equivalent of Superfund) are identified along with sites where cleanup will be paid for by potentially responsible parties. The data come from the Department of Environmental Services' Hazardous Waste Inventory list.

A review of the SHWS list, as provided by EDR, has revealed that there are 4 SHWS sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
OAK MATERIAL GROUP	91 RANGE ROAD	1/2 - 1 WNV	V 17	29
Lower Elevation	Address	Dist / Dir	Map ID	Page
QUICK TURN FLEX CIRCUITS LLC	174 N MAIN ST	1/4 - 1/2SW	6	12
FRANKLIN FIRE STATION	59 W BOW ST	1/4 - 1/2 SSE	C13	24
CASTLE MOTORS	168 CENTRAL ST	1/2 - 1 SSE	18	32

LUST: The Leaking Underground Storage Tank Incident Reports contain an inventory of reported leaking underground storage tank incidents. The data come from the Department of Environmental Services' LUST Sites Summary Report.

A review of the LUST list, as provided by EDR, and dated 06/21/2005 has revealed that there are 4 LUST sites within approximately 0.5 miles of the target property.

Lower Elevation	Address	Dist / Dir	Map ID	Page
FRANKLIN SUNOCO	120 N MAIN ST	1/4 - 1/2SSW	9	18
WILLIAM J MACKENZIE	107 NORTH MAIN STREET	1/4 - 1/2 SSW	10	22
FRANKLIN FIRE STATION	59 W BOW ST	1/4 - 1/2 SSE	C13	24
FRANKLIN CITGO	80 N MAIN ST	1/4 - 1/2 SSW	15	26

UST: The Underground Storage Tank database contains registered USTs. USTs are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA). The data come from the Department of Environmental Services' list: Underground Storage Tank Registration Data.

A review of the UST list, as provided by EDR, and dated 06/21/2005 has revealed that there is 1 UST site within approximately 0.25 miles of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
FRANKLIN FALLS	46 GRANITE DR	1/8 - 1/4 NNW	3	10

NH ALLSITES: Provides information on sites in New Hampshire, with activities that either have resulted in groundwater contamination or pose a potential hazard to groundwater supplies. The regulated activities and groundwater hazards include: confirmed releases of oil or hazardous materials to the soil and/or groundwater as a result of discharges, spills, and removal of underground storage tanks; underground injection wells such as floor drains, leaching galleries, and septic systems anything other than domestic wastewater; large discharges of wastewater such as domestic wastewater septic systems which are designed to discharge more than 20,000 gpd, land application of wastewater treatment facility effluent (spray irrigation, rapid infiltration rapid infiltration basins, etc.) and unlined septage and wastewater lagoons; unpermitted hazardous waste storage facilities; landfills and other waste repositories in which groundwater quality is at risk.

A review of the ALLSITES list, as provided by EDR, and dated 06/21/2005 has revealed that there are 10 ALLSITES sites within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
ROLAND MICHELIN PROPERTY CHARLIE BERUBE PROPERTY EDWARD PELCZAR RESIDENCE	9 DAISY LANE 8 LINCOLN ST. 3 LILY LN.	1/4 - 1/2 NW 1/4 - 1/2 NNW 1/4 - 1/2 NW	7 11 12	17 23 23
Lower Elevation	Address	Dist / Dir	Map ID	Page
QUICK TURN FLEX CIRCUITS LLC INSULFAB PLASTICS FRANKLIN SUNOCO WILLIAM J MACKENZIE FRANKLIN FIRE STATION FRANKLIN CITGO RIVERBEND MILL	174 N MAIN ST 155 NORTH MAIN STREET 120 N MAIN ST 107 NORTH MAIN STREET 59 W BOW ST 80 N MAIN ST 100 MEMORIAL STREET	1/4 - 1/2 SW 1/4 - 1/2 SSW 1/4 - 1/2 SSW 1/4 - 1/2 SSW 1/4 - 1/2 SSE 1/4 - 1/2 SSW 1/4 - 1/2 SE	9 10 C13	12 17 18 22 24 26 29

PROPRIETARY DATABASES

Former Manufactured Gas (Coal Gas) Sites:

The existence and location of Coal Gas sites is provided exclusively to EDR by Real Property Scan, Inc. Copyright 1993 Real Property Scan, Inc. For a technical description of the types of hazards which may be found at such sites, contact your EDR customer service representative

A review of the Coal Gas list, as provided by EDR, has revealed that there is 1 Coal Gas site within approximately 1 mile of the target property.

Lower Elevation	Address	Dist / Dir	Map ID	Page
FRANKLIN LIGHT & POWER	HUEBER CT.	1/4 - 1/2SSE	C14	26

Due to poor or inadequate address information, the following sites were not mapped:

Site Name

J. P. STEVENS TEXTILE

NH DOT BRIDGE MAINTENANCE ACME STAPLE COMPANY GHI ASSOCIATES, INC. J. P. STEVENS TEXTILE ACME STAPLE COMPANY FRANKLIN TRANSFER STATION FRANKLIN ASH LANDFILL FRANKLIN MUNICIPAL LANDFILL NH DOT PS 211 FRANKLIN JR/SR HIGH SCHOOL FORMER RADIO SHACK FRANKLIN ARMORY WINNIPESAUKEE RIVER BASIN WWTP JOHN'S EXXON SAFETY-KLEEN (NE) INC NH ARMY NATIONAL GUARD EASTMAN FALLS HYDRO STATION - PSNH OAK MATERIALS GROUP LAMINATES DIV WEBSTER VALVE INC FORMER ALCAN/JARL EXTRUSION FACILI CITY OF FRANKLIN - FRANKLIN FALLS

ACME WELL SITE - FRANKLIN WATER WO

INDUSTRIAL PARK DR., POLYCLAD LAMI

LAKES REGION ARTESIAN WELL

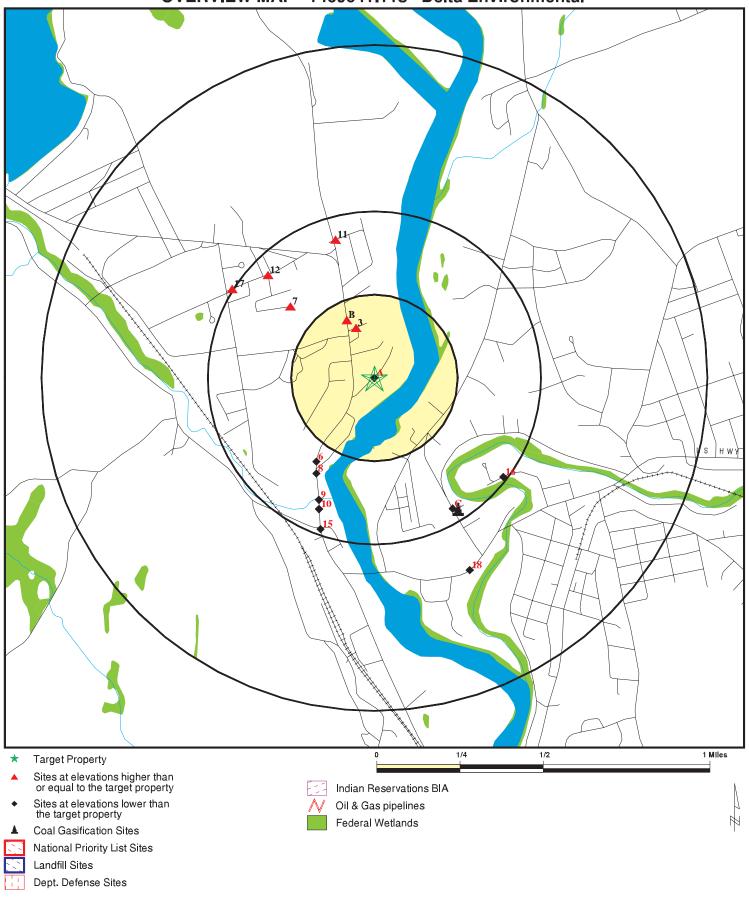
POLYCLAD LAMINATES

Database(s)

RCRA-SQG, FINDS, RCRA-TSDF, CORRACTS, CERC-NFRAP SHWS, ALLSITES SHWS, UST, ALLSITES SHWS, ALLSITES CERC-NFRAP CERC-NFRAP SWF/LF, ALLSITES SWF/LF SWF/LF

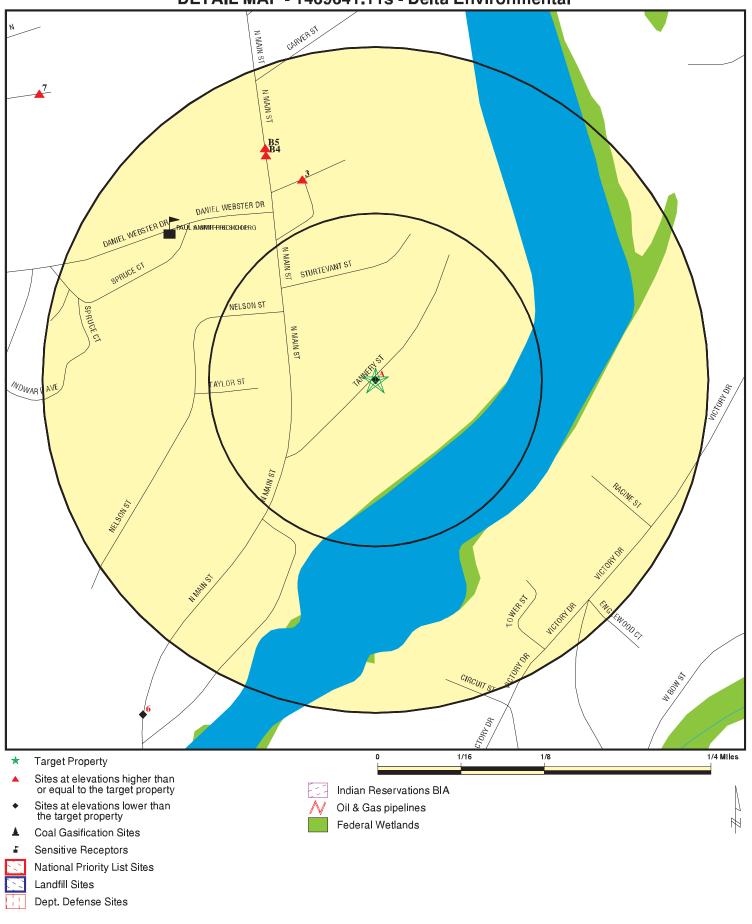
UST, ALLSITES UST UST UST

UST, ALLSITES RCRA-SQG RCRA-SQG, FINDS


RCRA-SQG, FINDS RCRA-SQG, FINDS FINDS, RCRA-LQG, TRIS NH Spills, ALLSITES

ALLSITES ALLSITES

NH Spills, ALLSITES


ERNS ERNS

OVERVIEW MAP - 1469641.11s - Delta Environmental

TARGET PROPERTY: ADDRESS: CITY/STATE/ZIP: LAT/LONG: Polyclad Laminates, Inc. 45 Tannery Street West Franklin NH 03235 43.4501 / 71.6571 CUSTOMER: Delta Environmental
CONTACT: Linda Opperman
INQUIRY #: 1469641.11s
DATE: July 19, 2005 7:01 pm

DETAIL MAP - 1469641.11s - Delta Environmental

TARGET PROPERTY: ADDRESS: CITY/STATE/ZIP:

LAT/LONG:

Polyclad Laminates, Inc. 45 Tannery Street West Franklin NH 03235 43.4501 / 71.6571 CUSTOMER: Delta Environmental
CONTACT: Linda Opperman
INQUIRY #: 1469641.11s
DATE: July 19, 2005 7:01 pm

MAP FINDINGS SUMMARY

Database	Target Property	Search Distance (Miles)	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
FEDERAL ASTM STANDARD	<u> </u>							
NPL Proposed NPL CERCLIS CERC-NFRAP CORRACTS RCRA TSD RCRA Lg. Quan. Gen. RCRA Sm. Quan. Gen. ERNS	x x	1.000 1.000 0.500 0.250 1.000 0.500 0.250 0.250 TP	0 0 0 0 0 0 0 0 NR	0 0 0 0 0 0 0 2 NR	0 0 0 NR 0 0 NR NR NR	0 NR NR 0 NR NR NR	NR NR NR NR NR NR NR NR	0 0 0 0 0 0 0 0
STATE ASTM STANDARD								
State Haz. Waste State Landfill LUST UST ALLSITES VCP	Х	1.000 0.500 0.500 0.250 0.500 0.500	0 0 0 0 0	0 0 0 1 0	2 0 4 NR 10 0	2 NR NR NR NR NR	NR NR NR NR NR	4 0 4 1 10 0
FEDERAL ASTM SUPPLEME	<u>ENTAL</u>							
CONSENT ROD Delisted NPL FINDS HMIRS MLTS MINES NPL Liens PADS INDIAN RESERV UMTRA US ENG CONTROLS ODI FUDS DOD RAATS	X	1.000 1.000 1.000 TP TP TP 0.250 TP TP 1.000 0.500 0.500 0.500 1.000 TP	0 0 0 NR	0 0 0 NR NR NR 0 NR NR 0 0 0 0	0 0 0 NR NR NR NR NR NR 0 0 0 0 0 NR	0 0 0 NR	NR NR NR NR NR NR NR NR NR NR NR NR NR	0 0 0 0 0 0 0 0 0 0
TRIS TSCA SSTS FTTS	X	TP TP TP TP	NR NR NR NR	NR NR NR NR	NR NR NR NR	NR NR NR NR	NR NR NR NR	0 0 0 0
STATE OR LOCAL ASTM SU	IPPLEMENTAL	=						
AST LAST		TP TP	NR NR	NR NR	NR NR	NR NR	NR NR	0

MAP FINDINGS SUMMARY

Database	Target Property	Search Distance (Miles)	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
NH Spills		TP	NR	NR	NR	NR	NR	0
EDR PROPRIETARY HISTORI	CAL DATABA	ASES						
Coal Gas		1.000	0	0	1	0	NR	1
BROWNFIELDS DATABASES								
US BROWNFIELDS US INST CONTROL Inst Control VCP		0.500 0.500 0.500 0.500	0 0 0	0 0 0	0 0 0 0	NR NR NR NR	NR NR NR NR	0 0 0 0
US BROWNFIELDS US INST CONTROL Inst Control		0.500 0.500 0.500	0 0 0	0 0 0	0 0 0	NR NR NR	NR NR NR	

NOTES:

AQUIFLOW - see EDR Physical Setting Source Addendum

TP = Target Property

NR = Not Requested at this Search Distance

Sites may be listed in more than one database

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

EPA ID Number

A1 45 TANNERY ST ERNS 91225829
Target 45 TANNERY ST N/A

Target 45 TANNERY ST Property FRANKLIN, NH

Site 1 of 2 in cluster A

Actual: 346 ft.

Click this hyperlink while viewing on your computer to access

additional ERNS detail in the EDR Site Report.

A2 POLYCLAD LAMINATES INC FINDS 1000441187
Target 45 TANNERY ST RCRA-LQG 03235PLYCL45

Property FRANKLIN, NH 03235 TRIS
UST

Site 2 of 2 in cluster A

Actual: 346 ft.

RCRAInfo:

Owner: COOKSON AMERICA
EPA ID: NHD099362048

Contact: DONALD MAURER

(603) 934-5642

Classification: Large Quantity Generator

TSDF Activities: Not reported

BIENNIAL REPORTS:

Last Biennial Reporting Year: 2001

Quantity (Lbs) **Waste** Quantity (Lbs) **Waste** D001 56602.08 D002 2292.67 D009 458.53 D022 8712.16 D035 30721.82 F003 94649.89

F005 22926.73

Violation Status: Violations exist

Regulation Violated: 509.03(b)

Area of Violation: PERSONNEL TRAINING RECORDS

Date Violation Determined: 04/10/2001 Actual Date Achieved Compliance: 02/20/2002

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 06/05/1986
Penalty Type: Not reported

Enforcement Action: EPA TO STATE ADMINISTRATIVE REFERRAL

Enforcement Action Date: 07/13/2001
Penalty Type: Not reported

Regulation Violated: 509.02(a) & (a)(1)

Area of Violation: GENERATOR INSPECTION SCHEDULE & LOG

Date Violation Determined: 04/10/2001 Actual Date Achieved Compliance: 02/20/2002

Enforcement Action: EPA TO STATE ADMINISTRATIVE REFERRAL

Enforcement Action Date: 07/13/2001
Penalty Type: Not reported

Enforcement Action: WRITTEN INFORMAL

Enforcement Action Date: 11/13/2001
Penalty Type: Not reported

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 04/23/2002 Penalty Type: Not reported

Regulation Violated: ENV-Wm 509..02(a)(2)

MAP FINDINGS Map ID Direction

Distance Distance (ft.)

EDR ID Number Elevation Site Database(s) **EPA ID Number**

POLYCLAD LAMINATES INC (Continued)

1000441187

Area of Violation: PERSONNEL TRAINING RECORDS

04/10/2001 **Date Violation Determined:** Actual Date Achieved Compliance: 02/20/2002

Enforcement Action: EPA TO STATE ADMINISTRATIVE REFERRAL

Enforcement Action Date: 07/13/2001 Penalty Type: Not reported

WRITTEN INFORMAL **Enforcement Action:**

11/13/2001 **Enforcement Action Date:** Penalty Type: Not reported

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 04/23/2002 Penalty Type: Not reported Regulation Violated: 509.02(a)(1)

GENERATOR INSPECTION SCHEDULE & LOG Area of Violation:

Date Violation Determined: 04/10/2001 Actual Date Achieved Compliance: 02/20/2002

Enforcement Action: WRITTEN INFORMAL

Enforcement Action Date: 11/13/2001 Penalty Type: Not reported

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 04/23/2002 Penalty Type: Not reported Regulation Violated: Not reported

GENERATOR-ALL REQUIREMENTS (OVERSIGHT) Area of Violation:

Date Violation Determined: 05/16/1986 Actual Date Achieved Compliance: 09/25/1986

FINAL 3008(A) COMPLIANCE ORDER **Enforcement Action:**

Enforcement Action Date: 06/05/1986 Penalty Type: Not reported

Enforcement Action: EPA TO STATE ADMINISTRATIVE REFERRAL

Enforcement Action Date: 07/13/2001 Penalty Type: Not reported

There are 5 violation record(s) reported at this site:

Date of Compliance Evaluation Area of Violation Compliance Evaluation Inspection PERSONNEL TRAINING RECORDS 20020220 GENERATOR INSPECTION SCHEDULE & LOG 20020220 Compliance Evaluation Inspection PERSONNEL TRAINING RECORDS 20020220 **GENERATOR INSPECTION SCHEDULE & LOG** 20020220 Compliance Evaluation Inspection GENERATOR-ALL REQUIREMENTS (OVERSIGHT) 19860925

NY MANIFEST

Click this hyperlink while viewing on your computer to access additional NY MANIFEST detail in the EDR Site Report.

CT MANIFEST

Click this hyperlink while viewing on your computer to access additional CT MANIFEST detail in the EDR Site Report.

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

POLYCLAD LAMINATES INC (Continued)

1000441187

FINDS:

Other Pertinent Environmental Activity Identified at Site:

AEROMETRIC INFORMATION RETRIEVAL SYSTEM/AIRS FACILITY SYSTEM

NATIONAL EMISSIONS INVENTORY

RESOURCE CONSERVATION AND RECOVERY ACT INFORMATION SYSTEM

TOXIC CHEMICAL RELEASE INVENTORY SYSTEM

UST:

Facility ID: 0110998 Tank ID:

Install Date: 1983-01-01 00:00:00 Last Test: 1998-12-07 00:00:00

Close Date: Not reported Closure Type: Removed

Chemical: Hazardous materials Capacity (gal): 6000

Owner: POLYCLAD LAMINATES INC

40 INDUSTRIAL PARK DR FRANKLIN, NH 03235

Lust Tracking Number: 199902062
Type of Tank Construction: Steel
Type of Pipe Construction: Steel
Double Wall Construction: No

Spill Installed: 1994-10-07 00:00:00 Overfill: 1911-11-11 00:00:00

Line Leak Detection: Not reported

Permanent Closure: 1998-12-12 00:00:00 Permanent Closure Analysis: 1999-02-05 00:00:00

Facility ID: 0110998 Tank ID: 7

 Install Date:
 1998-12-23 00:00:00
 Last Test:
 2004-03-05 00:00:00

 Close Date:
 Not reported
 Closure Type:
 Not reported

Chemical: Hazardous materials

Capacity (gal): 13500

Owner: POLYCLAD LAMINATES INC

40 INDUSTRIAL PARK DR FRANKLIN, NH 03235

Lust Tracking Number: 199902062

Type of Tank Construction: Composite material Type of Pipe Construction: Other Material

Double Wall Construction: Yes

 Spill Installed:
 1998-12-23 00:00:00

 Overfill:
 1998-12-23 00:00:00

Line Leak Detection: Not reported Permanent Closure: Not reported Permanent Closure Analysis: Not reported

Facility ID: 0110998 Tank ID:

Install Date: 1983-01-01 00:00:00 Last Test: 1991-11-01 00:00:00

Close Date: Not reported Closure Type: Removed

Chemical: #2 heating oil. Capacity (gal): 12000

Owner: POLYCLAD LAMINATES INC

40 INDUSTRIAL PARK DR FRANKLIN, NH 03235

Lust Tracking Number: 199902062
Type of Tank Construction: Steel
Type of Pipe Construction: Steel
Double Wall Construction: No

Spill Installed: Not reported

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

POLYCLAD LAMINATES INC (Continued)

1000441187

Overfill: Not reported Line Leak Detection: Not reported

Permanent Closure: 1992-11-10 00:00:00

Permanent Closure Analysis: Not reported

Facility ID: 0110998 Tank ID: 3

 Install Date:
 1980-01-01 00:00:00
 Last Test:
 1998-12-07 00:00:00

 Close Date:
 1999-01-21 00:00:00
 Closure Type:
 Filled In Place

 Chemical:
 Hazardous materials

Capacity (gal): 4500

Owner: POLYCLAD LAMINATES INC

40 INDUSTRIAL PARK DR FRANKLIN, NH 03235

Lust Tracking Number: 199902062
Type of Tank Construction: Steel
Type of Pipe Construction: Steel
Double Wall Construction: No

Spill Installed: 1994-10-07 00:00:00 Overfill: 1911-11-11 00:00:00

Line Leak Detection: Not reported

Permanent Closure: 1999-06-08 00:00:00
Permanent Closure Analysis: 1999-07-19 00:00:00

Facility ID: 0110998 Tank ID:

 Install Date:
 1980-01-01 00:00:00
 Last Test:
 1998-01-14 00:00:00

 Close Date:
 1999-01-21 00:00:00
 Closure Type:
 Filled In Place

 Chemical:
 Hazardous materials

Capacity (gal): 6000

Owner: POLYCLAD LAMINATES INC

40 INDUSTRIAL PARK DR FRANKLIN, NH 03235 mber: 199902062

Lust Tracking Number: 19990
Type of Tank Construction: Steel
Type of Pipe Construction: Steel
Double Wall Construction: No

 Spill Installed:
 1994-10-07 00:00:00

 Overfill:
 1911-11-11 00:00:00

Line Leak Detection: Not reported

Permanent Closure: 1999-06-08 00:00:00 Permanent Closure Analysis: 1999-07-19 00:00:00

Facility ID: 0110998 Tank ID: 5

 Install Date:
 1983-01-01 00:00:00
 Last Test:
 1991-11-01 00:00:00

 Close Date:
 Not reported
 Closure Type:
 Removed

Close Date: Not reported Chemical: Gasoline.
Capacity (gal): 4000

Owner: POLYCLAD LAMINATES INC 40 INDUSTRIAL PARK DR

FRANKLIN, NH 03235

Lust Tracking Number: 199902062
Type of Tank Construction: Steel
Type of Pipe Construction: Steel
Double Wall Construction: No

Spill Installed: Not reported Overfill: Not reported Line Leak Detection: Not reported

Permanent Closure: 1992-11-10 00:00:00

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

EPA ID Number

Tank ID:

Tank ID:

Last Test:

Closure Type:

Last Test:

Closure Type:

POLYCLAD LAMINATES INC (Continued)

1000441187

1998-12-07 00:00:00

Filled In Place

Not reported

Removed

Permanent Closure Analysis: Not reported

Facility ID: 0110998

Install Date: 1980-01-01 00:00:00
Close Date: 1999-01-21 00:00:00
Chemical: Hazardous materials

Capacity (gal): 4500

Owner: POLYCLAD LAMINATES INC

40 INDUSTRIAL PARK DR FRANKLIN, NH 03235

Lust Tracking Number: 199902062
Type of Tank Construction: Steel
Type of Pipe Construction: Steel
Double Wall Construction: No

 Spill Installed:
 1994-10-07 00:00:00

 Overfill:
 1911-11-11 00:00:00

Line Leak Detection: Not reported

Permanent Closure: 1999-06-08 00:00:00
Permanent Closure Analysis: 1999-07-19 00:00:00

3 FRANKLIN FALLS UST U002038997 NNW 46 GRANITE DR N/A 1/8-1/4 FRANKLIN, NH 03235

1/8-1/4 846 ft.

Relative: UST:

Higher

Facility ID: 0114707

Install Date: 1983-01-01 00:00:00

Actual: Close Date: Not reported

387 ft. Chemical: Diesel.

Capacity (gal): 500

Owner: US ARMY CORPS OF ENGINEERS

2097 MAPLE STREET HOPKINTON, NH 03229

Lust Tracking Number: 199411066
Type of Tank Construction: Steel
Type of Pipe Construction: Steel
Double Wall Construction: No
Spill Installed: No

Spill Installed: Not reported
Overfill: Not reported
Line Leak Detection: Not reported
Permanent Closure: 1991-07-10 00:00:00
Permanent Closure Analysis: 1992-03-31 00:00:00

Facility ID: 0114707 Tank ID: 2

Install Date: 1972-01-01 00:00:00 Last Test: Not reported Close Date: Not reported Closure Type: Removed Chemical: #2 heating oil.

Capacity (gal): 300

Owner: US ARMY CORPS OF ENGINEERS

2097 MAPLE STREET HOPKINTON, NH 03229

Lust Tracking Number: 199411066
Type of Tank Construction: Steel
Type of Pipe Construction: Copper
Double Wall Construction: No

Spill Installed: Not reported Overfill: Not reported Line Leak Detection: Not reported

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

FRANKLIN FALLS (Continued) U002038997

Permanent Closure: 1991-07-10 00:00:00
Permanent Closure Analysis: 1992-03-31 00:00:00

Facility ID: 0114707 Tank ID: 3

 Install Date:
 1991-07-15 00:00:00
 Last Test:
 2002-10-22 00:00:00

 Close Date:
 Not reported
 Closure Type:
 Not reported

Chemical: #2 heating oil.

Capacity (gal): 500

Owner: US ARMY CORPS OF ENGINEERS

2097 MAPLE STREET HOPKINTON, NH 03229

Lust Tracking Number: 199411066

Type of Tank Construction: Steel, corrosion protected

Type of Pipe Construction: Copper Double Wall Construction: Yes

 Spill Installed:
 1991-07-15 00:00:00

 Overfill:
 1991-07-15 00:00:00

Line Leak Detection: Not reported
Permanent Closure: 2004-08-06 00:00:00
Permanent Closure Analysis: 2004-08-06 00:00:00

B4 BEAUCHINE AUTO SERVICE RCRA-SQG 1004749098

NNW 392 N MAIN ST 1/8-1/4 FRANKLIN, NH 03235 991 ft.

Site 1 of 2 in cluster B

Relative: Higher

RCRAInfo:

Owner: ROBERT BEAUCHINE

Actual: (603) 934-6328

391 ft. EPA ID: NHD500018882

Contact: ROBERT F BEAUCHINE

(603) 934-6328

Classification: Conditionally Exempt Small Quantity Generator

TSDF Activities: Not reported

Violation Status: No violations found

CT MANIFEST

<u>Click this hyperlink</u> while viewing on your computer to access additional CT MANIFEST detail in the EDR Site Report.

FINDS:

Other Pertinent Environmental Activity Identified at Site:

RESOURCE CONSERVATION AND RECOVERY ACT INFORMATION SYSTEM

B5 LABRANCHE RUDOLPH INC NNW 394 N MAIN ST 1/8-1/4 W FRANKLIN, NH 03235

1/8-1/4 W FRANKLIN, NH 03235 1018 ft.

Relative: Higher

Site 2 of 2 in cluster B

Actual: 391 ft.

TC1469641.11s Page 11

1000333999 NHD018912501

FINDS

RCRA-SQG

FINDS

NHD500018882

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

EPA ID Number

LABRANCHE RUDOLPH INC (Continued)

1000333999

RCRAInfo:

Owner: Not reported EPA ID: NHD018912501

Contact: RUDOLPH LABRANCHE

(603) 934-5115

Classification: Small Quantity Generator

TSDF Activities: Not reported

Violation Status: No violations found

FINDS:

Other Pertinent Environmental Activity Identified at Site:

RESOURCE CONSERVATION AND RECOVERY ACT INFORMATION SYSTEM

6 QUICK TURN FLEX CIRCUITS LLC RCRA-SQG 1000692675 SW 174 N MAIN ST SHWS NHD986472249

1/4-1/2 FRANKLIN, NH 03235 FINDS
1615 ft. UST
ALLSITES

Relative:

Lower RCRAInfo:

Owner: FRANKLIN FALLS MILL LLC
Actual: EPA ID: NHD986472249

308 ft. Contact: THOMAS GROVES

(603) 934-2267

(603) 934-2267

Classification: Conditionally Exempt Small Quantity Generator

TSDF Activities: Not reported

BIENNIAL REPORTS:

Last Biennial Reporting Year: 2001

 Waste
 Quantity (Lbs)
 Waste
 Quantity (Lbs)

 D001
 4284.20
 D002
 916.00

 F006
 25500.00
 U210
 60.00

Violation Status: Violations exist

Regulation Violated: 507.03(a)(1)b., & d.

Area of Violation: GENERATOR-PRE-TRANSPORT REQUIREMENTS

Date Violation Determined: 01/21/2005 Actual Date Achieved Compliance: 02/15/2005

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 11/01/2002
Penalty Type: Not reported

Regulation Violated: 508.02(d)

Area of Violation: PREPARDNESS AND PREVENTION

Date Violation Determined: 01/21/2005 Actual Date Achieved Compliance: 02/15/2005

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 11/01/2002
Penalty Type: Not reported

Regulation Violated: 507.01(a)(3)

Area of Violation: CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER

Date Violation Determined: 01/21/2005 Actual Date Achieved Compliance: 02/15/2005

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

QUICK TURN FLEX CIRCUITS LLC (Continued)

1000692675

Enforcement Action Date: 11/01/2002 Penalty Type: Not reported

Regulation Violated: 502.01

Area of Violation: HAZARDOUS WASTE DETERMINATIONS

Date Violation Determined: 01/21/2005 Actual Date Achieved Compliance: 02/15/2005

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 11/01/2002
Penalty Type: Not reported

Regulation Violated: 1102.03(c)
Area of Violation: NHUWR

Date Violation Determined: 01/21/2005

Actual Date Achieved Compliance: 02/15/2005

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 11/01/2002
Penalty Type: Not reported
Regulation Violated: 265.16

Area of Violation: PERSONNEL TRAINING RECORDS

Date Violation Determined: 04/10/2001 Actual Date Achieved Compliance: 11/01/2002

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 11/01/2002
Penalty Type: Not reported

Regulation Violated: env-wm 509.02(a)2, 509.03(b)
Area of Violation: PERSONNEL TRAINING RECORDS

Date Violation Determined: 04/10/2001 Actual Date Achieved Compliance: 11/01/2002

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 11/01/2002
Penalty Type: Not reported

Regulation Violated: env-wm 507.02(b)

Area of Violation: GENERATOR-OTHER REQUIREMENTS

Date Violation Determined: 04/10/2001 Actual Date Achieved Compliance: 11/01/2002

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 11/01/2002
Penalty Type: Not reported

Regulation Violated: env-wm 509.02(a)5
Area of Violation: CONTINGENCY PLAN

Date Violation Determined: 04/10/2001 Actual Date Achieved Compliance: 11/01/2002

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 11/01/2002
Penalty Type: Not reported

Regulation Violated: env-wm 502.01

Area of Violation: HAZARDOUS WASTE DETERMINATIONS

Date Violation Determined: 04/10/2001
Actual Date Achieved Compliance: 11/01/2002

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 11/01/2002

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

Database(s)

EPA ID Number

QUICK TURN FLEX CIRCUITS LLC (Continued)

1000692675

Penalty Type: Not reported

Regulation Violated: 262.41

Area of Violation: GENERATOR-RECORDKEEPING REQUIREMENTS

Date Violation Determined: 04/10/2001 Actual Date Achieved Compliance: 11/01/2002

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 11/01/2002
Penalty Type: Not reported
Regulation Violated: 265.174

Area of Violation: GENERATOR INSPECTION SCHEDULE & LOG

Date Violation Determined: 04/10/2001 Actual Date Achieved Compliance: 11/01/2002

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 11/01/2002
Penalty Type: Not reported

Regulation Violated: 265.51
Area of Violation: CONTINGENCY PLAN

Date Violation Determined: 04/10/2001 Actual Date Achieved Compliance: 11/01/2002

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 11/01/2002
Penalty Type: Not reported

Regulation Violated: 270.10

Area of Violation: CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER

Date Violation Determined: 04/10/2001 Actual Date Achieved Compliance: 11/01/2002

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 11/01/2002
Penalty Type: Not reported

Regulation Violated: 262.34

Area of Violation: CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER

Date Violation Determined: 04/10/2001 Actual Date Achieved Compliance: 11/01/2002

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 11/01/2002
Penalty Type: Not reported

There are 15 violation record(s) reported at this site:

Evaluation	Area of Violation	<u>Compliance</u>
Compliance Evaluation Inspection	GENERATOR-PRE-TRANSPORT REQUIREMENTS	20050215
	PREPARDNESS AND PREVENTION	20050215
	NHUWR	20050215
	CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER	20050215
	HAZARDOUS WASTE DETERMINATIONS	20050215
Compliance Evaluation Inspection	PERSONNEL TRAINING RECORDS	20021101
	CONTINGENCY PLAN	20021101
	CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER	20021101
	CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER	20021101
	GENERATOR INSPECTION SCHEDULE & LOG	20021101
	GENERATOR-RECORDKEEPING REQUIREMENTS	20021101
	PERSONNEL TRAINING RECORDS	20021101

Date of

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

QUICK TURN FLEX CIRCUITS LLC (Continued)

1000692675

HAZARDOUS WASTE DETERMINATIONS GENERATOR-OTHER REQUIREMENTS CONTINGENCY PLAN 20021101 20021101 20021101

CT MANIFEST

<u>Click this hyperlink</u> while viewing on your computer to access additional CT MANIFEST detail in the EDR Site Report.

FINDS:

Other Pertinent Environmental Activity Identified at Site:
INTEGRATED COMPLIANCE INFORMATION SYSTEM
RESOURCE CONSERVATION AND RECOVERY ACT INFORMATION SYSTEM

SHWS:

Facility ID: 199207032 Proj Type: HAZWASTE

No. of Permits: 0 Project Manager: CLOSED

NH Sites:

Facility ID: 199207032
Project Type: HAZWASTE
Project Manager: CLOSED
Num of Permits: 0

UST:

Facility ID: 0112548 Tank ID:

Install Date: 1974-01-01 00:00:00 Last Test: 1991-06-15 00:00:00

Close Date: Not reported Closure Type: Removed

Chemical: #2 heating oil.

Capacity (gal): 8000

Owner: ADVANCE CIRCUIT SYSTEMS INC

75 N MAIN ST

FRANKLIN, NH 03235

Lust Tracking Number: 199207032
Type of Tank Construction: Steel
Type of Pipe Construction: Copper
Double Wall Construction: No
Spill Installed: Not reported
Overfill: Not reported

Line Leak Detection: Not reported
Permanent Closure: 1997-10-08 00:00:00

Permanent Closure: 1997-10-08 00:00:00
Permanent Closure Analysis: 1997-10-21 00:00:00

Facility ID: 0112548 Tank ID: 4

Install Date: 1971-01-01 00:00:00 Last Test: Not reported Close Date: Not reported Closure Type: Removed

Chemical: Empty
Capacity (gal): 1000

Owner: ADVANCE CIRCUIT SYSTEMS INC

75 N MAIN ST FRANKLIN, NH 03235

Lust Tracking Number: 199207032
Type of Tank Construction: Steel
Type of Pipe Construction: Not reported

Double Wall Construction: No
Spill Installed: Not reported
Overfill: Not reported

Line Leak Detection: Not reported

Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

QUICK TURN FLEX CIRCUITS LLC (Continued)

Permanent Closure: 1911-11-11 00:00:00
Permanent Closure Analysis: Not reported

Facility ID: 0112548 Tank ID: 6

Install Date: 1971-01-01 00:00:00 Last Test: Not reported Close Date: Not reported Closure Type: Removed

Chemical: Empty
Capacity (gal): 1000

Owner: ADVANCE CIRCUIT SYSTEMS INC

75 N MAIN ST FRANKLIN, NH 03235

Lust Tracking Number: 199207032
Type of Tank Construction: Steel
Type of Pipe Construction: Not reported

Double Wall Construction: No

Spill Installed: Not reported
Overfill: Not reported
Line Leak Detection: Not reported
Permanent Closure: 1911-11-11 00:00:00

Permanent Closure Analysis: Not reported

Facility ID: 0112548 Tank ID: 5

Install Date: 1971-01-01 00:00:00 Last Test: Not reported Close Date: Not reported Closure Type: Removed

Chemical: Empty Capacity (gal): 1000

Owner: ADVANCE CIRCUIT SYSTEMS INC

75 N MAIN ST

FRANKLIN, NH 03235 Lust Tracking Number: 199207032

Type of Tank Construction: Steel
Type of Pipe Construction: Not reported

Double Wall Construction: No

Spill Installed: Not reported
Overfill: Not reported
Line Leak Detection: Not reported
Permanent Closure: 1911-11-11 00:00:00

Permanent Closure Analysis: Not reported

 Facility ID:
 0112548
 Tank ID:
 3

 Install Date:
 1971-01-01 00:00:00
 Last Test:
 Not reported

 Close Date:
 1974-01-01 00:00:00
 Closure Type:
 Removed

Chemical: Unknown Capacity (gal): 1000

Owner: ADVANCE CIRCUIT SYSTEMS INC

75 N MAIN ST

FRANKLIN, NH 03235

Lust Tracking Number: 199207032
Type of Tank Construction: Steel
Type of Pipe Construction: Not reported

Double Wall Construction: No Spill Installed: Not I

Spill Installed: Not reported
Overfill: Not reported
Line Leak Detection: Not reported

Permanent Closure: 1911-11-11 00:00:00

Permanent Closure Analysis: Not reported

TC1469641.11s Page 16

1000692675

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

QUICK TURN FLEX CIRCUITS LLC (Continued)

1000692675

Facility ID: 0112548 Tank ID: 2

Install Date: 1970-01-01 00:00:00 Last Test: 1991-06-04 00:00:00

Close Date: Not reported Closure Type: Removed

Chemical: #2 heating oil.

Capacity (gal): 5700

Owner: ADVANCE CIRCUIT SYSTEMS INC

75 N MAIN ST

FRANKLIN, NH 03235 Lust Tracking Number: 199207032

Type of Tank Construction: Steel
Type of Pipe Construction: Copper
Double Wall Construction: No

Spill Installed: Not reported
Overfill: Not reported
Line Leak Detection: Not reported
Permanent Closure: 1997-10-08 00:00:00
Permanent Closure Analysis: 1997-10-21 00:00:00

TO DOLAND MIGUEL IN PROPERTY

ROLAND MICHELIN PROPERTY ALLSITES S106534688
W 9 DAISY LANE N/A

NW 9 DAISY LANE 1/4-1/2 FRANKLIN, NH

1750 ft.

Relative: NH Sites:

Higher Facility ID: 200405107

Project Type: OPUF

Actual: Project Manager: LEATHERS

440 ft. Num of Permits: 0

8 INSULFAB PLASTICS UST U001555456 SSW 155 NORTH MAIN STREET ALLSITES N/A

1/4-1/2 FRANKLIN, NH 03235

1773 ft.

Actual:

Relative: NH Sites:

Lower Facility ID: 198401094

Project Type: UIC
Project Manager: CLOSED

289 ft. Num of Permits: 0

UST:

Facility ID: 0110031 Tank ID: 1

 Install Date:
 1973-11-01 00:00:00
 Last Test:
 1987-01-18 00:00:00

 Close Date:
 Not reported
 Closure Type:
 Removed

Close Date: Not reported Chemical: Diesel. Capacity (gal): 10000

Owner: INSULFAB PLASTICS INC

155 N MAIN ST FRANKLIN, NH 03235

Lust Tracking Number: 198401094
Type of Tank Construction: Steel
Type of Pipe Construction: Steel
Double Wall Construction: No

Spill Installed: Not reported
Overfill: Not reported
Line Leak Detection: Not reported
Permanent Closure: 1991-05-02 00:00:00

Permanent Closure Analysis: Not reported

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

EPA ID Number

9 FRANKLIN SUNOCO LUST U001555987 SSW 120 N MAIN ST UST N/A

1/4-1/2 FRANKLIN, NH 03235 ALLSITES

2124 ft.

Relative: LUST:

 Lower
 Facility ID:
 199208002

 Project Type:
 LUST

 Actual:
 Project Mngr:
 CLOSED

 293 ft.
 No. of Permits:
 0

NH Sites:

Facility ID: 199208002
Project Type: LUST
Project Manager: CLOSED
Num of Permits: 0

UST:

Facility ID: 0111027 Tank ID: 11

 Install Date:
 2004-08-11 00:00:00
 Last Test:
 Not reported

 Close Date:
 Not reported
 Closure Type:
 Not reported

Chemical: Diesel. Capacity (gal): 15000

Owner: ARANCO OIL CO INC

557 N STATE ST CONCORD, NH 03301 Lust Tracking Number: 199208002

Type of Tank Construction: Composite material

Type of Pipe Construction: PLC Double Wall Construction: Yes

 Spill Installed:
 2004-08-11 00:00:00

 Overfill:
 2004-08-11 00:00:00

 Installed:
 2004-08-11 00:00:00

Line Leak Detection: Not reported Permanent Closure: Not reported Permanent Closure Analysis: Not reported

Facility ID: 0111027 Tank ID: 1

Install Date: 1974-01-01 00:00:00 Last Test: Not reported Close Date: Not reported Closure Type: Removed

Chemical: Gasoline.
Capacity (gal): 8000

Owner: ARANCO OIL CO INC

557 N STATE ST CONCORD, NH 03301

Lust Tracking Number: 199208002

Type of Tank Construction: Steel, corrosion protected

Type of Pipe Construction: Steel Double Wall Construction: No

Spill Installed: Not reported
Overfill: Not reported
Line Leak Detection: Not reported

Permanent Closure: 1992-06-05 00:00:00
Permanent Closure Analysis: 1992-07-01 00:00:00

MAP FINDINGS Map ID

Direction Distance Distance (ft.)

EDR ID Number Elevation Site Database(s) **EPA ID Number**

FRANKLIN SUNOCO (Continued)

U001555987

0111027 Tank ID: Facility ID: 2

Install Date: 1985-01-01 00:00:00 Last Test: Not reported Close Date: Closure Type: Removed Not reported

Chemical: Gasoline. Capacity (gal): 4000

ARANCO OIL CO INC Owner:

557 N STATE ST CONCORD, NH 03301 199208002

Lust Tracking Number: Type of Tank Construction: Steel, corrosion protected

Type of Pipe Construction: Steel

Double Wall Construction: No Spill Installed: Not reported Overfill: Not reported Line Leak Detection: Not reported Permanent Closure: 1992-06-19 00:00:00

Permanent Closure Analysis: 1992-07-01 00:00:00

Facility ID: 0111027 Tank ID: 4

Install Date: 1970-01-01 00:00:00 Last Test: Not reported Close Date: Not reported Closure Type: Removed

Diesel. Chemical: Capacity (gal): 3000

ARANCO OIL CO INC Owner:

557 N STATE ST CONCORD, NH 03301 Lust Tracking Number: 199208002

Type of Tank Construction: Steel, corrosion protected

Type of Pipe Construction: Steel Double Wall Construction: No

Spill Installed: Not reported Overfill: Not reported Line Leak Detection: Not reported

Permanent Closure: 1992-06-19 00:00:00 Permanent Closure Analysis: 1992-07-01 00:00:00

Facility ID: 0111027 Tank ID:

Install Date: 1975-01-01 00:00:00 1988-10-07 00:00:00 Last Test: Close Date: Not reported Closure Type: Removed

Chemical: Gasoline. 10000 Capacity (gal):

Owner: ARANCO OIL CO INC

557 N STATE ST CONCORD, NH 03301

Lust Tracking Number: 199208002

Type of Tank Construction: Steel, corrosion protected

Type of Pipe Construction: Steel **Double Wall Construction:** No

Spill Installed: Not reported Overfill: Not reported Line Leak Detection: Not reported

Permanent Closure: 1992-06-05 00:00:00 Permanent Closure Analysis: 1992-07-01 00:00:00

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

Tank ID:

Last Test:

Closure Type:

Not reported

Not reported

5

FRANKLIN SUNOCO (Continued)

U001555987

Facility ID: 0111027

Install Date: 1985-01-01 00:00:00 Last Test: Not reported Close Date: Not reported Closure Type: Removed

Chemical: Kerosene Capacity (gal): 1000

Owner: ARANCO OIL CO INC

557 N STATE ST CONCORD, NH 03301

Lust Tracking Number: 199208002

Type of Tank Construction: Steel, corrosion protected

Type of Pipe Construction: Steel Double Wall Construction: No

Spill Installed: Not reported
Overfill: Not reported
Line Leak Detection: Not reported
Permanent Closure: 1992-06-19 00:00:00
Permanent Closure Analysis: 1992-07-01 00:00:00

Facility ID: 0111027 Tank ID: 7

Install Date: 1992-06-16 00:00:00 Last Test: Not reported Close Date: Not reported Closure Type: Not reported

Chemical: Gasoline.
Capacity (gal): 10000

Owner: ARANCO OIL CO INC

557 N STATE ST CONCORD, NH 03301 Lust Tracking Number: 199208002

Type of Tank Construction: Composite material

Type of Pipe Construction: Steel Double Wall Construction: Yes

 Spill Installed:
 1992-06-16 00:00:00

 Overfill:
 1992-06-16 00:00:00

 Line Leak Detection:
 2004-04-19 00:00:00

Permanent Closure: Not reported Permanent Closure Analysis: Not reported

Facility ID: 0111027 Tank ID: 9

Install Date: 1992-06-16 00:00:00
Close Date: Not reported
Chemical: Gasoline.
Capacity (gal): 10000

Owner: ARANCO OIL CO INC

557 N STATE ST CONCORD, NH 03301

Lust Tracking Number: 199208002

Type of Tank Construction: Composite material

Type of Pipe Construction: Steel Double Wall Construction: Yes

 Spill Installed:
 1992-06-16 00:00:00

 Overfill:
 1992-06-16 00:00:00

 Line Leak Detection:
 2004-04-19 00:00:00

Permanent Closure: Not reported Permanent Closure Analysis: Not reported

Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

Database(s)

EPA ID Number

Tank ID:

Tank ID:

Last Test:

Closure Type:

Not reported

Removed

10

FRANKLIN SUNOCO (Continued)

U001555987

Facility ID: 0111027

Install Date: 1992-06-16 00:00:00 Last Test: Not reported Close Date: Not reported Closure Type: Not reported Chamical: Dissel

Chemical: Diesel.
Capacity (gal): 10000

Owner: ARANCO OIL CO INC

557 N STATE ST CONCORD, NH 03301

Lust Tracking Number: 199208002 Type of Tank Construction: Composite material

Type of Pipe Construction: Steel Double Wall Construction: Yes

 Spill Installed:
 1992-06-16 00:00:00

 Overfill:
 1992-06-16 00:00:00

 Line Leak Detection:
 2004-04-19 00:00:00

Permanent Closure: Not reported Permanent Closure Analysis: Not reported

Facility ID: 0111027 Tank ID: 8

Install Date: 1992-06-16 00:00:00 Last Test: Not reported Close Date: Not reported Closure Type: Not reported

Chemical: Gasoline.
Capacity (gal): 10000

Owner: ARANCO OIL CO INC

557 N STATE ST CONCORD, NH 03301 g Number: 199208002

Lust Tracking Number: 199208002
Type of Tank Construction: Composite material

Type of Pipe Construction: Steel
Double Wall Construction: Yes

 Spill Installed:
 1992-06-16 00:00:00

 Overfill:
 1992-06-16 00:00:00

Line Leak Detection: Not reported Permanent Closure: Not reported Permanent Closure Analysis: Not reported

Facility ID: 0111027

Install Date: 1913-01-01 00:00:00
Close Date: Not reported
Chemical: #2 heating oil.

Capacity (gal): 3000

Owner: ARANCO OIL CO INC

557 N STATE ST CONCORD, NH 03301

Lust Tracking Number: 199208002
Type of Tank Construction: Steel
Type of Pipe Construction: Unknown
Double Wall Construction: No

Spill Installed: Not reported Overfill: Not reported Line Leak Detection: Not reported

Permanent Closure: 1992-06-19 00:00:00
Permanent Closure Analysis: 1992-07-01 00:00:00

TC1469641.11s Page 21

MAP FINDINGS

Map ID
Direction
Distance
Distance (ft.)
Flevation Site

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

EPA ID Number

LUST U001150957 UST N/A

ALLSITES

10 WILLIAM J MACKENZIE SSW 107 NORTH MAIN STREET 1/4-1/2 FRANKLIN, NH 03235 2257 ft.

Relative: LUST:

 Lower
 Facility ID:
 199009025

 Project Type:
 LUST

 Actual:
 Project Mngr:
 CLOSED

 303 ft.
 No. of Permits:
 0

NH Sites:

Facility ID: 199009025
Project Type: LUST
Project Manager: CLOSED
Num of Permits: 0

UST:

Facility ID: 0113537 Tank ID: 1

Install Date: 1935-01-01 00:00:00 Last Test: Not reported Close Date: Not reported Closure Type: Removed Chemical: Gasoline.

Tank ID:

Last Test:

Closure Type:

Not reported

Removed

Capacity (gal): 1000

Owner: WILLIAM J MACKENZIE 107 N MAIN ST

FRANKLIN, NH 03235

Lust Tracking Number: 199009025
Type of Tank Construction: Steel
Type of Pipe Construction: Unknown
Double Wall Construction: No

Spill Installed:

Overfill:

Not reported

Not reported

Not reported

Not reported

Not reported

Not reported

Permanent Closure: 1991-05-20 00:00:00 Permanent Closure Analysis: 1991-06-10 00:00:00

Facility ID: 0113537

Install Date: 1935-01-01 00:00:00
Close Date: Not reported
Chemical: Gasoline.

Capacity (gal): 111

Owner: WILLIAM J MACKENZIE

107 N MAIN ST FRANKLIN, NH 03235

Lust Tracking Number: 199009025
Type of Tank Construction: Steel
Type of Pipe Construction: Unknown
Double Wall Construction: No

Spill Installed: Not reported Overfill: Not reported Line Leak Detection: Not reported

Permanent Closure: 1991-05-20 00:00:00 Permanent Closure Analysis: 1991-06-10 00:00:00

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

Tank ID:

Last Test:

Closure Type:

Not reported

Removed

WILLIAM J MACKENZIE (Continued)

U001150957

Facility ID: 0113537

Install Date: 1935-01-01 00:00:00
Close Date: Not reported
Chemical: Gasoline.
Capacity (gal): 111

Owner: WILLIAM J MACKENZIE

107 N MAIN ST FRANKLIN, NH 03235

Lust Tracking Number: 199009025
Type of Tank Construction: Steel
Type of Pipe Construction: Unknown
Double Wall Construction: No

Spill Installed: Not reported
Overfill: Not reported
Line Leak Detection: Not reported
Permanent Closure: 1991-05-20 00:00:00
Permanent Closure Analysis: 1991-06-10 00:00:00

Facility ID: 0113537 Tank ID:

Install Date: 1935-01-01 00:00:00 Last Test: Not reported
Close Date: Not reported Closure Type: Removed

Chemical: Gasoline.
Capacity (gal): 1000

Owner: WILLIAM J MACKENZIE

107 N MAIN ST FRANKLIN, NH 03235

Lust Tracking Number: 199009025
Type of Tank Construction: Steel
Type of Pipe Construction: Unknown
Double Wall Construction: No

Spill Installed: Not reported
Overfill: Not reported
Line Leak Detection: Not reported

Permanent Closure: 1991-05-20 00:00:00 Permanent Closure Analysis: 1991-06-10 00:00:00

11 CHARLIE BERUBE PROPERTY ALLSITES \$105771409

8 LINCOLN ST. N/A

1/4-1/2 FRANKLIN, NH

2278 ft.

NNW

Relative: NH Sites:

 Higher
 Facility ID:
 200009043

 Project Type:
 OPUF

 Actual:
 Project Manager:
 CLOSED

 393 ft.
 Num of Permits:
 0

12 EDWARD PELCZAR RESIDENCE ALLSITES S105771401
NW 3 LILY LN. N/A

NW 3 LILY LN. 1/4-1/2 FRANKLIN, NH

2347 ft.

Relative: NH Sites:

 Higher
 Facility ID:
 199703064

 Project Type:
 OPUF

 Actual:
 Project Manager:
 CLOSED

 436 ft.
 Num of Permits:
 0

MAP FINDINGS Map ID

Direction Distance Distance (ft.)

EDR ID Number Elevation Site Database(s) **EPA ID Number**

Tank ID:

Tank ID:

Last Test:

Closure Type:

Last Test:

Closure Type:

Not reported

Removed

2

Removed

1988-02-01 00:00:00

C13 FRANKLIN FIRE STATION **SHWS** U001555487 SSE **59 W BOW ST** N/A

FRANKLIN, NH 03235 **UST** 1/4-1/2 2414 ft. **ALLSITES**

Site 1 of 2 in cluster C

Relative: Lower

SHWS:

199306026 Facility ID: Actual: Proj Type: **HAZWASTE**

293 ft. No. of Permits: 1

Project Manager: DUBOIS

LUST:

Facility ID: 199306026 Project Type: LUST Project Mngr: CLOSED

No. of Permits:

NH Sites:

Facility ID: 199306026 LUST Project Type: Project Manager: CLOSED

Num of Permits: 1

Facility ID: 199306026 Project Type: **HAZWASTE** Project Manager: DUBOIS Num of Permits: 1

UST:

Facility ID: 0110090

Install Date: 1976-01-01 00:00:00 Close Date: Not reported Chemical: Gasoline.

10000 Capacity (gal):

Owner: CITY OF FRANKLIN

> 316 CENTRAL ST FRANKLIN, NH 03235

199306026 Lust Tracking Number: Type of Tank Construction: Steel Type of Pipe Construction: Steel **Double Wall Construction:** No

Spill Installed: Not reported Overfill: Not reported Line Leak Detection: Not reported Permanent Closure: 1988-05-01 00:00:00

Permanent Closure Analysis: Not reported

Facility ID: 0110090

Install Date: 1971-01-01 00:00:00

Close Date: Not reported Chemical: Gasoline. 2000 Capacity (gal):

CITY OF FRANKLIN Owner:

316 CENTRAL ST FRANKLIN, NH 03235

Lust Tracking Number: 199306026 Type of Tank Construction: Steel Type of Pipe Construction: Steel **Double Wall Construction:** No

Spill Installed: Not reported **LUST**

TC1469641.11s Page 24

MAP FINDINGS Map ID Direction

Distance Distance (ft.)

EDR ID Number Elevation Site Database(s) **EPA ID Number**

FRANKLIN FIRE STATION (Continued)

Overfill:

Not reported Not reported Line Leak Detection:

1993-05-18 00:00:00 Permanent Closure: Permanent Closure Analysis: 1993-06-14 00:00:00

0110090 Facility ID: Tank ID: 4

1970-01-01 00:00:00 Not reported Install Date: Last Test: Closure Type: Close Date: Not reported Removed Chemical: #2 heating oil.

Capacity (gal): 2000

CITY OF FRANKLIN Owner:

> 316 CENTRAL ST FRANKLIN, NH 03235

Lust Tracking Number: 199306026 Type of Tank Construction: Steel Type of Pipe Construction: Steel **Double Wall Construction:** No

Spill Installed: Not reported Overfill: Not reported Line Leak Detection: Not reported

Permanent Closure: 1993-05-18 00:00:00 Permanent Closure Analysis: 1993-06-14 00:00:00

Facility ID: 0110090 Tank ID:

1992-12-08 00:00:00 Install Date: Last Test: Not reported Close Date: Not reported Closure Type: Not reported

Chemical: Gasoline. Capacity (gal): 10000

CITY OF FRANKLIN Owner:

> 316 CENTRAL ST FRANKLIN, NH 03235

Lust Tracking Number: 199306026 Type of Tank Construction: Composite material

Type of Pipe Construction: Fiberglass

Double Wall Construction: Yes Spill Installed: 1992-12-08 00:00:00 Overfill: 1992-12-08 00:00:00

Line Leak Detection: Not reported Permanent Closure: Not reported Permanent Closure Analysis: Not reported

Tank ID: Facility ID: 0110090

Install Date: 1992-12-08 00:00:00 Last Test: Not reported Close Date: Not reported Not reported Closure Type: Gasoline. Chemical:

10000 Owner: CITY OF FRANKLIN 316 CENTRAL ST

Capacity (gal):

FRANKLIN, NH 03235 199306026 Lust Tracking Number:

Type of Tank Construction: Composite material

Type of Pipe Construction: **Fiberglass**

Double Wall Construction: Yes Spill Installed: 1992-12-08 00:00:00 Overfill: 1992-12-08 00:00:00

Line Leak Detection: Not reported Permanent Closure: Not reported U001555487

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

EPA ID Number

Tank ID:

FRANKLIN FIRE STATION (Continued)

U001555487

Permanent Closure Analysis: Not reported

Facility ID: 0110090

Install Date: 1911-11-11 00:00:00 Last Test: Not reported Close Date: Not reported Closure Type: Removed Chemical: #2 heating oil.

Capacity (gal): 2000

Owner: CITY OF FRANKLIN

316 CENTRAL ST FRANKLIN, NH 03235

Lust Tracking Number: 199306026
Type of Tank Construction: Steel
Type of Pipe Construction: Steel
Double Wall Construction: No

Spill Installed: Not reported
Overfill: Not reported
Line Leak Detection: Not reported
Permanent Closure: 1980-10-01 00:00:00

Permanent Closure Analysis: Not reported

C14 FRANKLIN LIGHT & POWER Coal Gas G000000462 SSE HUEBER CT. Coal Gas M/A

SSE HUEBER CT. 1/4-1/2 FRANKLIN FALLS, NH 03235

2489 ft.

Relative:

Site 2 of 2 in cluster C

Lower COAL GAS SITE DESCRIPTION:

Site is on the south side of Hueber Ct. at the Winnepiseogee River. Site is east of West Bow

Actual: St., and is behind 61 West Bow. Site later called Public Service Corp. of New Hapmshire.

292 ft.

©Copyright 1993 Real Property Scan, Inc.

 15
 FRANKLIN CITGO
 LUST U003187484

 SSW
 80 N MAIN ST
 UST N/A

1/4-1/2 FRANKLIN, NH 03235 ALLSITES

2545 ft.

Relative: LUST:

NH Sites:

Facility ID: 199203032
Project Type: LUST
Project Manager: CLOSED
Num of Permits: 0

UST:

Facility ID: 0112195 Tank ID:

Install Date: 1967-01-01 00:00:00 Last Test: Not reported Close Date: Not reported Closure Type: Removed

Chemical: Gasoline.
Capacity (gal): 4000

Owner: DRAKE PETROLEUM CO 221 QUINEBAUG ROAD

N GROSVENORDALE, CT 06255

Lust Tracking Number: 199203032 Type of Tank Construction: Fiberglass

Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

FRANKLIN CITGO (Continued)

U003187484

Type of Pipe Construction: Steel Double Wall Construction: No

Spill Installed: Not reported
Overfill: Not reported
Line Leak Detection: Not reported
Permanent Closure: 1991-10-08 00:

Permanent Closure: 1991-10-08 00:00:00
Permanent Closure Analysis: 1992-01-20 00:00:00

Facility ID: 0112195

Install Date: 1967-01-01 00:00:00
Close Date: Not reported
Chemical: Gasoline.
Capacity (gal): 4000

Owner: DRAKE PETROLEUM CO

221 QUINEBAUG ROAD

N GROSVENORDALE, CT 06255

Lust Tracking Number: 199203032
Type of Tank Construction: Fiberglass
Type of Pipe Construction: Steel
Double Wall Construction: No

Spill Installed: Not reported Overfill: Not reported Line Leak Detection: Not reported

Permanent Closure: 1991-10-08 00:00:00
Permanent Closure Analysis: 1992-01-20 00:00:00

Facility ID: 0112195

Install Date: 1967-01-01 00:00:00
Close Date: Not reported
Chemical: Gasoline.

Chemical: Gasoline Capacity (gal): 4000

Owner: DRAKE PETROLEUM CO

221 QUINEBAUG ROAD

N GROSVENORDALE, CT 06255

Lust Tracking Number: 199203032
Type of Tank Construction: Fiberglass
Type of Pipe Construction: Steel
Double Wall Construction: No

Spill Installed: Not reported
Overfill: Not reported
Line Leak Detection: Not reported
Permanent Closure: 1991-10-08 00:00:00
Permanent Closure Analysis: 1992-01-20 00:00:00

Facility ID: 0112195

Install Date: 1991-10-29 00:00:00

Close Date: Not reported Chemical: Gasoline. Capacity (gal): 10000

Owner: DRAKE PETROLEUM CO 221 QUINEBAUG ROAD

N GROSVENORDALE, CT 06255

Lust Tracking Number: 199203032
Type of Tank Construction: Fiberglass
Type of Pipe Construction: Fiberglass
Double Wall Construction: Yes

Spill Installed: 1991-10-29 00:00:00

Tank ID: 2

Last Test: Not reported Closure Type: Removed

Tank ID: 3

Tank ID:

Last Test:

Closure Type:

Last Test: Not reported Closure Type: Removed

1991-10-31 00:00:00

Not reported

TC1469641.11s Page 27

MAP FINDINGS Map ID

Direction Distance Distance (ft.)

EDR ID Number Elevation Site Database(s) **EPA ID Number**

FRANKLIN CITGO (Continued)

U003187484

Overfill: 1991-10-29 00:00:00 Line Leak Detection: 2004-09-20 00:00:00 Permanent Closure: Not reported

Permanent Closure Analysis: Not reported

Facility ID: 0112195 Tank ID:

1991-10-29 00:00:00 1991-10-30 00:00:00 Install Date: Last Test: Closure Type: Close Date: Not reported Not reported

Chemical: Diesel. Capacity (gal): 6000

DRAKE PETROLEUM CO Owner:

221 QUINEBAUG ROAD

N GROSVENORDALE, CT 06255

Lust Tracking Number: 199203032 Type of Tank Construction: Fiberglass Type of Pipe Construction: Fiberglass Double Wall Construction: Yes

Spill Installed: 1991-10-29 00:00:00 Overfill: 1991-10-29 00:00:00 Line Leak Detection: 2004-09-20 00:00:00

Permanent Closure: Not reported Permanent Closure Analysis: Not reported

Facility ID: 0112195

1911-11-11 00:00:00 Install Date: Last Test: Not reported Close Date: Not reported Closure Type: Removed Chemical: #2 heating oil.

Tank ID:

Capacity (gal):

DRAKE PETROLEUM CO Owner:

221 QUINEBAUG ROAD

N GROSVENORDALE, CT 06255 Lust Tracking Number: 199203032

Type of Tank Construction: Steel Type of Pipe Construction: Copper Double Wall Construction: No Spill Installed: Not reported

Overfill: Not reported Line Leak Detection: Not reported Permanent Closure: 1991-10-08 00:00:00 Permanent Closure Analysis: 1992-01-20 00:00:00

Facility ID: 0112195 Tank ID:

Install Date: 1991-10-29 00:00:00 Last Test: 1992-09-01 00:00:00 Close Date: Not reported Closure Type: Not reported

Gasoline. Chemical: Capacity (gal): 6000

Owner: DRAKE PETROLEUM CO 221 QUINEBAUG ROAD

N GROSVENORDALE, CT 06255

Lust Tracking Number: 199203032 Type of Tank Construction: **Fiberglass** Type of Pipe Construction: **Fiberglass** Double Wall Construction: Yes

Spill Installed: 1991-10-29 00:00:00 Overfill: 1991-10-29 00:00:00 Line Leak Detection: 2004-09-20 00:00:00 Permanent Closure: Not reported

MAP FINDINGS Map ID

Direction Distance Distance (ft.)

EDR ID Number Elevation Site Database(s) **EPA ID Number**

Tank ID:

Not reported

Removed

FRANKLIN CITGO (Continued)

U003187484

Permanent Closure Analysis: Not reported

Facility ID: 0112195

Install Date: 1977-07-01 00:00:00 Last Test: Close Date: Not reported Closure Type: Chemical: Gasoline.

Capacity (gal): 12000

Owner: DRAKE PETROLEUM CO

221 QUINEBAUG ROAD N GROSVENORDALE, CT 06255

Lust Tracking Number: 199203032 Type of Tank Construction: Steel Type of Pipe Construction: Steel

Double Wall Construction: No Spill Installed: Not reported Overfill: Not reported Line Leak Detection: Not reported Permanent Closure:

1991-10-08 00:00:00 Permanent Closure Analysis: 1992-01-20 00:00:00

ALLSITES S106425888 16 **RIVERBEND MILL** SE **100 MEMORIAL STREET**

N/A

1/4-1/2 FRANKLIN, NH

2580 ft.

NH Sites: Relative:

200406004 Facility ID: Lower

Project Type: **OPUF**

Project Manager: UNASSIGNED Actual:

298 ft. Num of Permits: 0

OAK MATERIAL GROUP SHWS U001556807 17 WNW

91 RANGE ROAD UST N/A FRANKLIN, NH 03235 **ALLSITES** 1/2-1

2660 ft.

SHWS: Relative:

Facility ID: 198401096 Higher

Proj Type: **HAZWASTE**

Actual: No. of Permits: 443 ft. Project Manager: CLOSED

NH Sites:

Facility ID: 198401096 Project Type: **HAZWASTE** Project Manager: CLOSED

Num of Permits: 1

UST:

Facility ID: 0112549 Tank ID:

1976-01-01 00:00:00 Install Date: Last Test: Not reported Close Date: Not reported Closure Type: Filled In Place Chemical: Hazardous materials

8000 Capacity (gal):

NORPLEX OAK INC Owner:

PO BOX 1448

LA CROSSE, WI 54602

Lust Tracking Number: 198401096 Type of Tank Construction: Steel

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

OAK MATERIAL GROUP (Continued)

U001556807

Type of Pipe Construction: Steel Double Wall Construction: No

Spill Installed: Not reported
Overfill: Not reported
Line Leak Detection: Not reported
Permanent Closure: 1993 08 04 00

Permanent Closure: 1992-08-04 00:00:00 Permanent Closure Analysis: 1992-09-16 00:00:00

Facility ID: 0112549

Install Date: 1976-01-01 00:00:00
Close Date: Not reported
Chemical: Hazardous materials

Capacity (gal): 8000

Owner: NORPLEX OAK INC

PO BOX 1448

LA CROSSE, WI 54602

Lust Tracking Number: 198401096
Type of Tank Construction: Steel
Type of Pipe Construction: Steel
Double Wall Construction: No

Spill Installed: Not reported Overfill: Not reported Line Leak Detection: Not reported

Permanent Closure: 1992-08-04 00:00:00 Permanent Closure Analysis: 1992-09-16 00:00:00

Facility ID: 0112549

Install Date: 1976-01-01 00:00:00
Close Date: Not reported
Chemical: Hazardous materials

Chemical: Haza Capacity (gal): 8000

Owner: NORPLEX OAK INC

PO BOX 1448

LA CROSSE, WI 54602

Lust Tracking Number: 198401096
Type of Tank Construction: Steel
Type of Pipe Construction: Steel
Double Wall Construction: No

Spill Installed: Not reported
Overfill: Not reported
Line Leak Detection: Not reported
Permanent Closure: 1992-08-04 00:00:00
Permanent Closure Analysis: 1992-09-16 00:00:00

Facility ID: 0112549

Install Date: 1976-01-01 00:00:00
Close Date: Not reported
Chemical: Hazardous materials

Capacity (gal): 2000

Owner: NORPLEX OAK INC PO BOX 1448

LA CROSSE, WI 54602

Lust Tracking Number: 198401096
Type of Tank Construction: Steel
Type of Pipe Construction: Steel
Double Wall Construction: No

Spill Installed: Not reported

Tank ID: 2

Last Test: Not reported Closure Type: Filled In Place

Tank ID: 4

Tank ID:

Last Test:

Closure Type:

Last Test: Not reported Closure Type: Filled In Place

Not reported

Removed

TC1469641.11s Page 30

Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

OAK MATERIAL GROUP (Continued)

U001556807

Overfill: Not reported Line Leak Detection: Not reported

Permanent Closure: 1992-08-04 00:00:00 Permanent Closure Analysis: 1992-09-16 00:00:00

Facility ID: 0112549 Tank ID: 8

Install Date: 1975-01-01 00:00:00 Last Test: Not reported Close Date: 1992-05-18 00:00:00 Closure Type: Removed

Chemical: #2 heating oil.
Capacity (gal): 10000

Owner: NORPLEX OAK INC

PO BOX 1448 LA CROSSE, WI 54602

Lust Tracking Number: 198401096
Type of Tank Construction: Steel
Type of Pipe Construction: Copper

Double Wall Construction: No
Spill Installed: Not reported
Overfill: Not reported

Line Leak Detection: Not reported
Permanent Closure: 1992-08-04 00:00:00
Permanent Closure Analysis: 1992-08-25 00:00:00

Facility ID: 0112549 Tank ID:

Install Date: 1975-01-01 00:00:00 Last Test: Not reported Close Date: 1992-05-18 00:00:00 Closure Type: Removed

Chemical: #2 heating oil. Capacity (gal): 10000

Owner: NORPLEX OAK INC

PO BOX 1448

LA CROSSE, WI 54602

Lust Tracking Number: 198401096
Type of Tank Construction: Steel
Type of Pipe Construction: Copper
Double Wall Construction: No

Spill Installed: Not reported Overfill: Not reported Line Leak Detection: Not reported

Permanent Closure: 1995-08-04 00:00:00
Permanent Closure Analysis: 1992-08-25 00:00:00

Facility ID: 0112549 Tank ID: 7

Install Date: 1911-11-11 00:00:00 Last Test: Not reported Close Date: 1992-05-18 00:00:00 Closure Type: Removed

Chemical: #2 heating oil. Capacity (gal): 10000

Owner: NORPLEX OAK INC

PO BOX 1448

LA CROSSE, WI 54602

Lust Tracking Number: 198401096
Type of Tank Construction: Steel
Type of Pipe Construction: Copper
Double Wall Construction: No

Spill Installed: Not reported Overfill: Not reported Line Leak Detection: Not reported

Permanent Closure: 1992-08-04 00:00:00

Direction
Distance
Distance (ft.)

Distance (ft.)

Elevation Site

EDR ID Number

EPA ID Number

Tank ID:

OAK MATERIAL GROUP (Continued)

U001556807

Permanent Closure Analysis: 1992-08-25 00:00:00

Facility ID: 0112549

Install Date: 1976-01-01 00:00:00 Last Test: Not reported Close Date: Not reported Closure Type: Removed Chemical: Hazardous materials

Capacity (gal): 4000

Owner: NORPLEX OAK INC

PO BOX 1448

LA CROSSE, WI 54602

Lust Tracking Number: 198401096
Type of Tank Construction: Steel
Type of Pipe Construction: Steel
Double Wall Construction: No

Spill Installed: Not reported
Overfill: Not reported
Line Leak Detection: Not reported
Permanent Closure: 1992-08-04 00:00:00
Permanent Closure Analysis: 1992-09-16 00:00:00

Facility ID: 0112549 Tank ID: 3

Install Date: 1976-01-01 00:00:00 Last Test: Not reported
Close Date: Not reported Closure Type: Filled In Place

Chemical: Hazardous materials
Capacity (gal): 8000
Owner: NORPLEX OAK INC
PO BOX 1448

LA CROSSE, WI 54602

Lust Tracking Number: 198401096
Type of Tank Construction: Steel
Type of Pipe Construction: Steel
Double Wall Construction: No

Spill Installed: Not reported Overfill: Not reported Line Leak Detection: Not reported

Permanent Closure: 1992-08-04 00:00:00 Permanent Closure Analysis: 1992-09-16 00:00:00

 18
 CASTLE MOTORS
 SHWS
 U001555747

 SSE
 168 CENTRAL ST
 LUST
 N/A

 1/2-1
 FRANKLIN, NH 03235
 UST

 3403 ft.
 BROWNFIELDS

Relative:

Lower SHWS:

Facility ID: 199906054

Actual: Proj Type: HAZWASTE

289 ft. No. of Permits: 0

Project Manager: UNASSIGNED

LUST:

Facility ID: 199906054
Project Type: LUST
Project Mngr: UNASSIGNED

No. of Permits: 0

NH BROWNFIELD:

Facility ID: 199906054
Facility Status: ACTIVE

ALLSITES

MAP FINDINGS Map ID

Direction Distance Distance (ft.)

EDR ID Number Elevation Site Database(s) **EPA ID Number**

Tank ID:

Tank ID:

Tank ID:

Last Test:

Closure Type:

Last Test:

Closure Type:

Last Test:

Closure Type:

Not reported

Not reported

Not reported

Removed

Removed

Removed

CASTLE MOTORS (Continued)

U001555747

NH Sites:

Facility ID: 199906054 Project Type: LUST Project Manager: UNASSIGNED

Num of Permits: 0

Facility ID: 199906054 **HAZWASTE** Project Type: Project Manager: UNASSIGNED

Num of Permits: 0

UST:

Facility ID: 0110597

Install Date: 1911-11-11 00:00:00 Close Date: Not reported Chemical: Gasoline. 3000 Capacity (gal): NH DOT Owner:

PO BOX 483

CONCORD, NH 03302

199906054 Lust Tracking Number: Type of Tank Construction: Steel Type of Pipe Construction: Steel **Double Wall Construction:** No

Spill Installed: Not reported Overfill: Not reported Line Leak Detection: Not reported

Permanent Closure: 1990-06-01 00:00:00 Permanent Closure Analysis: 2004-04-15 00:00:00

0110597 Facility ID:

Install Date: 1973-01-01 00:00:00 Close Date: Not reported Chemical: Gasoline. Capacity (gal): 5000 NH DOT Owner:

PO BOX 483

CONCORD, NH 03302

199906054 Lust Tracking Number: Type of Tank Construction: Steel Type of Pipe Construction: Steel **Double Wall Construction:** No Spill Installed: Not reported

Overfill: Not reported Line Leak Detection: Not reported Permanent Closure: 1990-06-01 00:00:00 Permanent Closure Analysis: 2004-04-15 00:00:00

Facility ID: 0110597

Install Date: 1973-01-01 00:00:00 Close Date: Not reported Chemical: Gasoline. Capacity (gal): 4000 NH DOT Owner: **PO BOX 483**

CONCORD. NH 03302

Lust Tracking Number: 199906054

MAP FINDINGS Map ID

Direction Distance Distance (ft.)

EDR ID Number Elevation Site Database(s) **EPA ID Number**

CASTLE MOTORS (Continued)

U001555747

Type of Tank Construction: Steel Type of Pipe Construction: Steel **Double Wall Construction:** No

Spill Installed: Not reported Overfill: Not reported Line Leak Detection: Not reported Permanent Closure: 1990-06-01 00:00:00 Permanent Closure Analysis: 2004-04-15 00:00:00

Facility ID: 0110597

Install Date: 1911-11-11 00:00:00 Close Date: Not reported Chemical: Unknown Capacity (gal): 1000 Owner: NH DOT

PO BOX 483

CONCORD, NH 03302 Lust Tracking Number: 199906054 Type of Tank Construction: Steel Type of Pipe Construction: Steel **Double Wall Construction:** No

Spill Installed: Not reported Overfill: Not reported Line Leak Detection: Not reported

Permanent Closure: 2004-04-02 00:00:00 Permanent Closure Analysis: 2004-04-15 00:00:00

Facility ID: 0110597

Install Date: 1911-11-11 00:00:00 Close Date: Not reported Unknown Chemical: Capacity (gal): 500 Owner: NH DOT

PO BOX 483 CONCORD, NH 03302

Not reported

199906054 Lust Tracking Number: Type of Tank Construction: Steel Type of Pipe Construction: Steel **Double Wall Construction:** No

Overfill: Not reported Not reported Line Leak Detection: Permanent Closure: 2004-04-02 00:00:00

Permanent Closure Analysis: 2004-04-15 00:00:00

0110597 Facility ID:

Spill Installed:

Install Date: 1911-11-11 00:00:00 Close Date: Not reported Chemical: Unknown Capacity (gal): 40 Owner: NH DOT PO BOX 483

CONCORD, NH 03302

Lust Tracking Number: 199906054 Type of Tank Construction: Steel Type of Pipe Construction: Steel **Double Wall Construction:** No

Tank ID:

Last Test: Not reported Removed Closure Type:

Tank ID: Last Test:

Tank ID:

Last Test:

Closure Type:

Not reported Closure Type: Removed

Not reported

Removed

TC1469641.11s Page 34

Map ID MAP FINDINGS Direction

Distance (ft.)

Distance (ft.) EDR ID Number Elevation Site EDR ID Number Database(s) EPA ID Number

CASTLE MOTORS (Continued)

U001555747

Spill Installed: Not reported
Overfill: Not reported
Line Leak Detection: Not reported

Permanent Closure: 2004-04-02 00:00:00 Permanent Closure Analysis: 2004-04-15 00:00:00

ORPHAN SUMMARY

City	EDR ID	Site Name	Site Address	Zip	Database(s)
FRANKLIN	S106697155	NH DOT BRIDGE MAINTENANCE	ROUTE 127	03235	SHWS, ALLSITES
FRANKLIN	U001557525	NH DOT PS 211	RTE 127	03235	UST, ALLSITES
FRANKLIN	1007204083	JOHN'S EXXON	RTE 3 SOUTH MAIN ST	03235	RCRA-SQG
FRANKLIN	U001558164	ACME STAPLE COMPANY	RTE 3A	03235	SHWS, UST, ALLSITES
FRANKLIN	1000418273	J. P. STEVENS TEXTILE	EAST BOW STREET	03235	RCRA-SQG, FINDS, RCRA-TSDF,
					CORRACTS, CERC-NFRAP
FRANKLIN	1006812623	J. P. STEVENS TEXTILE	EAST BOW STREET	03235	CERC-NFRAP
FRANKLIN	1007203826	SAFETY-KLEEN (NE) INC	43 WEST BOW ST RTE 127	03235	RCRA-SQG
FRANKLIN	S103093992	GHI ASSOCIATES, INC.	EAST BOW STREET	03235	SHWS, ALLSITES
FRANKLIN	U001150945	FRANKLIN JR/SR HIGH SCHOOL	115 CENTER ST/RTE 3	03235	UST
FRANKLIN	1004751203	NH ARMY NATIONAL GUARD	FRANKLIN STATE ARMORY	03235	RCRA-SQG, FINDS
FRANKLIN	S102777770	FORMER ALCAN/JARL EXTRUSION FACILI	FRANKLIN INDUSTRIAL PARK	03235	NH Spills, ALLSITES
FRANKLIN	S106201343	CITY OF FRANKLIN - FRANKLIN FALLS	GRANITE DRIVE	03235	ALLSITES
FRANKLIN	94426003	INDUSTRIAL PARK DR., POLYCLAD LAMI	INDUSTRIAL PARK DR., POLYCLAD	03235	ERNS
FRANKLIN	1000388451	WEBSTER VALVE INC	S MAIN ST	03235	FINDS, RCRA-LQG, TRIS
FRANKLIN	1000414840	EASTMAN FALLS HYDRO STATION - PSNH	N MAIN ST	03235	RCRA-SQG, FINDS
FRANKLIN	U002177125	FORMER RADIO SHACK	S MAIN ST	03235	UST
FRANKLIN	1003862542	ACME STAPLE COMPANY	NORTH MAIN STREET	03235	CERC-NFRAP
FRANKLIN	U001557223	FRANKLIN ARMORY	SOUTH MAIN STREET/RTE 3	03235	UST
FRANKLIN	S105771398	ACME WELL SITE - FRANKLIN WATER WO	N.MAIN ST.@ WEBSTER LAKE RD	03235	ALLSITES
FRANKLIN	U000347009	WINNIPESAUKEE RIVER BASIN WWTP	OFF RTE 3	03235	UST, ALLSITES
FRANKLIN	S105426282	FRANKLIN TRANSFER STATION	PUNCH BROOK ROAD	03235	SWF/LF, ALLSITES
FRANKLIN	S105426283	FRANKLIN ASH LANDFILL	PUNCH BROOK ROAD	03235	SWF/LF
FRANKLIN	1000348237	OAK MATERIALS GROUP LAMINATES DIV	RANGE RD	03235	RCRA-SQG, FINDS
FRANKLIN	S105426281	FRANKLIN MUNICIPAL LANDFILL	RIVER ROAD	03235	SWF/LF
FRANKLIN	S102610552	LAKES REGION ARTESIAN WELL	TANNERY STREET	03235	NH Spills, ALLSITES
WEST FRANKLIN	94426085	POLYCLAD LAMINATES	POLYCLAD LAMINATES	03235	ERNS

EPA Waste Codes Addendum

Code	Description
D001	IGNITABLE HAZARDOUS WASTES ARE THOSE WASTES WHICH HAVE A FLASHPOINT OF LESS THAN 140 DEGREES FAHRENHEIT AS DETERMINED BY A PENSKY-MARTENS CLOSED CUP FLASH POINT TESTER. ANOTHER METHOD OF DETERMINING THE FLASH POINT OF A WASTE IS TO REVIEW THE MATERIAL SAFETY DATA SHEET, WHICH CAN BE OBTAINED FROM THE MANUFACTURER OR DISTRIBUTOR OF THE MATERIAL. LACQUER THINNER IS AN EXAMPLE OF A COMMONLY USED SOLVENT WHICH WOULD BE CONSIDERED AS IGNITABLE HAZARDOUS WASTE.
D002	A WASTE WHICH HAS A PH OF LESS THAN 2 OR GREATER THAN 12.5 IS CONSIDERED TO BE A CORROSIVE HAZARDOUS WASTE. SODIUM HYDROXIDE, A CAUSTIC SOLUTION WITH A HIGH PH, IS OFTEN USED BY INDUSTRIES TO CLEAN OR DEGREASE PARTS. HYDROCHLORIC ACID, A SOLUTION WITH A LOW PH, IS USED BY MANY INDUSTRIES TO CLEAN METAL PARTS PRIOR TO PAINTING. WHEN THESE CAUSTIC OR ACID SOLUTIONS BECOME CONTAMINATED AND MUST BE DISPOSED, THE WASTE WOULD BE A CORROSIVE HAZARDOUS WASTE.
D006	CADMIUM
D007	CHROMIUM
D008	LEAD
D009	MERCURY
D022	CHLOROFORM
D035	METHYL ETHYL KETONE
D039	TETRACHLOROETHYLENE
F001	THE FOLLOWING SPENT HALOGENATED SOLVENTS USED IN DEGREASING: TETRACHLOROETHYLENE, TRICHLOROETHYLENE, METHYLENE CHLORIDE, 1,1,1-TRICHLOROETHANE, CARBON TETRACHLORIDE, AND CHLORINATED FLUOROCARBONS; ALL SPENT SOLVENT MIXTURES/BLENDS USED IN DEGREASING CONTAINING, BEFORE USE, A TOTAL OF TEN PERCENT OR MORE (BY VOLUME) OF ONE OR MORE OF THE ABOVE HALOGENATED SOLVENTS OR THOSE SOLVENTS LISTED IN F002, F004, AND F005, AND STILL BOTTOMS FROM THE RECOVERY OF THESE SPENT SOLVENTS AND SPENT SOLVENT MIXTURES.
F003	THE FOLLOWING SPENT NON-HALOGENATED SOLVENTS: XYLENE, ACETONE, ETHYL ACETATE, ETHYL BENZENE, ETHYL ETHER, METHYL ISOBUTYL KETONE, N-BUTYL ALCOHOL, CYCLOHEXANONE, AND METHANOL; ALL SPENT SOLVENT MIXTURES/BLENDS CONTAINING, BEFORE USE, ONLY THE ABOVE SPENT NON-HALOGENATED SOLVENTS; AND ALL SPENT SOLVENT MIXTURES/BLENDS CONTAINING, BEFORE USE, ONE OR MORE OF THE ABOVE NON-HALOGENATED SOLVENTS, AND, A TOTAL OF TEN PERCENT OR MORE (BY VOLUME) OF ONE OR MORE OF THOSE SOLVENTS LISTED IN F001, F002, F004, AND F005, AND STILL BOTTOMS FROM THE RECOVERY OF THESE SPENT SOLVENTS AND SPENT SOLVENT MIXTURES.
F005	THE FOLLOWING SPENT NON-HALOGENATED SOLVENTS: TOLUENE, METHYL ETHYL KETONE, CARBON DISULFIDE, ISOBUTANOL, PYRIDINE, BENZENE, 2-ETHOXYETHANOL, AND 2-NITROPROPANE; ALL SPENT SOLVENT MIXTURES/BLENDS CONTAINING, BEFORE USE, A

EPA Waste Codes Addendum

Code	Description
	TOTAL OF TEN PERCENT OR MORE (BY VOLUME) OF ONE OR MORE OF THE ABOVE NON-HALOGENATED SOLVENTS OR THOSE SOLVENTS LISTED IN F001, F002, OR F004; AND STILL BOTTOMS FROM THE RECOVERY OF THESE SPENT SOLVENTS AND SPENT SOLVENT MIXTURES.
F006	WASTEWATER TREATMENT SLUDGES FROM ELECTROPLATING OPERATIONS EXCEPT FROM THE FOLLOWING PROCESSES: (1) SULFURIC ACID ANODIZING OF ALUMINUM; (2) TIN PLATING ON CARBON STEEL; (3) ZINC PLATING (SEGREGATED BASIS) ON CARBON STEEL; (4) ALUMINUM OR ZINC-ALUMINUM PLATING ON CARBON STEEL; (5) CLEANING/STRIPPING ASSOCIATED WITH TIN, ZINC AND ALUMINUM PLATING ON CARBON STEEL; AND (6) CHEMICAL ETCHING AND MILLING OF ALUMINUM.
U210	ETHENE, TETRACHLORO-
U210	TETRACHLOROETHYLENE

To maintain currency of the following federal and state databases, EDR contacts the appropriate governmental agency on a monthly or quarterly basis, as required.

Elapsed ASTM days: Provides confirmation that this EDR report meets or exceeds the 90-day updating requirement

of the ASTM standard.

FEDERAL ASTM STANDARD RECORDS

NPL: National Priority List

Source: EPA Telephone: N/A

National Priorities List (Superfund). The NPL is a subset of CERCLIS and identifies over 1,200 sites for priority cleanup under the Superfund Program. NPL sites may encompass relatively large areas. As such, EDR provides polygon coverage for over 1,000 NPL site boundaries produced by EPA's Environmental Photographic Interpretation Center (EPIC) and regional EPA offices.

Date of Government Version: 04/28/05 Date Made Active at EDR: 05/16/05

Elapsed ASTM days: 12 Database Release Frequency: Quarterly Date of Last EDR Contact: 05/04/05

Date of Data Arrival at EDR: 05/04/05

Date of Data Arrival at EDR: 03/22/05

NPL Site Boundaries

Sources:

EPA's Environmental Photographic Interpretation Center (EPIC)

Telephone: 202-564-7333

EPA Region 1 EPA Region 6

Telephone 617-918-1143 Telephone: 214-655-6659

EPA Region 3 **EPA Region 8**

Telephone 215-814-5418 Telephone: 303-312-6774

EPA Region 4

Telephone 404-562-8033

Proposed NPL: Proposed National Priority List Sites

Source: EPA Telephone: N/A

> Date of Government Version: 04/27/05 Date of Data Arrival at EDR: 05/04/05

Date Made Active at EDR: 05/16/05 Elapsed ASTM days: 12

Database Release Frequency: Quarterly Date of Last EDR Contact: 05/04/05

CERCLIS: Comprehensive Environmental Response, Compensation, and Liability Information System

Source: EPA

Telephone: 703-413-0223

CERCLIS contains data on potentially hazardous waste sites that have been reported to the USEPA by states, municipalities, private companies and private persons, pursuant to Section 103 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). CERCLIS contains sites which are either proposed to or on the National Priorities List (NPL) and sites which are in the screening and assessment phase for possible inclusion on the NPL.

Date of Government Version: 02/15/05 Date Made Active at EDR: 04/06/05

Elapsed ASTM days: 15 Database Release Frequency: Quarterly Date of Last EDR Contact: 03/22/05

CERCLIS-NFRAP: CERCLIS No Further Remedial Action Planned

Source: EPA

Telephone: 703-413-0223

As of February 1995, CERCLIS sites designated "No Further Remedial Action Planned" (NFRAP) have been removed from CERCLIS. NFRAP sites may be sites where, following an initial investigation, no contamination was found, contamination was removed quickly without the need for the site to be placed on the NPL, or the contamination was not serious enough to require Federal Superfund action or NPL consideration. EPA has removed approximately 25,000 NFRAP sites to lift the unintended barriers to the redevelopment of these properties and has archived them as historical records so EPA does not needlessly repeat the investigations in the future. This policy change is part of the EPA's Brownfields Redevelopment Program to help cities, states, private investors and affected citizens to promote economic redevelopment of unproductive urban sites.

Date of Government Version: 03/22/05 Date Made Active at EDR: 04/06/05 Database Release Frequency: Quarterly Date of Data Arrival at EDR: 04/01/05 Elapsed ASTM days: 5 Date of Last EDR Contact: 04/01/05

CORRACTS: Corrective Action Report

Source: EPA

Telephone: 800-424-9346

CORRACTS identifies hazardous waste handlers with RCRA corrective action activity.

Date of Government Version: 03/29/05 Date of Data Arrival at EDR: 04/11/05

Date Made Active at EDR: 05/16/05 Elapsed ASTM days: 35

Database Release Frequency: Quarterly Date of Last EDR Contact: 03/07/05

RCRA: Resource Conservation and Recovery Act Information

Source: EPA

Telephone: 800-424-9346

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. RCRAInfo replaces the data recording and reporting abilities of the Resource Conservation and Recovery Information System (RCRIS). The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Conditionally exempt small quantity generators (CESQGs) generate less than 100 kg of hazardous waste, or less than 1 kg of acutely hazardous waste per month. Small quantity generators (SQGs) generate between 100 kg and 1,000 kg of hazardous waste per month. Large quantity generators (LQGs) generate over 1,000 kilograms (kg) of hazardous waste, or over 1 kg of acutely hazardous waste per month. Transporters are individuals or entities that move hazardous waste from the generator off-site to a facility that can recycle, treat, store, or dispose of the waste. TSDFs treat, store, or dispose of the waste.

Date of Government Version: 05/20/05 Date Made Active at EDR: 06/09/05 Database Release Frequency: Quarterly Date of Data Arrival at EDR: 05/24/05 Elapsed ASTM days: 16

Date of Last EDR Contact: 05/24/05

Date of Data Arrival at EDR: 01/27/05

Elapsed ASTM days: 56

ERNS: Emergency Response Notification System

Source: National Response Center, United States Coast Guard

Telephone: 202-260-2342

Emergency Response Notification System. ERNS records and stores information on reported releases of oil and hazardous

substances.

Date of Government Version: 12/31/04 Date Made Active at EDR: 03/24/05

Database Release Frequency: Annually Date of Last EDR Contact: 04/25/05

FEDERAL ASTM SUPPLEMENTAL RECORDS

BRS: Biennial Reporting System

Source: EPA/NTIS Telephone: 800-424-9346

The Biennial Reporting System is a national system administered by the EPA that collects data on the generation and management of hazardous waste. BRS captures detailed data from two groups: Large Quantity Generators (LQG) and Treatment, Storage, and Disposal Facilities.

Date of Government Version: 12/01/01

Date of Last EDR Contact: 04/15/05 Database Release Frequency: Biennially Date of Next Scheduled EDR Contact: 06/13/05

CONSENT: Superfund (CERCLA) Consent Decrees Source: Department of Justice, Consent Decree Library

Telephone: Varies

Major legal settlements that establish responsibility and standards for cleanup at NPL (Superfund) sites. Released periodically by United States District Courts after settlement by parties to litigation matters.

Date of Government Version: 12/14/04 Date of Last EDR Contact: 04/26/05

Database Release Frequency: Varies Date of Next Scheduled EDR Contact: 07/25/05

ROD: Records Of Decision

Source: EPA

Telephone: 703-416-0223

Record of Decision. ROD documents mandate a permanent remedy at an NPL (Superfund) site containing technical

and health information to aid in the cleanup.

Date of Government Version: 03/07/05 Date of Last EDR Contact: 04/04/05

Database Release Frequency: Annually Date of Next Scheduled EDR Contact: 07/04/05

DELISTED NPL: National Priority List Deletions

Source: EPA Telephone: N/A

The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) establishes the criteria that the

EPA uses to delete sites from the NPL. In accordance with 40 CFR 300.425.(e), sites may be deleted from the

NPL where no further response is appropriate.

Date of Government Version: 04/28/05 Date of Last EDR Contact: 05/04/05

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 08/01/05

FINDS: Facility Index System/Facility Identification Initiative Program Summary Report

Source: EPA Telephone: N/A

Facility Index System. FINDS contains both facility information and 'pointers' to other sources that contain more

detail. EDR includes the following FINDS databases in this report: PCS (Permit Compliance System), AIRS (Aerometric Information Retrieval System), DOCKET (Enforcement Docket used to manage and track information on civil judicial enforcement cases for all environmental statutes), FURS (Federal Underground Injection Control), C-DOCKET (Criminal Docket System used to track criminal enforcement actions for all environmental statutes), FFIS (Federal Facilities Information System), STATE (State Environmental Laws and Statutes), and PADS (PCB Activity Data System).

Date of Government Version: 04/11/05 Date of Last EDR Contact: 04/04/05

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 07/04/05

HMIRS: Hazardous Materials Information Reporting System

Source: U.S. Department of Transportation

Telephone: 202-366-4555

Hazardous Materials Incident Report System. HMIRS contains hazardous material spill incidents reported to DOT.

Date of Government Version: 12/31/04 Date of Last EDR Contact: 04/19/05

Database Release Frequency: Annually Date of Next Scheduled EDR Contact: 07/18/05

MLTS: Material Licensing Tracking System Source: Nuclear Regulatory Commission

Telephone: 301-415-7169

MLTS is maintained by the Nuclear Regulatory Commission and contains a list of approximately 8,100 sites which possess or use radioactive materials and which are subject to NRC licensing requirements. To maintain currency,

EDR contacts the Agency on a quarterly basis.

Date of Government Version: 04/14/05 Date of Last EDR Contact: 04/04/05

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 07/04/05

MINES: Mines Master Index File

Source: Department of Labor, Mine Safety and Health Administration

Telephone: 303-231-5959

Contains all mine identification numbers issued for mines active or opened since 1971. The data also includes

violation information.

Date of Government Version: 02/11/05 Date of Last EDR Contact: 03/30/05

Database Release Frequency: Semi-Annually Date of Next Scheduled EDR Contact: 06/27/05

NPL LIENS: Federal Superfund Liens

Source: EPA

Telephone: 202-564-4267

Federal Superfund Liens. Under the authority granted the USEPA by the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980, the USEPA has the authority to file liens against real property in order to recover remedial action expenditures or when the property owner receives notification of potential liability.

USEPA compiles a listing of filed notices of Superfund Liens.

Date of Government Version: 10/15/91 Date of Last EDR Contact: 02/22/05

Database Release Frequency: No Update Planned Date of Next Scheduled EDR Contact: 05/23/05

PADS: PCB Activity Database System

Source: EPA

Telephone: 202-564-3887

PCB Activity Database. PADS Identifies generators, transporters, commercial storers and/or brokers and disposers

of PCB's who are required to notify the EPA of such activities.

Date of Government Version: 03/30/05 Date of Last EDR Contact: 05/10/05

Database Release Frequency: Annually Date of Next Scheduled EDR Contact: 08/08/05

DOD: Department of Defense Sites

Source: USGS

Telephone: 703-692-8801

This data set consists of federally owned or administered lands, administered by the Department of Defense, that have any area equal to or greater than 640 acres of the United States, Puerto Rico, and the U.S. Virgin Islands.

Date of Government Version: 10/01/03 Date of Last EDR Contact: 02/08/05

Database Release Frequency: Semi-Annually Date of Next Scheduled EDR Contact: 05/09/05

UMTRA: Uranium Mill Tailings Sites Source: Department of Energy Telephone: 505-845-0011

Uranium ore was mined by private companies for federal government use in national defense programs. When the mills shut down, large piles of the sand-like material (mill tailings) remain after uranium has been extracted from the ore. Levels of human exposure to radioactive materials from the piles are low; however, in some cases tailings were used as construction materials before the potential health hazards of the tailings were recognized. In 1978, 24 inactive uranium mill tailings sites in Oregon, Idaho, Wyoming, Utah, Colorado, New Mexico, Texas, North Dakota, South Dakota, Pennsylvania, and on Navajo and Hopi tribal lands, were targeted for cleanup by the Department of Energy.

Date of Government Version: 12/29/04 Date of Last EDR Contact: 03/22/05

Database Release Frequency: Varies Date of Next Scheduled EDR Contact: 06/20/05

ODI: Open Dump Inventory

Source: Environmental Protection Agency

Telephone: 800-424-9346

An open dump is defined as a disposal facility that does not comply with one or more of the Part 257 or Part 258

Subtitle D Criteria.

Date of Government Version: 06/30/85

Date of Last EDR Contact: 05/23/95

Date of Next Scheduled EDR Contact: N/A

FUDS: Formerly Used Defense Sites Source: U.S. Army Corps of Engineers

Telephone: 202-528-4285

The listing includes locations of Formerly Used Defense Sites properties where the US Army Corps of Engineers

is actively working or will take necessary cleanup actions.

Date of Government Version: 12/31/03 Date of Last EDR Contact: 04/04/05

Database Release Frequency: Varies Date of Next Scheduled EDR Contact: 07/04/05

INDIAN RESERV: Indian Reservations

Source: USGS

Telephone: 202-208-3710

This map layer portrays Indian administered lands of the United States that have any area equal to or greater

than 640 acres.

Date of Government Version: 10/01/03 Date of Last EDR Contact: 02/08/05

Database Release Frequency: Semi-Annually Date of Next Scheduled EDR Contact: 05/09/05

US ENG CONTROLS: Engineering Controls Sites List

Source: Environmental Protection Agency

Telephone: 703-603-8867

A listing of sites with engineering controls in place. Engineering controls include various forms of caps, building

foundations, liners, and treatment methods to create pathway elimination for regulated substances to enter environmental

media or effect human health.

Date of Government Version: 01/10/05 Date of Last EDR Contact: 04/04/05

Database Release Frequency: Varies Date of Next Scheduled EDR Contact: 07/04/05

RAATS: RCRA Administrative Action Tracking System

Source: EPA

Telephone: 202-564-4104

RCRA Administration Action Tracking System. RAATS contains records based on enforcement actions issued under RCRA pertaining to major violators and includes administrative and civil actions brought by the EPA. For administration actions after September 30, 1995, data entry in the RAATS database was discontinued. EPA will retain a copy of the database for historical records. It was necessary to terminate RAATS because a decrease in agency resources made it impossible to continue to update the information contained in the database.

Date of Government Version: 04/17/95 Date of Last EDR Contact: 03/07/05

Database Release Frequency: No Update Planned Date of Next Scheduled EDR Contact: 06/06/05

TRIS: Toxic Chemical Release Inventory System

Source: EPA

Telephone: 202-566-0250

Toxic Release Inventory System. TRIS identifies facilities which release toxic chemicals to the air, water and

land in reportable quantities under SARA Title III Section 313.

Date of Government Version: 12/31/02 Date of Last EDR Contact: 03/22/05

Database Release Frequency: Annually Date of Next Scheduled EDR Contact: 06/20/05

TSCA: Toxic Substances Control Act

Source: EPA

Telephone: 202-260-5521

Toxic Substances Control Act. TSCA identifies manufacturers and importers of chemical substances included on the TSCA Chemical Substance Inventory list. It includes data on the production volume of these substances by plant

site.

Date of Government Version: 12/31/02 Date of Last EDR Contact: 04/05/05

Database Release Frequency: Every 4 Years Date of Next Scheduled EDR Contact: 06/06/05

FTTS INSP: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act)

Source: EPA

Telephone: 202-566-1667

Date of Government Version: 04/13/05 Date of Last EDR Contact: 03/21/05

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 06/20/05

SSTS: Section 7 Tracking Systems

Source: EPA

Telephone: 202-564-4203

Section 7 of the Federal Insecticide, Fungicide and Rodenticide Act, as amended (92 Stat. 829) requires all registered pesticide-producing establishments to submit a report to the Environmental Protection Agency by March 1st each year. Each establishment must report the types and amounts of pesticides, active ingredients and devices being produced, and those having been produced and sold or distributed in the past year.

Date of Government Version: 12/31/03 Date of Last EDR Contact: 04/19/05

Database Release Frequency: Annually Date of Next Scheduled EDR Contact: 07/18/05

FTTS: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act)

Source: EPA/Office of Prevention, Pesticides and Toxic Substances

Telephone: 202-566-1667

FTTS tracks administrative cases and pesticide enforcement actions and compliance activities related to FIFRA, TSCA and EPCRA (Emergency Planning and Community Right-to-Know Act). To maintain currency, EDR contacts the Agency on a quarterly basis.

Date of Government Version: 04/13/05 Date of Last EDR Contact: 03/21/05

Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 06/20/05

STATE OF NEW HAMPSHIRE ASTM STANDARD RECORDS

SHWS: Listing of All Sites

Source: Department of Environmental Services

Telephone: 603-271-2919

State Hazardous Waste Sites. State hazardous waste site records are the states' equivalent to CERCLIS. These sites may or may not already be listed on the federal CERCLIS list. Priority sites planned for cleanup using state funds (state equivalent of Superfund) are identified along with sites where cleanup will be paid for by potentially responsible parties. Available information varies by state.

Date of Government Version: 06/21/05
Date Made Active at EDR: 07/11/05

Database Release Frequency: Quarterly

Date of Data Arrival at EDR: 06/23/05

Elapsed ASTM days: 18

Date of Last EDR Contact: 06/06/05

SWF/LF: Solid Waste Facility Information

Source: Department of Environmental Services

Telephone: 603-271-5380

Solid Waste Facilities/Landfill Sites. SWF/LF type records typically contain an inventory of solid waste disposal facilities or landfills in a particular state. Depending on the state, these may be active or inactive facilities or open dumps that failed to meet RCRA Subtitle D Section 4004 criteria for solid waste landfills or disposal sites.

Date of Government Version: 05/16/05 Date Made Active at EDR: 06/06/05

Database Release Frequency: Annually

Date of Data Arrival at EDR: 05/16/05

Elapsed ASTM days: 21

Date of Last EDR Contact: 05/16/05

LUST: Listing of All Sites

Source: Department of Environmental Services

Telephone: 603-271-2975

Leaking Underground Storage Tank Incident Reports. LUST records contain an inventory of reported leaking underground storage tank incidents. Not all states maintain these records, and the information stored varies by state.

Date of Government Version: 06/21/05 Date Made Active at EDR: 07/11/05

Database Release Frequency: Quarterly

Date of Data Arrival at EDR: 06/23/05

Elapsed ASTM days: 18

Date of Last EDR Contact: 06/06/05

UST: Underground Storage Tank Registration Data Source: Department of Environmental Services

Telephone: 603-271-2975

Registered Underground Storage Tanks. UST's are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA) and must be registered with the state department responsible for administering the UST program. Available information varies by state program.

Date of Government Version: 06/21/05 Date Made Active at EDR: 07/11/05 Database Release Frequency: Quarterly

Date of Data Arrival at EDR: 06/23/05 Elapsed ASTM days: 18 Date of Last EDR Contact: 06/06/05

ALLSITES: Site Remediation & Groundwater Hazard Inventory Listing of All Sites

Source: Department of Environmental Services

Telephone: 603-271-3503

Provides information on sites in New Hampshire, with activities that either have resulted in groundwater contamination or pose a potential hazard to groundwater supplies. The regulated activities and groundwater hazards include: confirmed releases of oil or hazardous materials to the soil and/or groundwater as a result of discharges, spills, and removal of underground storage tanks; underground injection wells such as floor drains, leaching galleries, and septic systems anything other than domestic wastewater; large discharges of wastewater such as domestic wastewater septic systems which are designed to discharge more than 20,000 gpd, land application of wastewater treatment facility effluent (spray irrigation, rapid infiltration basins, etc.) and unlined septage and wastewater lagoons; unpermitted hazardous waste storage facilities; landfills and other waste repositories in which groundwater quality is at risk.

Date of Government Version: 06/21/05 Date Made Active at EDR: 07/11/05 Database Release Frequency: Quarterly

Date of Data Arrival at EDR: 06/23/05

Elapsed ASTM days: 18

Date of Last EDR Contact: 06/06/05

VCP: Voluntary Cleanup Program Sites

Source: Department of Environmental Services

Telephone: 603-271-2183

The program provides comprehensive liability protections to eligible persons who voluntarily assume responsibility for the cleanup of contaminated properties. The sites on the list are ones where persons have applied to participate in the program and in most cases have been deemed eligible.

Date of Government Version: 02/09/05 Date Made Active at EDR: 03/31/05 Database Release Frequency: Varies Date of Data Arrival at EDR: 02/25/05 Elapsed ASTM days: 34

Date of Last EDR Contact: 02/25/05

STATE OF NEW HAMPSHIRE ASTM SUPPLEMENTAL RECORDS

AST: Registered Aboveground Petroleum Storage Tank Database

Source: Department of Environmental Services

Telephone: 603-271-6058

Registered Aboveground Storage Tanks.

Date of Government Version: 06/21/05
Database Release Frequency: Quarterly

Date of Last EDR Contact: 06/06/05

Date of Next Scheduled EDR Contact: 09/05/05

LAST: Listing of All Sites

Source: Department of Environmental Services

Telephone: 603-271-2975

Leaking Aboveground Storage Tank Incident Reports.

Date of Government Version: 06/21/05
Database Release Frequency: Quarterly

Date of Last EDR Contact: 06/06/05

Date of Next Scheduled EDR Contact: 09/05/05

NH SPILLS: Listing of All Sites

Source: Department of Environmental Services

Telephone: 603-271-2975

Date of Government Version: 06/21/05

Database Release Frequency: Quarterly

Date of Last EDR Contact: 06/06/05

Date of Next Scheduled EDR Contact: 09/05/05

EDR PROPRIETARY HISTORICAL DATABASES

Former Manufactured Gas (Coal Gas) Sites: The existence and location of Coal Gas sites is provided exclusively to EDR by Real Property Scan, Inc. ©Copyright 1993 Real Property Scan, Inc. For a technical description of the types of hazards which may be found at such sites, contact your EDR customer service representative.

Disclaimer Provided by Real Property Scan, Inc.

The information contained in this report has predominantly been obtained from publicly available sources produced by entities other than Real Property Scan. While reasonable steps have been taken to insure the accuracy of this report, Real Property Scan does not guarantee the accuracy of this report. Any liability on the part of Real Property Scan is strictly limited to a refund of the amount paid. No claim is made for the actual existence of toxins at any site. This report does not constitute a legal opinion.

BROWNFIELDS DATABASES

Inst Control: Activity and Use Restrictions
Source: Department of Environmental Services

Telephone: 603-271-2659

An inventory of sites where Activity and Use Restrictions have been utilized.

Date of Government Version: 05/24/05 Date of Last EDR Contact: 05/24/05

Database Release Frequency: Semi-Annually Date of Next Scheduled EDR Contact: 08/22/05

US BROWNFIELDS: A Listing of Brownfields Sites Source: Environmental Protection Agency

Telephone: 202-566-2777

Included in the listing are brownfields properties addresses by Cooperative Agreement Recipients and brownfields properties addressed by Targeted Brownfields Assessments. Targeted Brownfields Assessments-EPA's Targeted Brownfields Assessments (TBA) program is designed to help states, tribes, and municipalities--especially those without EPA Brownfields Assessment Demonstration Pilots--minimize the uncertainties of contamination often associated with brownfields. Under the TBA program, EPA provides funding and/or technical assistance for environmental assessments at brownfields sites throughout the country. Targeted Brownfields Assessments supplement and work with other efforts under EPA's Brownfields Initiative to promote cleanup and redevelopment of brownfields. Cooperative Agreement Recipients-States, political subdivisions, territories, and Indian tribes become Brownfields Cleanup Revolving Loan Fund (BCRLF) cooperative agreement recipients when they enter into BCRLF cooperative agreements with the U.S. EPA. EPA selects BCRLF cooperative agreement recipients based on a proposal and application process. BCRLF cooperative agreement recipients must use EPA funds provided through BCRLF cooperative agreement for specified brownfields-related cleanup activities.

Date of Government Version: 01/10/05

Date of Last EDR Contact: 03/14/05

Database Release Frequency: Semi-Annually

Date of Next Scheduled EDR Contact: 06/13/05

BROWNFIELDS: Brownfields Sites

Source: Department of Environmental Services

Telephone: 603-271-6422

Sites that have benefited from one or more brownfields initiative.

Date of Government Version: 12/29/04 Date of Last EDR Contact: 06/10/05

Database Release Frequency: Varies Date of Next Scheduled EDR Contact: 08/22/05

VCP: Voluntary Cleanup Program Sites

Source: Department of Environmental Services

Telephone: 603-271-2183

The program provides comprehensive liability protections to eligible persons who voluntarily assume responsibility for the cleanup of contaminated properties. The sites on the list are ones where persons have applied to participate in the program and in most cases have been deemed eligible.

Date of Government Version: 02/09/05 Database Release Frequency: Varies Date of Last EDR Contact: 02/25/05

Date of Next Scheduled EDR Contact: 05/23/05

US INST CONTROL: Sites with Institutional Controls

Source: Environmental Protection Agency

Telephone: 703-603-8867

A listing of sites with institutional controls in place. Institutional controls include administrative measures, such as groundwater use restrictions, construction restrictions, property use restrictions, and post remediation care requirements intended to prevent exposure to contaminants remaining on site. Deed restrictions are generally required as part of the institutional controls.

Date of Government Version: 01/10/05 Database Release Frequency: Varies

Date of Last EDR Contact: 04/04/05
Date of Next Scheduled EDR Contact: 07/04/05

OTHER DATABASE(S)

Depending on the geographic area covered by this report, the data provided in these specialty databases may or may not be complete. For example, the existence of wetlands information data in a specific report does not mean that all wetlands in the area covered by the report are included. Moreover, the absence of any reported wetlands information does not necessarily mean that wetlands do not exist in the area covered by the report.

Oil/Gas Pipelines: This data was obtained by EDR from the USGS in 1994. It is referred to by USGS as GeoData Digital Line Graphs from 1:100,000-Scale Maps. It was extracted from the transportation category including some oil, but primarily gas pipelines.

Electric Power Transmission Line Data

Source: PennWell Corporation Telephone: (800) 823-6277

This map includes information copyrighted by PennWell Corporation. This information is provided on a best effort basis and PennWell Corporation does not guarantee its accuracy nor warrant its fitness for any particular purpose. Such information has been reprinted with the permission of PennWell.

Sensitive Receptors: There are individuals deemed sensitive receptors due to their fragile immune systems and special sensitivity to environmental discharges. These sensitive receptors typically include the elderly, the sick, and children. While the location of all sensitive receptors cannot be determined, EDR indicates those buildings and facilities - schools, daycares, hospitals, medical centers, and nursing homes - where individuals who are sensitive receptors are likely to be located.

AHA Hospitals:

Source: American Hospital Association, Inc.

Telephone: 312-280-5991

The database includes a listing of hospitals based on the American Hospital Association's annual survey of hospitals.

Medical Centers: Provider of Services Listing

Source: Centers for Medicare & Medicaid Services

Telephone: 410-786-3000

A listing of hospitals with Medicare provider number, produced by Centers of Medicare & Medicaid Services,

a federal agency within the U.S. Department of Health and Human Services.

Nursing Homes

Source: National Institutes of Health

Telephone: 301-594-6248

Information on Medicare and Medicaid certified nursing homes in the United States.

Public Schools

Source: National Center for Education Statistics

Telephone: 202-502-7300

The National Center for Education Statistics' primary database on elementary

and secondary public education in the United States. It is a comprehensive, annual, national statistical database of all public elementary and secondary schools and school districts, which contains data that are comparable across all states.

Private Schools

Source: National Center for Education Statistics

Telephone: 202-502-7300

The National Center for Education Statistics' primary database on private school locations in the United States.

Daycare Centers: Child Care Facility List

Source: Department of Health & Human Services

Telephone: 603-271-4624

Flood Zone Data: This data, available in select counties across the country, was obtained by EDR in 1999 from the Federal Emergency Management Agency (FEMA). Data depicts 100-year and 500-year flood zones as defined by FEMA.

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002 from the U.S. Fish and Wildlife Service.

STREET AND ADDRESS INFORMATION

© 2004 Geographic Data Technology, Inc., Rel. 07/2004. This product contains proprietary and confidential property of Geographic Data Technology, Inc. Unauthorized use, including copying for other than testing and standard backup procedures, of this product is expressly prohibited.

GEOCHECK®- PHYSICAL SETTING SOURCE ADDENDUM

TARGET PROPERTY ADDRESS

POLYCLAD LAMINATES, INC. 45 TANNERY STREET WEST FRANKLIN, NH 03235

TARGET PROPERTY COORDINATES

Latitude (North): 43.450100 - 43° 27' 0.4" Longitude (West): 71.657097 - 71° 39' 25.5"

Universal Tranverse Mercator: Zone 19 UTM X (Meters): 285001.3 UTM Y (Meters): 4814014.0

Elevation: 347 ft. above sea level

EDR's GeoCheck Physical Setting Source Addendum has been developed to assist the environmental professional with the collection of physical setting source information in accordance with ASTM 1527-00, Section 7.2.3. Section 7.2.3 requires that a current USGS 7.5 Minute Topographic Map (or equivalent, such as the USGS Digital Elevation Model) be reviewed. It also requires that one or more additional physical setting sources be sought when (1) conditions have been identified in which hazardous substances or petroleum products are likely to migrate to or from the property, and (2) more information than is provided in the current USGS 7.5 Minute Topographic Map (or equivalent) is generally obtained, pursuant to local good commercial or customary practice, to assess the impact of migration of recognized environmental conditions in connection with the property. Such additional physical setting sources generally include information about the topographic, hydrologic, hydrogeologic, and geologic characteristics of a site, and wells in the area.

Assessment of the impact of contaminant migration generally has two principle investigative components:

- 1. Groundwater flow direction, and
- 2. Groundwater flow velocity.

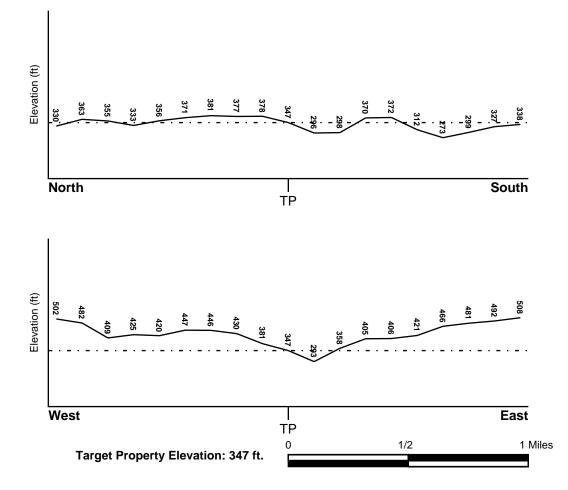
Groundwater flow direction may be impacted by surface topography, hydrology, hydrogeology, characteristics of the soil, and nearby wells. Groundwater flow velocity is generally impacted by the nature of the geologic strata. EDR's GeoCheck Physical Setting Source Addendum is provided to assist the environmental professional in forming an opinion about the impact of potential contaminant migration.

GROUNDWATER FLOW DIRECTION INFORMATION

Groundwater flow direction for a particular site is best determined by a qualified environmental professional using site-specific well data. If such data is not reasonably ascertainable, it may be necessary to rely on other sources of information, such as surface topographic information, hydrologic information, hydrogeologic data collected on nearby properties, and regional groundwater flow information (from deep aquifers).

TOPOGRAPHIC INFORMATION

Surface topography may be indicative of the direction of surficial groundwater flow. This information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.


TARGET PROPERTY TOPOGRAPHY

USGS Topographic Map: 43071-D6 FRANKLIN, NH

General Topographic Gradient: General SE

Source: USGS 7.5 min quad index

SURROUNDING TOPOGRAPHY: ELEVATION PROFILES

Source: Topography has been determined from the USGS 7.5' Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified.

HYDROLOGIC INFORMATION

Surface water can act as a hydrologic barrier to groundwater flow. Such hydrologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Refer to the Physical Setting Source Map following this summary for hydrologic information (major waterways and bodies of water).

FEMA FLOOD ZONE

Target Property County FEMA Flood Electronic Data

MERRIMACK, NH Not Available

Flood Plain Panel at Target Property: Not Reported

Additional Panels in search area: Not Reported

NATIONAL WETLAND INVENTORY

NWI Quad at Target Property Data Coverage

FRANKLIN YES - refer to the Overview Map and Detail Map

HYDROGEOLOGIC INFORMATION

Hydrogeologic information obtained by installation of wells on a specific site can often be an indicator of groundwater flow direction in the immediate area. Such hydrogeologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

AQUIFLOW®

Search Radius: 1.000 Mile.

EDR has developed the AQUIFLOW Information System to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted by environmental professionals to regulatory authorities at select sites and has extracted the date of the report, groundwater flow direction as determined hydrogeologically, and the depth to water table.

LOCATION GENERAL DIRECTION

MAP ID FROM TP GROUNDWATER FLOW

Not Reported

GROUNDWATER FLOW VELOCITY INFORMATION

Groundwater flow velocity information for a particular site is best determined by a qualified environmental professional using site specific geologic and soil strata data. If such data are not reasonably ascertainable, it may be necessary to rely on other sources of information, including geologic age identification, rock stratigraphic unit and soil characteristics data collected on nearby properties and regional soil information. In general, contaminant plumes move more quickly through sandy-gravelly types of soils than silty-clayey types of soils.

GEOLOGIC INFORMATION IN GENERAL AREA OF TARGET PROPERTY

Geologic information can be used by the environmental professional in forming an opinion about the relative speed at which contaminant migration may be occurring.

ROCK STRATIGRAPHIC UNIT

GEOLOGIC AGE IDENTIFICATION

Era: Paleozoic Category: Eugeosynclinal Deposits

System: Devonian Series: Devonian

Code: De (decoded above as Era, System & Series)

Geologic Age and Rock Stratigraphic Unit Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - a digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

DOMINANT SOIL COMPOSITION IN GENERAL AREA OF TARGET PROPERTY

The U.S. Department of Agriculture's (USDA) Soil Conservation Service (SCS) leads the National Cooperative Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps. The following information is based on Soil Conservation Service STATSGO data.

Soil Component Name: OCCUM

Soil Surface Texture: fine sandy loam

Hydrologic Group: Class B - Moderate infiltration rates. Deep and moderately deep,

moderately well and well drained soils with moderately coarse

textures.

Soil Drainage Class: Well drained. Soils have intermediate water holding capacity. Depth to

water table is more than 6 feet.

Hydric Status: Soil does not meet the requirements for a hydric soil.

Corrosion Potential - Uncoated Steel: LOW

Depth to Bedrock Min: > 60 inches

Depth to Bedrock Max: > 60 inches

	Soil Layer Information						
	Bou	ındary		Classification			
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	Permeability Rate (in/hr)	Soil Reaction (pH)
1	0 inches	10 inches	fine sandy loam	Granular materials (35 pct. or less passing No. 200), Silty, or Clayey Gravel and Sand.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 6.00 Min: 0.60	Max: 7.30 Min: 4.50
2	10 inches	17 inches	sandy loam	Granular materials (35 pct. or less passing No. 200), Silty, or Clayey Gravel and Sand.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 6.00 Min: 0.60	Max: 6.50 Min: 4.50
3	17 inches	28 inches	sandy loam	Granular materials (35 pct. or less passing No. 200), Silty, or Clayey Gravel and Sand.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 2.00 Min: 0.60	Max: 6.50 Min: 4.50
4	28 inches	65 inches	stratified	Granular materials (35 pct. or less passing No. 200), Stone Fragments, Gravel and Sand.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 20.00 Min: 6.00	Max: 6.50 Min: 4.50

OTHER SOIL TYPES IN AREA

Based on Soil Conservation Service STATSGO data, the following additional subordinant soil types may appear within the general area of target property.

Soil Surface Textures: loamy sand

very stony - fine sandy loam very stony - sandy loam

mucky-peat silt loam

mucky - fine sandy loam

Surficial Soil Types: loamy sand

very stony - fine sandy loam very stony - sandy loam

mucky-peat silt loam

mucky - fine sandy loam

Shallow Soil Types: silt loam

loamy sand

Deeper Soil Types: sand

gravelly - loamy sand unweathered bedrock

ADDITIONAL ENVIRONMENTAL RECORD SOURCES

According to ASTM E 1527-00, Section 7.2.2, "one or more additional state or local sources of environmental records may be checked, in the discretion of the environmental professional, to enhance and supplement federal and state sources... Factors to consider in determining which local or additional state records, if any, should be checked include (1) whether they are reasonably ascertainable, (2) whether they are sufficiently useful, accurate, and complete in light of the objective of the records review (see 7.1.1), and (3) whether they are obtained, pursuant to local, good commercial or customary practice." One of the record sources listed in Section 7.2.2 is water well information. Water well information can be used to assist the environmental professional in assessing sources that may impact groundwater flow direction, and in forming an opinion about the impact of contaminant migration on nearby drinking water wells.

LOCATION

WELL SEARCH DISTANCE INFORMATION

DATABASE SEARCH DISTANCE (miles)

Federal USGS 1.000

Federal FRDS PWS Nearest PWS within 1 mile

State Database 1.000

FEDERAL USGS WELL INFORMATION

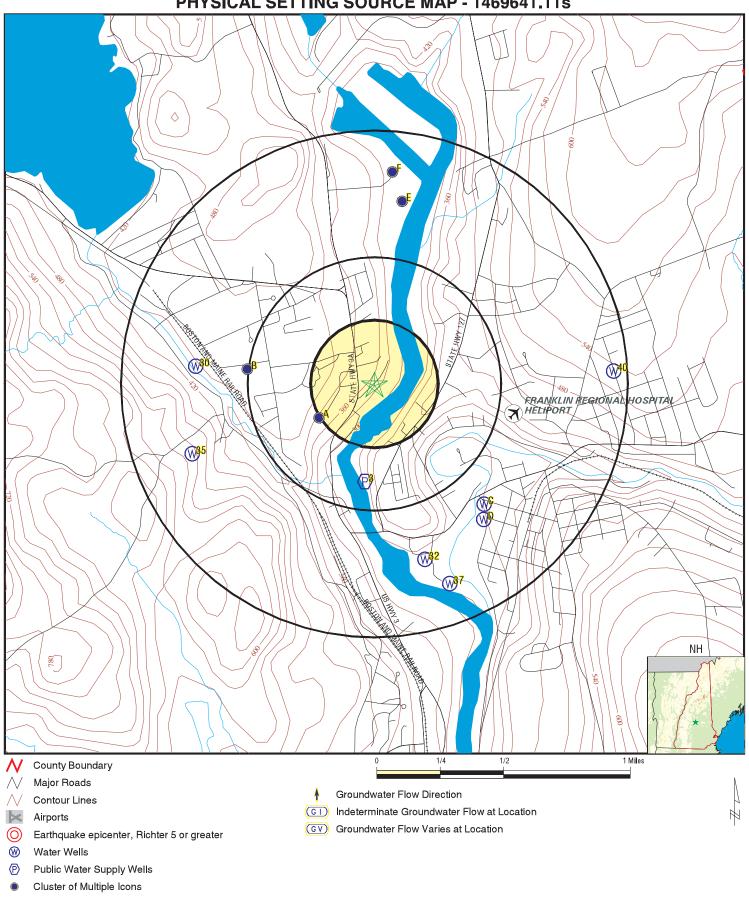
		LOCATION
MAP ID	WELL ID	FROM TP
A2	USGS2080880	1/4 - 1/2 Mile WSW
B4	USGS2080920	1/2 - 1 Mile West
C6	USGS2081022	1/2 - 1 Mile SE
C7	USGS2081021	1/2 - 1 Mile SE
C8	USGS2081019	1/2 - 1 Mile SE
C9	USGS2081018	1/2 - 1 Mile SE
C10	USGS2081024	1/2 - 1 Mile SE
C11	USGS2081023	1/2 - 1 Mile SE
C12	USGS2081020	1/2 - 1 Mile SE
C13	USGS2081007	1/2 - 1 Mile SE
C14	USGS2080994	1/2 - 1 Mile SE
C15	USGS2080995	1/2 - 1 Mile SE
C16	USGS2081005	1/2 - 1 Mile SE
C17	USGS2081006	1/2 - 1 Mile SE
C18	USGS2081004	1/2 - 1 Mile SE
C19	USGS2081003	1/2 - 1 Mile SE
C20	USGS2081002	1/2 - 1 Mile SE
C21	USGS2080993	1/2 - 1 Mile SE
C22	USGS2080992	1/2 - 1 Mile SE
C23	USGS2080991	1/2 - 1 Mile SE
C24	USGS2080990	1/2 - 1 Mile SE
C25	USGS2080989	1/2 - 1 Mile SE
D26	USGS2081191	1/2 - 1 Mile SE
D27	USGS2081192	1/2 - 1 Mile SE

GEOCHECK[®] - PHYSICAL SETTING SOURCE SUMMARY

FEDERAL USGS WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
D28	USGS2081185	1/2 - 1 Mile SE
D29	USGS2081186	1/2 - 1 Mile SE
30	USGS2080923	1/2 - 1 Mile West
D31	USGS2081179	1/2 - 1 Mile SE
32	USGS2081160	1/2 - 1 Mile SSE
E34	USGS2080654	1/2 - 1 Mile North
35	USGS2081067	1/2 - 1 Mile WSW
37	USGS2081151	1/2 - 1 Mile SSE
F39	USGS2080687	1/2 - 1 Mile North
40	USGS2080919	1/2 - 1 Mile East

FEDERAL FRDS PUBLIC WATER SUPPLY SYSTEM INFORMATION


MAP ID	WELL ID	LOCATION FROM TP
3	NH0851010	1/4 - 1/2 Mile South

Note: PWS System location is not always the same as well location.

STATE DATABASE WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
	NH10006417	1/4 - 1/2 Mile WSW
B5	NH10006418	1/2 - 1 Mile West
E33	NHWS001534	1/2 - 1 Mile North
F36	NHWS004496	1/2 - 1 Mile North
F38	NHWS001533	1/2 - 1 Mile North

PHYSICAL SETTING SOURCE MAP - 1469641.11s

TARGET PROPERTY: ADDRESS: CITY/STATE/ZIP: LAT/LONG:

Polyclad Laminates, Inc. 45 Tannery Street West Franklin NH 03235 43.4501 / 71.6571

CUSTOMER: Delta Environmental Linda Opperman CONTACT: INQUIRY#: 1469641.11s DATE: July 19, 2005 7:01 pm

Map ID Direction Distance

Database EDR ID Number Elevation A1 WSW **NH WELLS** NH10006417

BECKFORD

NELSON ST

Not Reported

1-96

1/4 - 1/2 Mile Higher

> Granitid: 0 Well: 382-087.0026 Town Code: 380 Elevation:

501268.3 X Coord:

Y Coord: 0 Fname: J.

Owner: Street #: 41 Road: **FRANKLIN** Map: Town: Date completed: Parcel: 18

Use: **Domestic** Reason Built: New Type: Drilled in bedrock Depth: 280 Casing: 100 To Bedrock: 90 Yield Test Dur: Yield Test Meth: Compressed air .5 Discharge:: Water Level: -9999

Date Measured: Not Reported Water Quality Not Reported

Overburden Matl: 14 Report Quality: Fair Locent: Locacc: 4 0 Xnad83:

Note: Not Reported

Ynad83:

wsw **FED USGS** USGS2080880 1/4 - 1/2 Mile

Higher

USGS 432653071394301 Agency cd: Site no:

NH-FKW 48 Site name: Latitude: 432653 Longitude: 0713943

Dec lat: 43.44813194 Dec Ion: -71.6614658 Coor meth: Μ NAD27 Coor accr: Latlong datum: Dec latlong datum: NAD83 District: 33 State: 33 County: 013

Country: US Land net: Not Reported Not Reported Not Reported Location map: Map scale:

Altitude: 380 Altitude method: М Altitude accuracy: Not Reported Altitude datum: NGVD29

Hydrologic: Pemigewasset. New Hampshire. Area = 1000 sq.mi.

Topographic: Not Reported

Ground-water other than Spring Date construction: Not Reported Site type:

Not Reported Date inventoried: Mean greenwich time offset: Local standard time flag: Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

BEDROCK Aquifer: Well depth: 280.0

Hole depth: Not Reported Source of depth data: driller Project number: 443303500 Not Reported Daily flow data begin date: Not Reported Real time data flag: Daily flow data end date: Not Reported Daily flow data count: Not Reported Peak flow data begin date: Not Reported Peak flow data end date: Not Reported Peak flow data count: Not Reported Water quality data begin date: Not Reported Water quality data end date:Not Reported Water quality data count: Not Reported Ground water data begin date: Not Reported Ground water data end date: Not Reported

Ground water data count: Not Reported

Ground-water levels, Number of Measurements: 0

Map ID Direction Distance

Elevation Database EDR ID Number

South FRDS PWS NH0851010

1/4 - 1/2 Mile Lower

PWS ID: NH0851010 PWS Status: Not Reported Date Initiated: Not Reported Date DeactivatedNot Reported

PWS Name: FRANKLIN WATER WORKS

43 WEST BOW STREET FRANKLIN, NH 03235

Treatment Objective: CORROSION CONTROL

Treatment Process: INHIBITOR, HEXAMETAPHOSPHATE

Source: Ground water

Addressee / Facility: Mailing

FRANKLIN WATER WORKS 38 EAST BOW STREET FRANKLIN, NH 03235

 Facility Latitude:
 43 26 40.0000
 Facility Longitude:
 71 39 30.0000

 Facility Latitude:
 43 27 40.0000
 Facility Longitude:
 71 39 25.0000

 Facility Latitude:
 43 27 40.0000
 Facility Longitude:
 71 39 30.0000

 Facility Longitude:
 43 29 45.0000
 Facility Longitude:
 71 38 10.0000

City Served: FRANKLIN

Treatment Class: Mixed (treated and untreated) Population: 7000

PWS currently has or had major violation(s) or enforcement: Yes

Violations information not reported.

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: MCL, Monthly (TCR)
Contaminant: COLIFORM (TCR)
Compliance Period: 2000-08-01 - 2000-08-31

Compliance Period: 2000-08-01 - 2000-08-31 Analytical Value: 0
Violation ID: 0000017 Enforcement ID: 0000024

Enforcement Date: 2000-08-23 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: MCL, Monthly (TCR)
Contaminant: COLIFORM (TCR)
Compliance Period: 2000-08-01 - 2000-08-31

Compliance Period: 2000-08-01 - 2000-08-31 Analytical Value: 0
Violation ID: 0000017 Enforcement ID: 0000025

Enforcement Date: 2000-08-23 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: MCL, Monthly (TCR)
Contaminant: COLIFORM (TCR)
Compliance Period: 2000 08 01 2000 08 3

Compliance Period: 2000-08-01 - 2000-08-31 Analytical Value: 0
Violation ID: 0000017 Enforcement ID: 0000026

Enforcement Date: 2000-09-07 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: MCL, Monthly (TCR)
Contaminant: COLIFORM (TCR)

 Compliance Period:
 2000-08-01 - 2000-08-31
 Analytical Value:
 0

 Violation ID:
 0000017
 Enforcement ID:
 0100027

Enforcement Date: 2001-03-13 Enf. Action: State Compliance Achieved

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: NITRATE

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9400007
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: NITRATE

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9400007
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: NITRATE

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9400007
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: NITRATE

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9400007
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: METHYLCHLORIDE (CHLOROEMETHANE)

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9400011
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: METHYLCHLORIDE (CHLOROEMETHANE)

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9400011
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: METHYLCHLORIDE (CHLOROEMETHANE)

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9400011
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: METHYLCHLORIDE (CHLOROEMETHANE)

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9400011
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: BROMOMETHANE

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9401011
 Enforcement ID:
 9400011

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: BROMOMETHANE

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00000000.00 Violation ID: 9401011 Enforcement ID: 9400012 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: BROMOMETHANE

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9401011
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: BROMOMETHANE
Compliance Period: 1994-01-01 - 1994-12-31

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9401011
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: CHLOROETHANE Compliance Period: 1994-01-01 - 1994-12-31

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9402011
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: CHLOROETHANE

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9402011
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: CHLOROETHANE

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9402011
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: CHLOROETHANE

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9402011
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: METHYL-TERT-BUTYL-ETHER

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9403011
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: METHYL-TERT-BUTYL-ETHER

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9403011
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: METHYL-TERT-BUTYL-ETHER

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9403011
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: METHYL-TERT-BUTYL-ETHER

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9403011
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: 1,2,4-TRICHLOROBENZENE

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9404011
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: 1,2,4-TRICHLOROBENZENE

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00000000.00

Violation ID: 9404011 Enforcement ID: 9400012 Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: 1,2,4-TRICHLOROBENZENE

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9404011
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: 1,2,4-TRICHLOROBENZENE
Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00000000.00

Violation ID: 9404011 Enforcement ID: 9600020
Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

System name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: CIS-1,2-DICHLOROETHYLENE

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00000000.00

Violation ID: 9405011 Enforcement ID: 9400011
Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: CIS-1,2-DICHLOROETHYLENE

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00000000.00

Violation ID: 9405011 Enforcement ID: 9400012
Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: CIS-1,2-DICHLOROETHYLENE

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9405011
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: CIS-1,2-DICHLOROETHYLENE

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9405011
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: DIBROMOMETHANE
Contaliance Pariety (1994) 14 2014 14

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9406011
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: DIBROMOMETHANE
Compliance Period: 1994-01-01 - 1994-12-3

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9406011
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: DIBROMOMETHANE

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9406011
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: DIBROMOMETHANE

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9406011
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: 1,1-DICHLOROPROPENE
Compliance Period: 1994-01-01 - 1994-12-31

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9407011
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: 1,1-DICHLOROPROPENE
Compliance Period: 1994 94 94 94 12 34

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9407011
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: 1,1-DICHLOROPROPENE
Compliance Parietics 4004 04 04 1004 12 24

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9407011
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: 1,1-DICHLOROPROPENE
Compliance Period: 1994-01-01 - 1994-12-31

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9407011
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: 1,3-DICHLOROPROPANE

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00000000.00

Violation ID: 9408011 Enforcement ID: 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: 1,3-DICHLOROPROPANE
Compliance Period: 1994-01-01 - 1994-12-31

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9408011
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: 1,3-DICHLOROPROPANE
Compliance Period: 1994-01-01 - 1994-12-31

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9408011
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: 1,3-DICHLOROPROPANE
Compliance Period: 1994-01-01 - 1994-12-31

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9408011
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: 1,3-DICHLOROPROPENE
Compliance Period: 1994-01-01 - 1994-12-31

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9409011
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: 1,3-DICHLOROPROPENE
Compliance Period: 1994-01-01 - 1994-12-31

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9409011
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS
Violation Type: Monitoring, Regular

Contaminant: 1,3-DICHLOROPROPENE

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9409011
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: 1,3-DICHLOROPROPENE
Compliance Parietics 4004 04 04 1004 12 24

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9409011
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: 1,2,3-TRICHLOROPROPANE

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9410011
 Enforcement ID:
 9400011

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: 1,2,3-TRICHLOROPROPANE

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00.000000.00 Violation ID: 9410011 Enforcement ID: 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

1,2,3-TRICHLOROPROPANE Contaminant:

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00.000000.00 Violation ID: 9410011 Enforcement ID: 9600019

1996-05-06 State Formal NOV Issued **Enforcement Date:** Enf. Action:

FRANKLIN WATER WORKS System Name:

Violation Type: Monitoring, Regular

Contaminant: 1,2,3-TRICHLOROPROPANE

00.000000.00 Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: Violation ID: 9410011 Enforcement ID: 9600020

1996-07-12 State Public Notif Received **Enforcement Date:** Enf. Action:

FRANKLIN WATER WORKS System Name:

Violation Type: Monitoring, Regular Contaminant: 2,2-DICHLOROPROPANE

1994-01-01 - 1994-12-31 Analytical Value: 00.000000.00 Compliance Period: Violation ID: 9411011 Enforcement ID: 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular 2,2-DICHLOROPROPANE Contaminant:

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00.000000.00 Enforcement ID: 9411011 9400012 Violation ID:

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

FRANKLIN WATER WORKS System Name:

Violation Type: Monitoring, Regular Contaminant: 2,2-DICHLOROPROPANE 1994-01-01 - 1994-12-31

00.000000.00 Analytical Value: Compliance Period: Violation ID: 9411011 Enforcement ID: 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

FRANKLIN WATER WORKS System Name:

Violation Type: Monitoring, Regular Contaminant: 2,2-DICHLOROPROPANE

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00.000000.00 Violation ID: 9411011 Enforcement ID: 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: **CHLOROFORM**

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00.000000.00 Violation ID: 9412011 Enforcement ID: 9400011

Enforcement Date: Enf. Action: State Violation/Reminder Notice 1996-04-20

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: **CHLOROFORM**

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value:

00.000000.00 Violation ID: 9412011 Enforcement ID: 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: CHLOROFORM

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9412011
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: CHLOROFORM

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9412011
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: BROMOFORM

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9413011
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: BROMOFORM

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00000000.00

Violation ID: 9413011 Enforcement ID: 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: BROMOFORM

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9413011
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: BROMOFORM

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9413011
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: BROMODICHLOROMETHANE

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9414011
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: BROMODICHLOROMETHANE

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9414011
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: BROMODICHLOROMETHANE

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9414011
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: BROMODICHLOROMETHANE

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9414011
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: DIBROMOCHLOROMETHANE (CHLORODIBROMOMETHANE)

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9415011
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: DIBROMOCHLOROMETHANE (CHLORODIBROMOMETHANE)

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9415011
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: DIBROMOCHLOROMETHANE (CHLORODIBROMOMETHANE)

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9415011
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: DIBROMOCHLOROMETHANE (CHLORODIBROMOMETHANE)

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9415011
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: XYLENES, TOTAL

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9416011
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: XYLENES, TOTAL

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9416011
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: XYLENES, TOTAL

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9416011
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: XYLENES, TOTAL

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9416011
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: METHYLENE CHLORIDE (DICHLOROMETHANE)

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9417011
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: METHYLENE CHLORIDE (DICHLOROMETHANE)

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9417011
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: METHYLENE CHLORIDE (DICHLOROMETHANE)

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9417011
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: METHYLENE CHLORIDE (DICHLOROMETHANE)

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9417011
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: O-CHLOROTOLUENE

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9418011
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: O-CHLOROTOLUENE

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 0000000.00 Violation ID: 9418011 Enforcement ID: 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: O-CHLOROTOLUENE

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9418011
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9418011
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: P-CHLOROTOLUENE

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9419011
 Enforcement ID:
 9400011

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: P-CHLOROTOLUENE
Compliance Period: 1994-01-01 - 1994-12-31

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9419011
 Enforcement ID:
 9400012

 Enforcement Date:
 1996-04-20
 Enf. Action:
 State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: P-CHLOROTOLUENE
Compliance Period: 1994-01-01 - 1994-12-3

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9419011
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: P-CHLOROTOLUENE
Compliance Period: 1994-01-01 - 1994-12-3

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9419011
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type:Monitoring, RegularContaminant:M-DICHLOROBENZENECompliance Period:1994-01-01 - 1994-12-31

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9420011
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: M-DICHLOROBENZENE
Compliance Period: 1994-01-01 - 1994-12-31

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9420011
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: M-DICHLOROBENZENE

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9420011
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: M-DICHLOROBENZENE
Compliance Period: 1994-01-01 - 1994-12-31

 Compliance Period:
 1994-01-01 - 1994-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9420011
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: O-DICHLOROBENZENE
Compliance Period: 1994-01-01 - 1994-12-31

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00000000.00 Violation ID: 9421011 Enforcement ID: Not Reported Enf. Action: Not Reported

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: P-DICHLOROBENZENE

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00000000.00 Violation ID: 9422011 Enforcement ID: Enforcement ID: Not Reported Enf. Action: Not Reported

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: VINYL CHLORIDE

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00000000.00 Violation ID: 9423011 Enforcement ID: Not Reported Enf. Action: Not Reported

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: 1,1-DICHLOROETHYLENE

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00000000.00 Violation ID: 9424011 Enforcement ID: Not Reported Enf. Action: Not Reported

System Name: FRANKLIN WATER WORKS
Violation Type: Monitoring, Regular

Contaminant: 1,1-DICHLOROETHANE
Compliance Period: 1994-01-01 - 1994-12-31

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00000000.00 Violation ID: 9425011 Enforcement ID: Not Reported Enf. Action: Not Reported

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: TRANS-1,2-DICHLOROETHYLENE

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00000000.00 Violation ID: 9426011 Enforcement ID: Not Reported Enf. Action: Not Reported

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: 1,2-DICHLOROETHANE
Compliance Period: 1994-01-01 - 1994-12-31

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00000000.00 Violation ID: 9427011 Enforcement ID: Not Reported Enf. Action: Not Reported

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: 1,1,1-TRICHLOROETHANE

Compliance Period: 1994-01-01 - 1994-12-31
Violation ID: 9428011

Violation ID:9428011Enforcement ID:Not ReportedEnforcement Date:Not ReportedEnf. Action:Not Reported

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: CARBON TETRACHLORIDE Compliance Period: 1994-01-01 - 1994-12-31

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00000000.00 Violation ID: 9429011 Enforcement ID: Not Reported Enf. Action: Not Reported

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: 1,2-DICHLOROPROPANE

Compliance Period:1994-01-01 - 1994-12-31Analytical Value:00000000.00Violation ID:9430011Enforcement ID:Not ReportedEnforcement Date:Not ReportedEnf. Action:Not Reported

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: TRICHLOROETHYLENE

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00000000.00 Violation ID: 9431011 Enforcement ID: Enforcement ID: Not Reported Enf. Action: Not Reported

00.000000.00

Analytical Value:

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: 1,1,2-TRICHLOROETHANE

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00000000.00 Violation ID: 9432011 Enforcement ID: Not Reported Enf. Action: Not Reported

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: 1,1,1,2-TETRACHLOROETHANE

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00000000.00 Violation ID: 9433011 Enforcement ID: Not Reported Enforcement Date: Not Reported Enf. Action: Not Reported

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: TETRACHLOROETHYLENE

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00000000.00 Violation ID: 9434011 Enforcement ID: Not Reported Enf. Action: Not Reported

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: 1,1,2,2-TETRACHLOROETHANE

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00000000.00 Violation ID: 9435011 Enforcement ID: Not Reported Enforcement Date: Not Reported Enf. Action: Not Reported

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: MONOCHLOROBENZENE (CHLOROBENZENE)

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00000000.00 Violation ID: 9436011 Enforcement ID: Not Reported Enf. Action: Not Reported

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: BENZENE

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00000000.00 Violation ID: 9437011 Enforcement ID: Not Reported Enforcement Date: Not Reported Enf. Action: Not Reported

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: TOLUENE

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00000000.00 Violation ID: 9438011 Enforcement ID: Not Reported Enf. Action: Not Reported

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: ETHYLBENZENE

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00000000.00 Violation ID: 9439011 Enforcement ID: Not Reported Enf. Action: Not Reported

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: STYRENE

Compliance Period: 1994-01-01 - 1994-12-31 Analytical Value: 00000000.00 Violation ID: 9440011 Enforcement ID: Enforcement ID: Not Reported Enf. Action: Not Reported

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: ENDRIN

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9500008
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: ENDRIN

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9500008
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: ENDRIN

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00000000.00 Violation ID: 9500008 Enforcement ID: 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: ENDRIN

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9500008
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: 1,2,4-TRICHLOROBENZENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9500009
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: 1,2,4-TRICHLOROBENZENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9500009
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: 1,2,4-TRICHLOROBENZENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9500009
 Enforcement ID:
 9600019

Violation ID: 9500009 Enforcement ID: 9600019
Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: 1,2,4-TRICHLOROBENZENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9500009
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: NITRATE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9500010
 Enforcement ID:
 9400011

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: NITRATE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9500010
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: NITRATE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9500010
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: NITRATE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9500010
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: BHC-GAMMA (LINDANE)
Compliance Period: 1995-01-01 - 1995-12-31

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9501008
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: BHC-GAMMA (LINDANE)
Compliance Period: 1995-01-01 - 1995-12-31

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9501008
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: BHC-GAMMA (LINDANE)
Compliance Period: 1995-01-01 - 1995-12-31

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9501008
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS Violation Type: Monitoring, Regular

Contaminant: BHC-GAMMA (LINDANE)
Compliance Period: 1995-01-01 - 1995-12-31

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9501008
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: CIS-1,2-DICHLOROETHYLENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9501009
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: CIS-1,2-DICHLOROETHYLENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9501009
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: CIS-1,2-DICHLOROETHYLENE

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00.000000.00 Violation ID: 9501009 Enforcement ID: 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

CIS-1,2-DICHLOROETHYLENE Contaminant:

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00.000000.00 Violation ID: 9501009 Enforcement ID: 9600020

1996-07-12 Enf. Action: State Public Notif Received **Enforcement Date:**

FRANKLIN WATER WORKS System Name:

Violation Type: Monitoring, Regular Contaminant: **METHOXYCHLOR**

00.000000.00 Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: Violation ID: 9502008 Enforcement ID: 9400011

State Violation/Reminder Notice **Enforcement Date:** 1996-04-20 Enf. Action:

FRANKLIN WATER WORKS System Name:

Violation Type: Monitoring, Regular Contaminant: **METHOXYCHLOR** Compliance Period: 1995-01-01 - 1995-12-31

Analytical Value: 00.000000.00 Violation ID: 9502008 Enforcement ID: 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular **METHOXYCHLOR** Contaminant:

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00.000000.00 Enforcement ID: Violation ID: 9502008 9600019

State Formal NOV Issued **Enforcement Date:** 1996-05-06 Enf. Action:

FRANKLIN WATER WORKS System Name:

Violation Type: Monitoring, Regular Contaminant: **METHOXYCHLOR**

1995-01-01 - 1995-12-31 00.000000.00 Compliance Period: Analytical Value: Violation ID: 9502008 Enforcement ID: 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: XYLENES, TOTAL

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00.000000.00 Violation ID: 9502009 Enforcement ID: 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: XYLENES, TOTAL

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00.000000.00 Violation ID: 9502009 Enforcement ID: 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: XYLENES, TOTAL

Compliance Period: 1995-01-01 - 1995-12-31

Analytical Value: Violation ID: 9502009 Enforcement ID: 9600019

State Formal NOV Issued **Enforcement Date:** 1996-05-06 Enf. Action:

00.000000.00

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular XYLENES, TOTAL Contaminant:

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00.000000.00 Violation ID: 9502009 Enforcement ID: 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: **TOXAPHENE**

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00.000000.00 9503008 Enforcement ID: Violation ID: 9400011

1996-04-20 State Violation/Reminder Notice **Enforcement Date:** Enf. Action:

FRANKLIN WATER WORKS System Name:

Violation Type: Monitoring, Regular Contaminant: **TOXAPHENE**

00.000000.00 Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: Violation ID: 9503008 Enforcement ID: 9400012

State Public Notif Requested **Enforcement Date:** 1996-04-20 Enf. Action:

FRANKLIN WATER WORKS System Name:

Violation Type: Monitoring, Regular Contaminant: **TOXAPHENE**

1995-01-01 - 1995-12-31 Compliance Period:

Analytical Value: 00.000000.00 Violation ID: 9503008 Enforcement ID: 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

TOXAPHENE Contaminant:

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00.000000.00 9503008 Enforcement ID: Violation ID: 9600020

1996-07-12 **Enforcement Date:** Enf. Action: State Public Notif Received

FRANKLIN WATER WORKS System Name:

Violation Type: Monitoring, Regular

Contaminant: METHYLENE CHLORIDE (DICHLOROMETHANE)

1995-01-01 - 1995-12-31 Analytical Value: 00.000000.00 Compliance Period: Violation ID: 9503009 Enforcement ID: 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

FRANKLIN WATER WORKS System Name:

Violation Type: Monitoring, Regular

Contaminant: METHYLENE CHLORIDE (DICHLOROMETHANE)

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00.000000.00 Violation ID: 9503009 Enforcement ID: 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: METHYLENE CHLORIDE (DICHLOROMETHANE)

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00.0000000 Violation ID: 9503009 Enforcement ID: 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

METHYLENE CHLORIDE (DICHLOROMETHANE) Contaminant:

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00.000000.00 Violation ID: 9503009 Enforcement ID: 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: GLYPHOSATE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9504008
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: GLYPHOSATE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9504008
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: GLYPHOSATE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9504008
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: GLYPHOSATE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9504008
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: O-DICHLOROBENZENE
Compliance Period: 1995-01-01 - 1995-12-31

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9504009
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: O-DICHLOROBENZENE
Compliance Period: 1995-01-01 - 1995-12-31

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9504009
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: O-DICHLOROBENZENE
Compliance Period: 1995-01-01 - 1995-12-31

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9504009
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: O-DICHLOROBENZENE
Compliance Period: 1995-01-01 - 1995-12-31

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9504009
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: DI (2-ETHYLHEXYL) ADIPATE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9505008
 Enforcement ID:
 9400011

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: DI (2-ETHYLHEXYL) ADIPATE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9505008
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: DI (2-ETHYLHEXYL) ADIPATE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9505008
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: DI (2-ETHYLHEXYL) ADIPATE

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00000000.00 Violation ID: 9505008 Enforcement ID: 9600020

Enforcement ID: 9505008 Enforcement ID: 9600020 Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: P-DICHLOROBENZENE
Compliance Period: 1995-01-01 - 1995-12-31

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9505009
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: P-DICHLOROBENZENE
Compliance Period: 1995-01-01 - 1995-12-31

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9505009
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: P-DICHLOROBENZENE
Compliance Period: 1995-01-01 - 1995-12-31

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9505009
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: P-DICHLOROBENZENE
Compliance Period: 1995-01-01 - 1995-12-31

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9505009
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: OXAMYL (VYDATE)
Compliance Period: 1995-01-01 - 1995-12-31

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9506008
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: OXAMYL (VYDATE)

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9506008
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

ENFORCEMENT INFORMATION:

Violation ID:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: OXAMYL (VYDATE)

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9506008
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: OXAMYL (VYDATE)

Contaminant: OXAMYL (VYDATE)

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value:

9506008

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

00.000000.00

9600020

Enforcement ID:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: VINYL CHLORIDE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9506009
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: VINYL CHLORIDE
Compliance Period: 1995-01-01 - 1995-12

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9506009
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: VINYL CHLORIDE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9506009
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: VINYL CHLORIDE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9506009
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: SIMAZINE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9507008
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: SIMAZINE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9507008
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: SIMAZINE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9507008
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: SIMAZINE

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00.000000.00 Violation ID: 9507008 Enforcement ID: 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular 1,1-DICHLOROETHYLENE Contaminant:

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00.000000.00 9507009 Enforcement ID: Violation ID: 9400011

State Violation/Reminder Notice **Enforcement Date:** 1996-04-20 Enf. Action:

FRANKLIN WATER WORKS System Name:

Violation Type: Monitoring, Regular Contaminant: 1,1-DICHLOROETHYLENE

00.000000.00 Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: Violation ID: 9507009 Enforcement ID: 9400012

1996-04-20 State Public Notif Requested **Enforcement Date:** Enf. Action:

FRANKLIN WATER WORKS System Name:

Violation Type: Monitoring, Regular Contaminant: 1,1-DICHLOROETHYLENE

1995-01-01 - 1995-12-31 Analytical Value: 00.000000.00 Compliance Period: Violation ID: 9507009 Enforcement ID: 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

1,1-DICHLOROETHYLENE Contaminant: Compliance Period: 1995-01-01 - 1995-12-31

Analytical Value: 00.000000.00 Enforcement ID: 9507009 9600020 Violation ID:

1996-07-12 **Enforcement Date:** Enf. Action: State Public Notif Received

FRANKLIN WATER WORKS System Name:

Violation Type: Monitoring, Regular

Contaminant: DI (2-ETHYLHEXYL) PHTHALATE

1995-01-01 - 1995-12-31 00.000000.00 Analytical Value: Compliance Period: Violation ID: 9508008 Enforcement ID: 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

FRANKLIN WATER WORKS System Name:

Monitoring, Regular Violation Type:

Contaminant: DI (2-ETHYLHEXYL) PHTHALATE

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00.000000.00 Violation ID: 9508008 Enforcement ID: 9400012

1996-04-20 **Enforcement Date:** Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: DI (2-ETHYLHEXYL) PHTHALATE

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00.000000.00

9600019 Violation ID: 9508008 Enforcement ID:

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: DI (2-ETHYLHEXYL) PHTHALATE

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00.000000.00 Violation ID: 9508008 Enforcement ID: 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: TRANS-1,2-DICHLOROETHYLENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9508009
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: TRANS-1,2-DICHLOROETHYLENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9508009
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: TRANS-1,2-DICHLOROETHYLENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9508009
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: TRANS-1,2-DICHLOROETHYLENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9508009
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: PICLORAM

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9509008
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: PICLORAM

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9509008
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: PICLORAM

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9509008
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: PICLORAM
Compliance Period: 1995-01-01 - 1995

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9509008
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: 1,2-DICHLOROETHANE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9509009
 Enforcement ID:
 9400011

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: 1,2-DICHLOROETHANE

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00000000.00 Violation ID: 9509009 Enforcement ID: 9400012 Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: 1,2-DICHLOROETHANE
Compliance Period: 1995-01-01 - 1995-12-31

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9509009
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: 1,2-DICHLOROETHANE
Compliance Period: 1995-01-01 - 1995-12-31

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9509009
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: DINOSEB

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9510008
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: DINOSEB

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9510008
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: DINOSEB

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9510008
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: DINOSEB

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9510008
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: 1,1,1-TRICHLOROETHANE
Compliance Period: 1995 01, 01, 1995 12, 31

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9510009
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: 1,1,1-TRICHLOROETHANE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9510009
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: 1,1,1-TRICHLOROETHANE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9510009
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: 1,1,1-TRICHLOROETHANE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9510009
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: HEXACHLOROCYCLOPENTADIENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9511008
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: HEXACHLOROCYCLOPENTADIENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9511008
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: HEXACHLOROCYCLOPENTADIENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9511008
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: HEXACHLOROCYCLOPENTADIENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9511008
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: CARBON TETRACHLORIDE Compliance Period: 1995-01-01 - 1995-12-31

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9511009
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: CARBON TETRACHLORIDE Compliance Period: 1995-01-01 - 1995-12-31

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9511009
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: CARBON TETRACHLORIDE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9511009
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: CARBON TETRACHLORIDE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9511009
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: CARBOFURAN

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9512008
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: CARBOFURAN

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9512008
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: CARBOFURAN

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00000000.00

Violation ID:9512008Enforcement ID:9600019Enforcement Date:1996-05-06Enf. Action:State Formal NOV Issued

Contain Name EDANIZINI WATER WORKS

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: CARBOFURAN

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9512008
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type:Monitoring, RegularContaminant:1,2-DICHLOROPROPANECompliance Period:1995-01-01 - 1995-12-31

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9512009
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: 1,2-DICHLOROPROPANE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9512009
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: 1,2-DICHLOROPROPANE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9512009
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type:Monitoring, RegularContaminant:1,2-DICHLOROPROPANE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9512009
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: ATRAZINE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9513008
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: ATRAZINE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9513008
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: ATRAZINE

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00000000.00 Violation ID: 9513008 Enforcement ID: 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: ATRAZINE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9513008
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: TRICHLOROETHYLENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9513009
 Enforcement ID:
 9400011

Enforcement ID: 9513009 Enforcement ID: 9400011
Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: TRICHLOROETHYLENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9513009
 Enforcement ID:
 9400012

Violation ID: 9513009 Enforcement ID: 9400012
Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: TRICHLOROETHYLENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9513009
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: TRICHLOROETHYLENE
Compliance Period: 1995-01-01 - 1995-12-31

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9513009
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: ALACHLOR (LASSO)

Contaminant: ALACHLOR (LASSO)
Compliance Period: 1995-01-01 - 1995-12-31

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9514008
 Enforcement ID:
 9400011

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: ALACHLOR (LASSO)
Compliance Period: 1995-01-01 - 1995-12-31

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9514008
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: ALACHLOR (LASSO)
Compliance Period: 1995-01-01 - 1995-12-31

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9514008
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: ALACHLOR (LASSO)
Compliance Period: 1995-01-01 - 1995-12-31

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9514008
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: 1,1,2-TRICHLOROETHANE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9514009
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: 1,1,2-TRICHLOROETHANE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9514009
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: 1,1,2-TRICHLOROETHANE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9514009
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: 1,1,2-TRICHLOROETHANE

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00000000.00

Violation ID: 9514009 Enforcement ID: 9600020
Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: HEPTACHLOR

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9515008
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: HEPTACHLOR

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value:

Violation ID: 9515008 Enforcement ID: 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

00.000000.00

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: HEPTACHLOR

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9515008
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: HEPTACHLOR

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9515008
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: TETRACHLOROETHYLENE

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00000000.00

Violation ID: 9515009 Enforcement ID: 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: TETRACHLOROETHYLENE
Compliance Period: 1995-01-01 - 1995-12-31 Analytica

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9515009
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: TETRACHLOROETHYLENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9515009
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: TETRACHLOROETHYLENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9515009
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: HEPTACHLOR EPOXIDE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9516008
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: HEPTACHLOR EPOXIDE
Compliance Period: 1995-01-01 - 1995-12-31

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9516008
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: HEPTACHLOR EPOXIDE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9516008
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: HEPTACHLOR EPOXIDE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9516008
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: MONOCHLOROBENZENE (CHLOROBENZENE)

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9516009
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: MONOCHLOROBENZENE (CHLOROBENZENE)

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9516009
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: MONOCHLOROBENZENE (CHLOROBENZENE)

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9516009
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: MONOCHLOROBENZENE (CHLOROBENZENE)

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9516009
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: 2,4-D

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9517008
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: 2,4-D

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9517008
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: 2,4-D

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9517008
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: 2,4-D

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9517008
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: BENZENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9517009
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: BENZENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9517009
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: BENZENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9517009
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: BENZENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9517009
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: 2,4,5-TP (SILVEX)

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9518008
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: 2,4,5-TP (SILVEX)

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9518008
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: 2,4,5-TP (SILVEX)

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9518008
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: 2,4,5-TP (SILVEX)

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00000000.00 Violation ID: 9518008 Enforcement ID: 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: TOLUENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9518009
 Enforcement ID:
 9400011

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: TOLUENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9518009
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: TOLUENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9518009
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: TOLUENE

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00000000.00 Violation ID: 9518009 Enforcement ID: 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: HEXACHLOROBENZENE (HCB)

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9519008
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: HEXACHLOROBENZENE (HCB)

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9519008
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: HEXACHLOROBENZENE (HCB)

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9519008
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: HEXACHLOROBENZENE (HCB)

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9519008
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: ETHYLBENZENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9519009
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: ETHYLBENZENE

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00000000.00

Violation ID:9519009Enforcement ID:9400012Enforcement Date:1996-04-20Enf. Action:State Public Notif Requested

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: ETHYLBENZENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9519009
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: ETHYLBENZENE
Compliance Pariod: 4005 04 04 1005 13 5

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9519009
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: BENZO (A) PYRENE
Compliance Period: 1995-01-01 - 1995-12-31

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9520008
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: BENZO (A) PYRENE
Compliance Periods 1005 04 04 4005 43

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9520008
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: BENZO (A) PYRENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9520008
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: BENZO (A) PYRENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9520008
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: STYRENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9520009
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: STYRENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9520009
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: STYRENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9520009
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: STYRENE

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9520009
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: PENTACHLOROPHENOL

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9521008
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: PENTACHLOROPHENOL
Compliance Period: 4005-04-04-4005-43-34

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9521008
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: PENTACHLOROPHENOL
Compliance Parietics 4005 04 04 1005 13 34

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9521008
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular
Contaminant: PENTACHLOROPHENOL

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9521008
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: 1,2 DIBROMO-3-CHLOROPROPANE (DBCP)

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9522008
 Enforcement ID:
 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: 1,2 DIBROMO-3-CHLOROPROPANE (DBCP)

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9522008
 Enforcement ID:
 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: 1,2 DIBROMO-3-CHLOROPROPANE (DBCP)

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9522008
 Enforcement ID:
 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: 1,2 DIBROMO-3-CHLOROPROPANE (DBCP)

 Compliance Period:
 1995-01-01 - 1995-12-31
 Analytical Value:
 00000000.00

 Violation ID:
 9522008
 Enforcement ID:
 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

ENFORCEMENT INFORMATION:

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

Contaminant: ETHYLENE DIBROMIDE (EDB)

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00.000000.00 Violation ID: 9523008 Enforcement ID: 9400011

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

ETHYLENE DIBROMIDE (EDB) Contaminant:

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00.000000.00 9523008 Enforcement ID: 9400012 Violation ID:

1996-04-20 **Enforcement Date:** Enf. Action: State Public Notif Requested

FRANKLIN WATER WORKS System Name:

Violation Type: Monitoring, Regular

ETHYLENE DIBROMIDE (EDB) Contaminant:

00.000000.00 Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: Violation ID: 9523008 Enforcement ID: 9600019

1996-05-06 State Formal NOV Issued **Enforcement Date:** Enf. Action:

FRANKLIN WATER WORKS System Name:

Violation Type: Monitoring, Regular

Contaminant: ETHYLENE DIBROMIDE (EDB)

1995-01-01 - 1995-12-31 Analytical Value: 00.000000.00 Compliance Period: Violation ID: 9523008 Enforcement ID: 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular

CHLORDANE Contaminant:

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00.000000.00 Enforcement ID: 9524008 9400011 Violation ID:

Enforcement Date: 1996-04-20 Enf. Action: State Violation/Reminder Notice

FRANKLIN WATER WORKS System Name:

Violation Type: Monitoring, Regular Contaminant: **CHLORDANE**

00.000000.00 1995-01-01 - 1995-12-31 Analytical Value: Compliance Period: Violation ID: 9524008 Enforcement ID: 9400012

Enforcement Date: 1996-04-20 Enf. Action: State Public Notif Requested

FRANKLIN WATER WORKS System Name:

Violation Type: Monitoring, Regular Contaminant: **CHLORDANE**

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00.000000.00 Violation ID: 9524008 Enforcement ID: 9600019

Enforcement Date: 1996-05-06 Enf. Action: State Formal NOV Issued

System Name: FRANKLIN WATER WORKS

Violation Type: Monitoring, Regular Contaminant: **CHLORDANE**

Compliance Period: 1995-01-01 - 1995-12-31 Analytical Value: 00.000000.00 Violation ID: 9524008 Enforcement ID: 9600020

Enforcement Date: 1996-07-12 Enf. Action: State Public Notif Received

B4 West 1/2 - 1 Mile Higher

FED USGS USGS2080920

Agency cd: USGS Site no: 432703071400301

Site name: NH-FKW 49 Latitude: 432703

43.4509097 Longitude: 0714003 Dec lat: Dec Ion: -71.66702139 Coor meth: М NAD27 Latlong datum: Coor accr: Dec latlong datum: NAD83 District: 33 33 County: 013

Country: US Land net: Not Reported Location map: Not Reported Map scale: Not Reported

Altitude: 440 Altitude method: M

Altitude accuracy: Not Reported Altitude datum: NGVD29

Hydrologic: Pemigewasset. New Hampshire. Area = 1000 sq.mi.

Topographic: Not Reported

Site type: Ground-water other than Spring Date construction: 19880000

Date inventoried: Not Reported Mean greenwich time offset: EST

Local standard time flag: Y Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported Aquifer: BEDROCK

Well depth: 230.0 Hole depth: Not Reported Source of depth data: driller Project number: 443303500 Real time data flag: Not Reported Daily flow data begin date: Not Reported Daily flow data end date: Not Reported Daily flow data count: Not Reported Peak flow data begin date: Not Reported Peak flow data end date: Not Reported Peak flow data count: Not Reported Water quality data begin date: Not Reported Water quality data end date:Not Reported Water quality data count: Not Reported Ground water data begin date: Not Reported Ground water data end date: Not Reported

Ground water data count: Not Reported

Ground-water levels, Number of Measurements: 0

B5 West NH WELLS NH10006418

1/2 - 1 Mile Higher

 Granitid:
 0
 Well:
 382

 Town Code:
 087.0027
 Elevation:
 440

X Coord: 499754.5 Y Coord: 0

 Fname:
 R.
 Owner:
 NADEAU

 Street #:
 25
 Road:
 LAWSON AVE

 Town:
 FRANKLIN
 Map:
 1-96

Parcel: 94 Date completed: 05/10/1988 00:00:00

Domestic Reason Built: New Use: Type: Drilled in bedrock Depth: 230 To Bedrock: Casing: 135 127 Yield Test Dur: Yield Test Meth: Compressed air .5

Discharge:: 30 Water Level: -9999
Date Measured: Not Reported Water Quality Not Reported

Overburden Matl: 1-4 Report Quality: Fair Locent: 1 Locacc: 4

Note: Not Reported Ynad83: 0

Note: Not Reported Xnad83: 0

Ynad83: 0

Map ID Direction Distance

Elevation Database EDR ID Number

C6
SE FED USGS USGS2081022

1/2 - 1 Mile Lower

Agency cd: USGS Site no: 432637071385605

Site name: NH-FKW 84 Latitude: 432637

Longitude: 0713856 Dec lat: 43.44368778 Dec Ion: -71.64841 Coor meth: Μ Coor accr: S Latlong datum: NAD27 Dec latlong datum: NAD83 33 District: 33 County: 013 State:

Country: US Land net: Not Reported Location map: **FRANKLIN** Map scale: 24000 Altitude: 302 Altitude method: M NGVD29 Altitude accuracy: 10 Altitude datum:

Hydrologic: Merrimack. Massachusetts, New Hampshire. Area = 2300 sq.mi.

Topographic: Flood plain

Site type: Ground-water other than Spring Date construction: 19900326 Date inventoried: 19930316 Date construction: 19900326 EST

Local standard time flag: Y Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: STRATIFIED DEPOSITS, UNDIFFERENTIATED

Well depth:13.31Hole depth:13.5Source of depth data:geologistProject number:443304100Real time data flag:0Daily flow data begin date:0000-00-00

Daily flow data end date: 0000-00-00 Daily flow data count: 0

Peak flow data begin date: 0000-00-00 Peak flow data end date: 0000-00-00 Water quality data begin date: 0000-00-00

Water quality data end date:0000-00-00 Water quality data count: 0

Ground water data begin date: 1990-03-28 Ground water data end date: 1990-03-28

Ground water data count: 1

Ground-water levels, Number of Measurements: 1

Feet below Feet to
Date Surface Sealevel

1990-03-28 6.80

C7
SE FED USGS USGS2081021

1/2 - 1 Mile Lower

Agency cd: USGS Site no: 432637071385604

Site name: NH-FKW 83 Latitude: 432637

 Longitude:
 0713856
 Dec lat:
 43.44368778

 Dec lon:
 -71.64841
 Coor meth:
 M

NAD27 Coor accr: S Latlong datum: NAD83 Dec latlong datum: District: 33 State: 33 County: 013 Not Reported Country: US Land net:

Location map: FRANKLIN Map scale: 24000

Altitude: 303 Altitude method: M Altitude accuracy: 10 Altitude datum: NGVD29

Hydrologic: Merrimack. Massachusetts, New Hampshire. Area = 2300 sq.mi.

Topographic: Flood plain

Site type: Ground-water other than Spring Date construction: 19900207
Date inventoried: 19930316 Date construction: 19900207
Mean greenwich time offset: EST

Local standard time flag: Y Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: STRATIFIED DEPOSITS, UNDIFFERENTIATED

Well depth: 13.86 Hole depth: 17

Source of depth data:geologistProject number:443304100Real time data flag:0Daily flow data begin date:0000-00-00Daily flow data end date:0000-00-00Daily flow data count:0

Peak flow data begin date: 0000-00-00 Peak flow data end date: 0000-00-00 Water quality data begin date: 0000-00-00

Water quality data end date:0000-00-00 Water quality data count: 0

Ground water data begin date: 1990-02-07 Ground water data end date: 1990-02-07

Ground water data count: 1

Ground-water levels, Number of Measurements: 1

Feet below Feet to
Date Surface Sealevel

1990-02-07 7.57

C8
SE FED USGS USGS2081019

1/2 - 1 Mile Lower

Agency cd: USGS Site no: 432637071385602

Site name: NH-FKW 80 Latitude: 432637

 Longitude:
 0713856
 Dec lat:
 43.44368778

 Dec lon:
 -71.64841
 Coor meth:
 M

Coor accr: S Latlong datum: NAD27 Dec latlong datum: NAD83 District: 33 State: 33 County: 013 Country: US Land net: Not Reported

Location map: FRANKLIN Map scale: 24000
Altitude: 301 Altitude method: M
Altitude accuracy: 10 Altitude datum: NGVD29

Hydrologic: Merrimack. Massachusetts, New Hampshire. Area = 2300 sq.mi.

Topographic: Flood plain

Site type: Ground-water other than Spring Date construction: 19900206

Date inventoried: 19930315 Date construction: 19900206

Mean greenwich time offset: EST

Local standard time flag: Y Type of ground water site: Single well, other than collector or Ranney type

Aguifer Type: Not Reported

Aquifer: STRATIFIED DEPOSITS, UNDIFFERENTIATED

Well depth: 13.95 Hole depth: 17

Source of depth data: geologist Project number: 443304100
Real time data flag: 0 Daily flow data begin date: 0000-00-00
Daily flow data end date: 0000-00-00
Daily flow data count: 0

Peak flow data begin date: 0000-00-00 Peak flow data end date: 0000-00-00 Water quality data begin date: 0000-00-00

Water quality data end date:0000-00-00 Water quality data count: 0

Ground water data begin date: 1990-02-06 Ground water data end date: 1990-02-06

Ground water data count: 1

Ground-water levels, Number of Measurements: 1

Feet below Feet to
Date Surface Sealevel

1990-02-06 5.74

SE FED USGS USGS2081018

1/2 - 1 Mile Lower

Agency cd: USGS Site no: 432637071385601

Site name: NH-FKW 79 Latitude: 432637

0713856 43.44368778 Longitude: Dec lat: Dec Ion: -71.64841 Coor meth: Μ Coor accr: S Latlong datum: NAD27 NAD83 Dec latlong datum: District: 33 State: 33 County: 013 US Land net: Not Reported

Country:USLand net:Not ReportLocation map:FRANKLINMap scale:24000Altitude:300Altitude method:MAltitude accuracy:10Altitude datum:NGVD29

Hydrologic: Merrimack. Massachusetts, New Hampshire. Area = 2300 sq.mi.

Topographic: Flood plain

Site type: Ground-water other than Spring Date construction: 19900206

Date inventoried: 19930315 Date construction: 19900206

Mean greenwich time offset: EST

Local standard time flag: Y Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: STRATIFIED DEPOSITS, UNDIFFERENTIATED

Well depth: 10.91 Hole depth: 15
Source of depth data: geologist Project number: 443304100
Real time data flag: 0 Daily flow data begin date: 0000-00-00

Daily flow data end date: 0000-00-00 Daily flow data count: 0

Peak flow data begin date: 0000-00-00 Peak flow data end date: 0000-00-00 Water quality data begin date: 0000-00-00

Water quality data end date:0000-00-00 Water quality data count: 0

Ground water data begin date: 1990-02-06 Ground water data end date: 1990-02-06

Ground water data count: 1

Ground-water levels, Number of Measurements: 1

Feet below Feet to
Date Surface Sealevel

1990-02-06 5.15

C10 SE 1/2 - 1 Mile Lower

FED USGS USGS2081024

Agency cd: USGS Site no: 432637071385607

Site name: NH-FKW 86

Latitude: 432637

Longitude: 0713856 Dec lat: 43.44368778

 Dec Ion:
 -71.64841
 Coor meth:
 M

 Coor accr:
 S
 Latlong datum:
 NAD27

 Dec latlong datum:
 NAD83
 District:
 33

 State:
 33
 County:
 013

Country:USLand net:Not ReportedLocation map:FRANKLINMap scale:24000Altitude:300Altitude method:MAltitude accuracy:10Altitude datum:NGVD29

Hydrologic: Merrimack. Massachusetts, New Hampshire. Area = 2300 sq.mi.

Topographic: Flood plain

Site type: Ground-water other than Spring Date construction: 19900326

Date inventoried: 19920316 Date construction: 19900326

Mean greenwich time offset: EST

Local standard time flag: Y Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: STRATIFIED DEPOSITS, UNDIFFERENTIATED

Well depth:11Hole depth:13Source of depth data:geologistProject number:443304100

Real time data flag: 0 Daily flow data begin date: 0000-00-00

Daily flow data end date: 0000-00-00 Daily flow data count: 0
Peak flow data begin date: 0000-00-00 Peak flow data end date: 0000-00-

Peak flow data begin date:0000-00-00Peak flow data end date:0000-00-00Peak flow data count:0Water quality data begin date:0000-00-00

Water quality data end date:0000-00-00 Water quality data count: 0

Ground water data begin date: 1990-03-28 Ground water data end date: 1990-03-28

Ground water data count: 1

Ground-water levels, Number of Measurements: 1

Feet below Feet to
Date Surface Sealevel

1990-03-28 5.08

C11 SE FED USGS USGS2081023

1/2 - 1 Mile Lower

Agency cd: USGS Site no: 432637071385606

Site name: NH-FKW 85 Latitude: 432637

Longitude: 0713856 Dec lat: 43.44368778

Dec Ion: -71.64841 Coor meth: Coor accr: Latlong datum: NAD27 Dec latlong datum: NAD83 District: 33 County: 013 State: 33 Country: US Land net: Not Reported

Location map:FRANKLINMap scale:24000Altitude:300Altitude method:MAltitude accuracy:10Altitude datum:NGVD29

Hydrologic: Merrimack. Massachusetts, New Hampshire. Area = 2300 sq.mi.

Topographic: Flood plain

Site type: Ground-water other than Spring Date construction: 19900326

Date inventoried: 19930316 Date construction: 19900326

Mean greenwich time offset: EST

Local standard time flag: Y Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: STRATIFIED DEPOSITS, UNDIFFERENTIATED

Well depth:13.3Hole depth:13.5Source of depth data:geologistProject number:443304100

Real time data flag: 0 Daily flow data begin date: 0000-00-00

Daily flow data end date: 0000-00-00 Daily flow data count: 0

Peak flow data begin date: 0000-00-00 Peak flow data end date: 0000-00-00

TC1469641.11s Page A-48

Peak flow data count: 0 Water quality data begin date: 0000-00-00

Water quality data end date:0000-00-00 Water quality data count:

Ground water data begin date: 1990-03-28 Ground water data end date: 1990-03-28

Ground water data count: 1

Ground-water levels, Number of Measurements: 1

Feet below Feet to
Date Surface Sealevel

1990-03-28 5.53

C12 SE FED USGS USGS2081020

1/2 - 1 Mile Lower

Agency cd: USGS Site no: 432637071385603

Site name: NH-FKW 82 Latitude: 432637

Longitude: 0713856 Dec lat: 43.44368778

Dec Ion: -71.64841 Coor meth: Μ S Latlong datum: NAD27 Coor accr: Dec latlong datum: NAD83 District: 33 33 County: 013 State: Country: US Land net: Not Reported

Location map: FRANKLIN Map scale: 24000
Altitude: 301 Altitude method: M
Altitude accuracy: 10 Altitude datum: NGVD29

Hydrologic: Merrimack. Massachusetts, New Hampshire. Area = 2300 sq.mi.

Topographic: Flood plain

Site type: Ground-water other than Spring Date construction: 19900207

Date inventoried: 19930315 Date construction: 19900207

Mean greenwich time offset: EST

Local standard time flag: Y Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: STRATIFIED DEPOSITS, UNDIFFERENTIATED

Well depth: 13.30 Hole depth: 17

Source of depth data: geologist Project number: 443304100
Real time data flag: 0 Daily flow data begin date: 0000-00-00

Daily flow data end date: 0000-00-00 Daily flow data count:

Peak flow data begin date: 0000-00-00 Peak flow data count: 0000-00-00 Water quality data begin date: 0000-00-00

Water quality data end date:0000-00-00 Water quality data count: 0

Ground water data begin date: 1990-02-07 Ground water data end date: 1990-02-07

Ground water data count:

Ground-water levels, Number of Measurements: 1

Feet below Feet to
Date Surface Sealevel

Date Surface Sealevel

1990-02-07 5.52

C13 SE FED USGS USGS2081007

1/2 - 1 Mile Lower

Agency cd: **USGS** Site no: 432635071385801

Site name: NH-FKW 94

Latitude: 432635 Longitude: 0713858

Dec lat: 43.4431322 Dec Ion: -71.6489656 Coor meth: М Latlong datum: NAD27 Coor accr: S Dec latlong datum: NAD83 District: 33 33 County: 013

US Not Reported Country: Land net: **FRANKLIN** 24000 Location map: Map scale: Altitude: 297 Altitude method: Altitude accuracy: NGVD29 10 Altitude datum:

Hydrologic: Merrimack. Massachusetts, New Hampshire. Area = 2300 sq.mi.

Topographic: Flood plain

Ground-water other than Spring Date construction: 19900717 Site type: Date inventoried: 19930317 Mean greenwich time offset: **EST**

Local standard time flag: Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: STRATIFIED DEPOSITS, UNDIFFERENTIATED

Well depth: 7.22 Hole depth: 7.5 Source of depth data: 443304100 geologist Project number: Real time data flag: Daily flow data begin date: 0000-00-00

Daily flow data end date: 0000-00-00 Daily flow data count:

Peak flow data begin date: 0000-00-00 Peak flow data end date: 0000-00-00 Peak flow data count: Water quality data begin date: 0000-00-00

Water quality data end date:0000-00-00 Water quality data count:

Ground water data begin date: 1990-07-17 Ground water data end date: 1990-07-17

Ground water data count:

Ground-water levels. Number of Measurements: 1

Feet below Feet to Date Surface Sealevel

1990-07-17 3.08

C14 **FED USGS** USGS2080994

1/2 - 1 Mile Lower

> Agency cd: **USGS** Site no: 432634071385801

NH-FKW 101 Site name: Latitude: 432634

Longitude: 0713858 Dec lat: 43.44285444

Dec Ion: -71.6489656 Coor meth: Coor accr: Latlong datum: NAD27 Dec latlong datum: NAD83 District: 33 County: 013 State: 33 Country: US Land net: Not Reported

Location map: **FRANKLIN** Map scale: 24000 Altitude: 298 Altitude method: Μ Altitude accuracy: 10 Altitude datum: NGVD29

Hydrologic: Merrimack. Massachusetts, New Hampshire. Area = 2300 sq.mi.

Topographic: Flood plain

Site type: Ground-water other than Spring Date construction: 19900928 Date inventoried: 19930317 Mean greenwich time offset: **EST**

Single well, other than collector or Ranney type Local standard time flag: Type of ground water site:

Aquifer Type: Not Reported

Aquifer: STRATIFIED DEPOSITS, UNDIFFERENTIATED

Well depth: 15.85 Hole depth: 17

Source of depth data: 443304100 geologist Project number: Real time data flag: 0 Daily flow data begin date: 0000-00-00 Daily flow data end date: 0000-00-00 Daily flow data count:

Peak flow data begin date: Peak flow data end date: 0000-00-00 0000-00-00

TC1469641.11s Page A-50

Peak flow data count: 0 Water quality data begin date: 0000-00-00

Water quality data end date:0000-00-00 Water quality data count:

Ground water data begin date: 1990-10-01 Ground water data end date: 1990-10-01

Ground water data count: 1

Ground-water levels, Number of Measurements: 1

Feet below Feet to Date Surface Sealevel

1990-10-01 9.79

C15 SE FED USGS USGS2080995

1/2 - 1 Mile Lower

Agency cd: USGS Site no: 432634071385802

Site name: NH-FKW 102 Latitude: 432634

Longitude: 0713858 Dec lat: 43.44285444

Dec Ion: -71.6489656 Coor meth: Μ S Latlong datum: NAD27 Coor accr: Dec latlong datum: NAD83 District: 33 33 County: 013 State:

Country:USLand net:Not ReportedLocation map:FRANKLINMap scale:24000Altitude:297Altitude method:MAltitude accuracy:10Altitude datum:NGVD29

Hydrologic: Merrimack. Massachusetts, New Hampshire. Area = 2300 sq.mi.

Topographic: Flood plain

Site type: Ground-water other than Spring Date construction: 19900928

Date inventoried: 19930317 Date construction: 19900928

Mean greenwich time offset: EST

Local standard time flag: Y Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: STRATIFIED DEPOSITS, UNDIFFERENTIATED

Well depth: 16.75 Hole depth: 18.8

Source of depth data: geologist Project number: 443304100
Real time data flag: 0 Daily flow data begin date: 0000-00-00

Daily flow data end date: 0000-00-00 Daily flow data count:

Peak flow data begin date: 0000-00-00 Peak flow data count: 0 Peak flow data end date: 0000-00-00 Water quality data begin date: 0000-00-00

Water quality data end date:0000-00-00 Water quality data count: 0

Ground water data begin date: 1990-10-01 Ground water data end date: 1990-10-01

Ground water data count:

Ground-water levels, Number of Measurements: 1

Feet below Feet to
Date Surface Sealevel

Date Surface Sealevel

1990-10-01 11.53

C16
SE FED USGS USGS2081005

1/2 - 1 Mile Lower

Agency cd: **USGS** Site no: 432635071385604

Site name: NH-FKW 93 Latitude: 432635

Longitude: 0713856 Dec lat: 43.4431322 Dec Ion: -71.64841 Coor meth: М Latlong datum: NAD27 Coor accr: S Dec latlong datum: NAD83 District: 33 33 County: 013

US Not Reported Country: Land net: **FRANKLIN** 24000 Location map: Map scale: Altitude: 300 Altitude method: Altitude accuracy: NGVD29 10 Altitude datum:

Hydrologic: Merrimack. Massachusetts, New Hampshire. Area = 2300 sq.mi.

Topographic: Flood plain

Ground-water other than Spring Date construction: 19900717 Site type: Date inventoried: 19930317 Mean greenwich time offset: **EST**

Local standard time flag: Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: STRATIFIED DEPOSITS, UNDIFFERENTIATED

Well depth: 12.48 Hole depth: 12.9 Source of depth data: 443304100 geologist Project number: Real time data flag: Daily flow data begin date: 0000-00-00

Daily flow data end date: 0000-00-00 Daily flow data count:

Peak flow data begin date: 0000-00-00 Peak flow data end date: 0000-00-00 Peak flow data count: Water quality data begin date: 0000-00-00

Water quality data end date:0000-00-00 Water quality data count:

Ground water data begin date: 1990-07-17 Ground water data end date: 1990-07-17

Ground water data count:

Ground-water levels. Number of Measurements: 1

Feet below Feet to Date Surface Sealevel

1990-07-17 7.58

C17 **FED USGS** USGS2081006

1/2 - 1 Mile Lower

> Agency cd: **USGS** Site no: 432635071385605

NH-FKW 97 Site name: 432635 Latitude:

Longitude: 0713856 Dec lat:

43.4431322 Dec Ion: -71.64841 Coor meth: Coor accr: Latlong datum: NAD27 Dec latlong datum: NAD83 District: 33 County: 013 State: 33 Country: US Land net: Not Reported

Location map: **FRANKLIN** Map scale: 24000 Altitude: 301 Altitude method: Μ Altitude accuracy: 10 Altitude datum: NGVD29

Hydrologic: Merrimack. Massachusetts, New Hampshire. Area = 2300 sq.mi.

Topographic: Flood plain

Site type: Ground-water other than Spring Date construction: 19900927 Date inventoried: 19930317 Mean greenwich time offset: **EST**

Local standard time flag: Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: STRATIFIED DEPOSITS, UNDIFFERENTIATED

Well depth: 14.61 Hole depth: 16.5 Source of depth data: geologist Project number:

443304100 Real time data flag: 0 Daily flow data begin date: 0000-00-00

Daily flow data end date: 0000-00-00 Daily flow data count:

Peak flow data begin date: Peak flow data end date: 0000-00-00 0000-00-00

TC1469641.11s Page A-52

Peak flow data count: 0 Water quality data begin date: 0000-00-00

Water quality data end date:0000-00-00 Water quality data count:

Ground water data begin date: 1990-10-01 Ground water data end date: 1990-10-01

Ground water data count: 1

Ground-water levels, Number of Measurements: 1

Feet below Feet to Date Surface Sealevel

1990-10-01 7.35

C18 SE FED USGS USGS2081004

1/2 - 1 Mile Lower

Agency cd: USGS Site no: 432635071385603

Site name: NH-FKW 88 Latitude: 432635

Longitude: 0713856 Dec lat: 43.4431322 Dec Ion: -71.64841 Coor meth: Μ S Latlong datum: NAD27 Coor accr: Dec latlong datum: NAD83 District: 33 33 County: 013 State: Country: US Land net: Not Reported

Location map: FRANKLIN Map scale: 24000
Altitude: 299 Altitude method: M
Altitude accuracy: 10 Altitude datum: NGVD29

Hydrologic: Merrimack. Massachusetts, New Hampshire. Area = 2300 sq.mi.

Topographic: Flood plain

Site type: Ground-water other than Spring Date construction: 19900326

Date inventoried: 19930316 Date construction: 19900326

Mean greenwich time offset: EST

Local standard time flag: Y Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: STRATIFIED DEPOSITS, UNDIFFERENTIATED

Well depth: 13.37 Hole depth: 13.4

Source of depth data: geologist Project number: 443304100
Real time data flag: 0 Daily flow data begin date: 0000-00-00

Daily flow data end date: 0000-00-00 Daily flow data count:

Peak flow data begin date: 0000-00-00 Peak flow data count: 0000-00-00 Water quality data begin date: 0000-00-00

Water quality data end date:0000-00-00 Water quality data count: 0

Ground water data begin date: 1990-03-28 Ground water data end date: 1990-03-28

Ground water data count:

Ground-water levels, Number of Measurements: 1

Feet below Feet to
Date Surface Sealevel

Date Surface Sealevel

1990-03-28 7.03

C19
SE FED USGS USGS2081003

1/2 - 1 Mile Lower

Agency cd: USGS Site no: 432635071385602

Site name: NH-FKW 87

Latitude: 432635 Longitude: 0713856

Dec lat: 43.4431322 Dec Ion: -71.64841 Coor meth: М Latlong datum: NAD27 Coor accr: S Dec latlong datum: NAD83 District: 33 33 County: 013

Country:USLand net:Not ReportedLocation map:FRANKLINMap scale:24000Altitude:300Altitude method:MAltitude accuracy:10Altitude datum:NGVD29

Hydrologic: Merrimack. Massachusetts, New Hampshire. Area = 2300 sq.mi.

Topographic: Flood plain

Site type: Ground-water other than Spring Date construction: 19900326

Date inventoried: 19930316 Date construction: 19900326

Mean greenwich time offset: EST

Local standard time flag: Y Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: STRATIFIED DEPOSITS, UNDIFFERENTIATED

Well depth:12.82Hole depth:12.85Source of depth data:geologistProject number:443304100Real time data flag:0Daily flow data begin date:0000-00-00

Daily flow data end date: 0000-00-00 Daily flow data count: 0

Peak flow data begin date: 0000-00-00 Peak flow data count: 0 Peak flow data end date: 0000-00-00 Water quality data begin date: 0000-00-00

Water quality data end date:0000-00-00 Water quality data count: 0

Ground water data begin date: 1990-03-28 Ground water data end date: 1990-03-28

Ground water data count: 1

Ground-water levels, Number of Measurements: 1

Feet below Feet to
Date Surface Sealevel

1990-03-28 6.38

C20 SE FED USGS USGS2081002

Dec lat:

1/2 - 1 Mile Lower

Agency cd: USGS Site no: 432635071385601

Site name: NH-FKW 81 Latitude: 432635

Latitude: 432635 Longitude: 0713856 Dec Ion: -71.64841

Coor meth: Coor accr: Latlong datum: NAD27 Dec latlong datum: NAD83 District: 33 County: 013 State: 33 Country: US Land net: Not Reported Location map: **FRANKLIN** Map scale: 24000

Altitude accuracy: 10 Altitude datum: 24000

Altitude datum: NGVD29

Hydrologic: Merrimack. Massachusetts, New Hampshire. Area = 2300 sq.mi.

Topographic: Flood plain

Site type: Ground-water other than Spring Date construction: 19900206
Date inventoried: 19930315 Date construction: 19900206

Local standard time flag: Y Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: STRATIFIED DEPOSITS, UNDIFFERENTIATED

Well depth: 11.9 Hole depth: 12

Source of depth data: geologist Project number: 443304100
Real time data flag: 0 Daily flow data begin date: 0000-00-00
Daily flow data end date: 0000-00-00
Daily flow data count: 0

Peak flow data begin date: 0000-00-00 Peak flow data end date: 0000-00-00

T0440004444

TC1469641.11s Page A-54

43.4431322

Peak flow data count: 0 Water quality data begin date: 0000-00-00

Water quality data end date:0000-00-00 Water quality data count:

Ground water data begin date: 1990-02-06 Ground water data end date: 1990-02-06

Ground water data count: 1

Ground-water levels, Number of Measurements: 1

Feet below Feet to Date Surface Sealevel

1990-02-06 5.34

SE FED USGS USGS2080993

1/2 - 1 Mile Lower

Agency cd: USGS Site no: 432634071385605

Site name: NH-FKW 103 Latitude: 432634

Longitude: 0713856 Dec lat: 43.44285444

Dec Ion: -71.64841 Coor meth: Μ S Latlong datum: NAD27 Coor accr: Dec latlong datum: NAD83 District: 33 33 County: 013 State: Country: US Land net:

Country:USLand net:Not ReportedLocation map:FRANKLINMap scale:24000Altitude:300Altitude method:MAltitude accuracy:10Altitude datum:NGVD29

Hydrologic: Merrimack. Massachusetts, New Hampshire. Area = 2300 sq.mi.

Topographic: Flood plain

Site type: Ground-water other than Spring Date construction: 19900928

Date inventoried: 19930317 Date construction: 19900928

Mean greenwich time offset: EST

Local standard time flag: Y Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: STRATIFIED DEPOSITS, UNDIFFERENTIATED

Well depth: 15.15 Hole depth: 16

Source of depth data: geologist Project number: 443304100
Real time data flag: 0 Daily flow data begin date: 0000-00-00

Daily flow data end date: 0000-00-00 Daily flow data count:

Peak flow data begin date: 0000-00-00 Peak flow data count: 0000-00-00 Water quality data begin date: 0000-00-00

Water quality data end date:0000-00-00 Water quality data count: 0

Ground water data begin date: 1990-10-01 Ground water data end date: 1990-10-01

Ground water data count: 1

Ground-water levels, Number of Measurements: 1

Feet below Feet to
Date Surface Sealevel

Date Surface Sealevel

1990-10-01 10.15

C22
SE FED USGS USGS2080992

1/2 - 1 Mile Lower

Agency cd: USGS Site no: 432634071385604

Site name: NH-FKW 100

Latitude: 432634

Longitude: 0713856 Dec lat: 43.44285444

 Dec Ion:
 -71.64841
 Coor meth:
 M

 Coor accr:
 S
 Latlong datum:
 NAD27

 Dec latlong datum:
 NAD83
 District:
 33

 State:
 33
 County:
 013

Country:USLand net:Not ReportedLocation map:FRANKLINMap scale:24000Altitude:300Altitude method:MAltitude accuracy:10Altitude datum:NGVD29

Hydrologic: Merrimack. Massachusetts, New Hampshire. Area = 2300 sq.mi.

Topographic: Flood plain

Site type: Ground-water other than Spring Date construction: 19900927

Date inventoried: 19930317 Date construction: 19900927

Mean greenwich time offset: EST

Local standard time flag: Y Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: STRATIFIED DEPOSITS, UNDIFFERENTIATED

Well depth: 17 Hole depth: 17

Source of depth data: geologist Project number: 443304100
Real time data flag: 0 Daily flow data begin date: 0000-00-00

Daily flow data end date: 0000-00-00 Daily flow data count: 0

Peak flow data begin date: 0000-00-00 Peak flow data count: 0 Peak flow data end date: 0000-00-00 Water quality data begin date: 0000-00-00

Water quality data end date:0000-00-00 Water quality data count: 0

Ground water data begin date: 1990-10-01 Ground water data end date: 1990-10-01

Ground water data count: 1

Ground-water levels, Number of Measurements: 1

Feet below Feet to
Date Surface Sealevel

1990-10-01 9.85

C23
SE FED USGS USGS2080991

1/2 - 1 Mile Lower

Agency cd: USGS Site no: 432634071385603

Site name: NH-FKW 98 Latitude: 432634

Longitude: 0713856 Dec lat: 43.44285444

Dec Ion: -71.64841 Coor meth: Coor accr: Latlong datum: NAD27 Dec latlong datum: NAD83 District: 33 County: 013 State: 33 Country: US Land net: Not Reported

Location map:FRANKLINMap scale:24000Altitude:299Altitude method:MAltitude accuracy:10Altitude datum:NGVD29

Hydrologic: Merrimack. Massachusetts, New Hampshire. Area = 2300 sq.mi.

Topographic: Flood plain

Site type: Ground-water other than Spring Date construction: 19900927
Date inventoried: 19930317 Date construction: 19900927

Local standard time flag: Y Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: STRATIFIED DEPOSITS, UNDIFFERENTIATED

Well depth: 18.47 Hole depth: 18.5
Source of depth data: geologist Project number: 443304100

Real time data flag: 0 Daily flow data begin date: 0000-00-00

Daily flow data end date: 0000-00-00

Daily flow data count: 0

Daily now data end date: 0000-00-00 Daily now data count: 0

Peak flow data begin date: 0000-00-00 Peak flow data end date: 0000-00-00

TC1469641.11s Page A-56

Peak flow data count: 0 Water quality data begin date: 0000-00-00

Water quality data end date:0000-00-00 Water quality data count:

Ground water data begin date: 1990-10-01 Ground water data end date: 1990-10-01

Ground water data count: 1

Ground-water levels, Number of Measurements: 1

Feet below Feet to Date Surface Sealevel

1990-10-01 8.43

SE FED USGS USGS2080990

1/2 - 1 Mile Lower

Agency cd: USGS Site no: 432634071385602

Site name: NH-FKW 92 Latitude: 432634

Longitude: 0713856 Dec lat: 43.44285444

Dec Ion: -71.64841 Coor meth: Μ S Latlong datum: NAD27 Coor accr: Dec latlong datum: NAD83 District: 33 33 County: 013 State: US Land net:

Country:USLand net:Not ReportedLocation map:FRANKLINMap scale:24000Altitude:299Altitude method:MAltitude accuracy:10Altitude datum:NGVD29

Hydrologic: Merrimack. Massachusetts, New Hampshire. Area = 2300 sq.mi.

Topographic: Flood plain

Site type: Ground-water other than Spring Date construction: 19900717

Date inventoried: 19930317 Mean greenwich time offset: EST

Local standard time flag: Y Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: STRATIFIED DEPOSITS, UNDIFFERENTIATED

Well depth: 12.88 Hole depth: 15.8

Source of depth data: geologist Project number: 443304100
Real time data flag: 0 Daily flow data begin date: 0000-00-00

Daily flow data end date: 0000-00-00 Daily flow data count:

Peak flow data begin date: 0000-00-00 Peak flow data count: 0000-00-00 Water quality data begin date: 0000-00-00

Water quality data end date:0000-00-00 Water quality data count: 0

Ground water data begin date: 1990-07-17 Ground water data end date: 1990-07-17

Ground water data count:

Ground-water levels, Number of Measurements: 1

Feet below Feet to
Date Surface Sealevel

Date Surface Sealevel

1990-07-17 8.09

C25
SE FED USGS USGS2080989

1/2 - 1 Mile Lower

Agency cd: USGS Site no: 432634071385601

Site name: NH-FKW 91

Latitude: 432634 Longitude: 0713856

 Longitude:
 0713856
 Dec lat:
 43.44285444

 Dec lon:
 -71.64841
 Coor meth:
 M

Coor accr:SLatlong datum:NAD27Dec latlong datum:NAD83District:33State:33County:013

Country:USLand net:Not ReportedLocation map:FRANKLINMap scale:24000Altitude:297Altitude method:MAltitude accuracy:10Altitude datum:NGVD29

Hydrologic: Merrimack. Massachusetts, New Hampshire. Area = 2300 sq.mi.

Topographic: Flood plain

Site type: Ground-water other than Spring Date construction: 19900717

Date inventoried: 19930316 Mean greenwich time offset: EST

Local standard time flag: Y Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: STRATIFIED DEPOSITS, UNDIFFERENTIATED

Well depth: 14.48 Hole depth: 16.5
Source of depth data: geologist Project number: 443304100
Real time data flag: 0 Daily flow data begin date: 0000-00-00

Daily flow data end date: 0000-00-00 Daily flow data count: 0

Peak flow data begin date: 0000-00-00 Peak flow data count: 0 Peak flow data end date: 0000-00-00 Water quality data begin date: 0000-00-00

Water quality data end date:0000-00-00 Water quality data count: 0

Ground water data begin date: 1990-07-17 Ground water data end date: 1990-07-17

Ground water data count: 1

Ground-water levels, Number of Measurements: 1

Feet below Feet to
Date Surface Sealevel

1990-07-17 8.08

D26
SE FED USGS USGS2081191

1/2 - 1 Mile Lower

Agency cd: USGS Site no: 432633071385601

Site name: NH-FKW 90 Latitude: 432633

Longitude: 0713856 Dec lat: 43.44257667

Dec Ion: -71.64841 Coor meth: Coor accr: Latlong datum: NAD27 Dec latlong datum: NAD83 District: 33 County: 013 State: 33 Country: US Land net: Not Reported

Location map:FRANKLINMap scale:24000Altitude:298Altitude method:MAltitude accuracy:10Altitude datum:NGVD29

Hydrologic: Merrimack. Massachusetts, New Hampshire. Area = 2300 sq.mi.

Topographic: Flood plain

Site type: Ground-water other than Spring Date construction: 19900717

Date inventoried: 19930316 Date construction: 19900717

Mean greenwich time offset: EST

Local standard time flag: Y Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: STRATIFIED DEPOSITS, UNDIFFERENTIATED

Well depth: 14.11 Hole depth: 15.5
Source of depth data: geologist Project number: 443304100

Real time data flag: 0 Daily flow data begin date: 0000-00-00

Daily flow data end date: 0000-00-00 Daily flow data count: 0

Peak flow data begin date: 0000-00-00 Peak flow data end date: 0000-00-00

TC1469641.11s Page A-58

Peak flow data count: 0 Water quality data begin date: 0000-00-00

Water quality data end date:0000-00 Water quality data count: 0

Ground water data begin date: 1990-07-17 Ground water data end date: 1990-07-17

Ground water data count: 1

Ground-water levels, Number of Measurements: 1

Feet below Feet to
Date Surface Sealevel

1990-07-17 8.71

SE FED USGS USGS2081192

1/2 - 1 Mile Lower

Agency cd: USGS Site no: 432633071385602

Site name: NH-FKW 96 Latitude: 432633

Longitude: 0713856 Dec lat: 43.44257667

Dec Ion: -71.64841 Coor meth: Μ S Latlong datum: NAD27 Coor accr: Dec latlong datum: NAD83 District: 33 33 County: 013 State: Country: US Land net: Not Reported

Location map: FRANKLIN Map scale: 24000
Altitude: 299 Altitude method: M
Altitude accuracy: 10 Altitude datum: NGVD29

Hydrologic: Merrimack. Massachusetts, New Hampshire. Area = 2300 sq.mi.

Topographic: Flood plain

Site type: Ground-water other than Spring Date construction: Not Reported

Date inventoried: 19930317 Mean greenwich time offset: EST

Local standard time flag: Y Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: STRATIFIED DEPOSITS, UNDIFFERENTIATED
Well depth: Hole depth:

Well depth: 19.48 Hole depth: 19.5
Source of depth data: geologist Project number: 443304100

Real time data flag: 0 Daily flow data begin date: 0000-00-00

Daily flow data end date: 0000-00-00 Daily flow data count:

Peak flow data begin date: 0000-00-00 Peak flow data count: 0000-00-00 Water quality data begin date: 0000-00-00

Water quality data end date:0000-00-00 Water quality data count: 0

Ground water data begin date: 1990-10-01 Ground water data end date: 1990-10-01

Ground water data count:

Ground-water levels, Number of Measurements: 1

Feet below Feet to
Date Surface Sealevel

Date Surface Sealevel

1990-10-01 7.9

D28
SE FED USGS USGS2081185

1/2 - 1 Mile Lower

Agency cd: **USGS** Site no: 432632071385701

Site name: NH-FKW 89 Latitude: 432632

Longitude: 0713857 Dec lat: 43.44229889

Dec Ion: -71.64868778 Coor meth: М Latlong datum: NAD27 Coor accr: S Dec latlong datum: NAD83 District: 33 33 County: 013

US Not Reported Country: Land net: **FRANKLIN** 24000 Location map: Map scale: Altitude: 297 Altitude method: Altitude accuracy: NGVD29 10 Altitude datum:

Hydrologic: Merrimack. Massachusetts, New Hampshire. Area = 2300 sq.mi.

Topographic: Flood plain

Ground-water other than Spring Date construction: 19900717 Site type: Date inventoried: 19930316 Mean greenwich time offset: **EST**

Local standard time flag: Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: STRATIFIED DEPOSITS, UNDIFFERENTIATED

Well depth: 8.34 Hole depth: 8.50 Source of depth data: 443304100 geologist Project number: Real time data flag: Daily flow data begin date: 0000-00-00

Daily flow data end date: 0000-00-00 Daily flow data count:

Peak flow data begin date: 0000-00-00 Peak flow data end date: 0000-00-00 Peak flow data count: Water quality data begin date: 0000-00-00

Water quality data end date:0000-00-00 Water quality data count:

Ground water data begin date: 1990-08-14 Ground water data end date: 1990-08-14

Ground water data count:

Ground-water levels. Number of Measurements: 1

Feet below Feet to Date Surface Sealevel

1990-08-14 7.03

D29 FED USGS USGS2081186

1/2 - 1 Mile Lower

> Agency cd: **USGS** Site no: 432632071385702

NH-FKW 99 Site name: Latitude: 432632

Longitude: 0713857 Dec lat:

43.44229889 Dec Ion: -71.64868778 Coor meth: Coor accr: Latlong datum: NAD27 Dec latlong datum: NAD83 District: 33 County: 013 State: 33 Country: US Land net: Not Reported

Location map: **FRANKLIN** Map scale: 24000 Altitude: 299 Altitude method: Μ Altitude accuracy: 10 Altitude datum: NGVD29

Hydrologic: Merrimack. Massachusetts, New Hampshire. Area = 2300 sq.mi.

Topographic: Flood plain

Site type: Ground-water other than Spring Date construction: 19900927 Date inventoried: 19930317 Mean greenwich time offset: **EST**

Local standard time flag: Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: STRATIFIED DEPOSITS, UNDIFFERENTIATED

Well depth: 18 Hole depth: 18

Source of depth data: 443304100 geologist Project number: Real time data flag: 0 Daily flow data begin date: 0000-00-00 Daily flow data end date: 0000-00-00 Daily flow data count:

Peak flow data begin date: Peak flow data end date: 0000-00-00 0000-00-00

TC1469641.11s Page A-60

Peak flow data count: 0 Water quality data begin date: 0000-00-00

Water quality data end date:0000-00-00

Ground water data begin date: 1990-10-01

Ground water data count: 1

Ground-water levels, Number of Measurements: 1

Feet below Feet to
Date Surface Sealevel

1990-10-01 9

Water quality data count:

Ground water data end date: 1990-10-01

West 1/2 - 1 Mile Higher

Agency cd: USGS Site no: 432704071401601

Site name: NH-FKW9997391

Latitude: 432704.00 Longitude: 0714016.00

Longitude: Dec lat: 43.45111111 Dec Ion: -71.67111111 Coor meth: G S Latlong datum: NAD83 Coor accr: Dec latlong datum: NAD83 District: 33 33 County: 013 State:

Country: Land net: Not Reported US Location map: Not Reported Map scale: Not Reported Altitude: Not Reported Altitude method: Not Reported Not Reported Altitude accuracy: Altitude datum: Not Reported

Hydrologic: Not Reported Topographic: Not Reported

Topographic: Not Reported
Site type: Ground-water other than Spring

Site type: Ground-water other than Spring Date construction: 20020513

Date inventoried: Not Reported Mean greenwich time offset: EST

Local standard time flag: Y Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported Aquifer: BEDROCK

Well depth: 200.0 Hole depth: Not Reported 245000S Source of depth data: driller Project number: Real time data flag: Not Reported Daily flow data begin date: Not Reported Daily flow data end date: Not Reported Daily flow data count: Not Reported Peak flow data begin date: Not Reported Peak flow data end date: Not Reported Peak flow data count: Not Reported Water quality data begin date: Not Reported Water quality data end date:Not Reported Water quality data count: Not Reported Ground water data end date: Ground water data begin date: Not Reported Not Reported

Ground water data count: Not Reported

Ground-water levels, Number of Measurements: 0

D31 SE 1/2 - 1 Mile

Lower

FED USGS USGS2081179

USGS2080923

FED USGS

USGS Agency cd: Site no: 432631071385601

Site name: NH-FKW 95

Latitude: 432631 Longitude: 0713856

Dec lat: 43.4420211 Dec Ion: -71.64841 Coor meth: М Latlong datum: NAD27 Coor accr: S Dec latlong datum: NAD83 District: 33 33 County: 013

US Not Reported Country: Land net: **FRANKLIN** 24000 Location map: Map scale: Altitude: 296 Altitude method: Altitude accuracy: NGVD29 10 Altitude datum:

Hydrologic: Merrimack. Massachusetts, New Hampshire. Area = 2300 sq.mi.

Topographic: Flood plain

Ground-water other than Spring Date construction: 19900927 Site type: Date inventoried: 19930317 Mean greenwich time offset: **EST**

Local standard time flag: Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: STRATIFIED DEPOSITS, UNDIFFERENTIATED

Well depth: 17.62 Hole depth: 18 Source of depth data: 443304100 geologist Project number:

Real time data flag: Daily flow data begin date: 0000-00-00 0000-00-00 Daily flow data count:

Daily flow data end date:

Peak flow data begin date: 0000-00-00 Peak flow data end date: 0000-00-00 Peak flow data count: Water quality data begin date: 0000-00-00

Water quality data end date:0000-00-00 Water quality data count:

Ground water data begin date: 1990-10-01 Ground water data end date: 1990-10-01

Ground water data count:

Ground-water levels. Number of Measurements: 1

Feet below Feet to Date Surface Sealevel

1990-10-01 8.70

FED USGS USGS2081160

1/2 - 1 Mile Lower

> Agency cd: **USGS** Site no: 432624071391301

NH-FKW 106 Site name: Latitude: 432624

Longitude: 0713913 Dec lat: 43.44007667

Dec Ion: -71.6531322 Coor meth: Coor accr: Latlong datum: NAD27 Dec latlong datum: NAD83 District: 33 County: 013 State: 33 Country: US Land net: Not Reported

Location map: **FRANKLIN** Map scale: 24000 Altitude: 295 Altitude method: M Altitude accuracy: 5 Altitude datum: NGVD29

Hydrologic: Merrimack. Massachusetts, New Hampshire. Area = 2300 sq.mi.

Topographic: Not Reported

Site type: Ground-water other than Spring Date construction: 19460918 Date inventoried: 19940107 Mean greenwich time offset: **EST**

Local standard time flag: Υ Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported Aquifer: Not Reported

Well depth: 27 Hole depth: 27

Source of depth data: Not Reported Project number: 443303900 Not Reported Real time data flag: Daily flow data begin date: Not Reported Daily flow data end date: Not Reported Daily flow data count: Not Reported Peak flow data begin date: Peak flow data end date: Not Reported Not Reported

TC1469641.11s Page A-62

Peak flow data count: Not Reported Water quality data begin date: Not Reported Water quality data end date: Not Reported Water quality data count: Not Reported Ground water data begin date: Not Reported Ground water data end date: Not Reported

Ground water data count: Not Reported

Ground-water levels, Number of Measurements: 0

E33 **NH WELLS** NHWS001534 North

1/2 - 1 Mile Lower

> Masterid: 52839 Pwsid: 0851010-002

System_id: 0851010 002 Source:

FRANKLIN WATER WORKS Name: Address: 43 WEST BOW STREET

Town: **FRANKLIN** System_act: Active System_typ: Community Population: 7000

GPW 2 /SOUTH /ACME WELL 2 Source_act: Active Source_des:

Source_typ: Groundwater Well depth: 75

Src_delin: Phase I delineation based on hydrogeologic data

Provol: 0

Yield: 500 X_coord: 987262.813 350050.156 Y_coord: Longitude: 71 39 19.149

Latitude: 43 27 37.631

F34 North 1/2 - 1 Mile **FED USGS** USGS2080654

Lower

USGS 432738071330601 Agency cd: Site no:

NH-FKW 3 Site name: Latitude: 432738 Longitude: 0713918

43.46063194 Dec lat: Dec Ion: -71.65452139 Coor meth: Μ NAD27 Coor accr: Latlong datum: Dec latlong datum: NAD83 District: 33 State: 33 County: 013

Country: US Land net: Not Reported **FRANKLIN** 24000 Location map: Map scale: Altitude: 320 Altitude method: М Altitude accuracy: 10 Altitude datum: NGVD29

Hydrologic: Pemigewasset. New Hampshire. Area = 1000 sq.mi.

Topographic: Not Reported

Ground-water other than Spring Date construction: 19640530 Site type: Not Reported **EST** Date inventoried: Mean greenwich time offset:

Local standard time flag: Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Not Reported Aquifer:

Well depth: 82 Hole depth: Not Reported Source of depth data: driller Project number: 443303500 Not Reported Daily flow data begin date: Not Reported Real time data flag: Daily flow data end date: Not Reported Daily flow data count: Not Reported Peak flow data begin date: Not Reported Peak flow data end date: Not Reported Peak flow data count: Not Reported Water quality data begin date: Not Reported Water quality data end date:Not Reported Water quality data count: Not Reported Ground water data begin date: Not Reported Ground water data end date: Not Reported

Ground water data count: Not Reported

Ground-water levels, Number of Measurements: 0

Map ID Direction Distance

EDR ID Number Elevation Database

Type of ground water site:

35 WSW 1/2 - 1 Mile Higher

> Agency cd: **USGS** Site no: 432646071401701

NH-FKW9997367 Site name:

432646.00 Latitude:

Longitude: 0714017.00 Dec lat: 43.44611111 Dec Ion: -71.67138889 Coor meth: G Coor accr: S Latlong datum: NAD83 Dec latlong datum: NAD83 33 District: 013 33 County: State:

Country: US Land net: Not Reported Location map: Not Reported Map scale: Not Reported Not Reported Not Reported Altitude: Altitude method: Not Reported Altitude accuracy: Altitude datum: Not Reported

Hydrologic: Not Reported

Topographic: Not Reported

Site type: Ground-water other than Spring Date construction: 20030918 Date inventoried: Not Reported Mean greenwich time offset: **EST**

Local standard time flag:

Aquifer Type: Not Reported

Aquifer: **BEDROCK** Well depth: 260.0

Hole depth: Not Reported Source of depth data: 245000S driller Project number: Real time data flag: Not Reported Daily flow data begin date: Not Reported Daily flow data end date: Not Reported Daily flow data count: Not Reported Peak flow data begin date: Not Reported Peak flow data end date: Not Reported Peak flow data count: Not Reported Water quality data begin date: Not Reported Water quality data end date:Not Reported Water quality data count: Not Reported Ground water data end date: Ground water data begin date: Not Reported Not Reported

Ground water data count: Not Reported

Ground-water levels, Number of Measurements: 0

F36

1/2 - 1 Mile Lower

North

0851010-501 Masterid: 52839 Pwsid: System_id: 0851010 Source: 501

Name: FRANKLIN WATER WORKS

Address: 43 WEST BOW STREET

FRANKLIN Active Town: System_act: System_typ: Community Population: 7000

Source_act: Active Source_des: **ACME STATION**

Entity/treatment facility Source_typ: Well_depth:

Src_delin: Not Reported

Provol: 0

Yield: X_coord: 987070.125 0 Y_coord: 350521.969 Longitude: 71 39 21.761

Latitude: 43 27 42.291 **NH WELLS**

FED USGS

USGS2081067

Single well, other than collector or Ranney type

NHWS004496

Map ID Direction Distance

Elevation Database EDR ID Number

37
SSE
FED USGS USGS2081151

1/2 - 1 Mile Lower

Agency cd: USGS Site no: 432619071390601

Site name: NH-FKW 105 Latitude: 432619

Longitude: 0713906 Dec lat: 43.43868778 Dec Ion: -71.65118778 Coor meth: Μ Coor accr: Latlong datum: NAD27 Dec latlong datum: NAD83 33 District: 33 County: 013 State:

Country: US Land net: Not Reported Location map: **FRANKLIN** Map scale: 24000 290 Altitude: Altitude method: M NGVD29 Altitude accuracy: 5 Altitude datum:

Hydrologic: Merrimack. Massachusetts, New Hampshire. Area = 2300 sq.mi.

Topographic: Not Reported

Site type: Ground-water other than Spring Date construction: 19460918 Date inventoried: 19940107 Date construction: 19460918 EST

Local standard time flag: Y Type of ground water site: Single well, other than collector or Ranney type

Aquifer Type: Not Reported

Aquifer: Not Reported

Well depth: 35 Hole depth: 35

Source of depth data: 443303900 logs Project number: Real time data flag: Not Reported Daily flow data begin date: Not Reported Not Reported Daily flow data end date: Daily flow data count: Not Reported Peak flow data begin date: Not Reported Peak flow data end date: Not Reported Peak flow data count: Not Reported Water quality data begin date: Not Reported Water quality data end date:Not Reported Water quality data count: Not Reported Ground water data end date: Ground water data begin date: Not Reported Not Reported

Ground water data count: Not Reported

Ground-water levels, Number of Measurements: 0

F38
North
NH WELLS NHWS001533

1/2 - 1 Mile Lower

Masterid: 52839 Pwsid: 0851010-001

System_id: 0851010 Source: 001

Name: FRANKLIN WATER WORKS Address: 43 WEST BOW STREET

Town: FRANKLIN System_act: Active System_typ: Community Population: 7000

Source_act: Active Source_des: GPW 1 / NORTH /ACME WELL 1

Source_typ: Groundwater Well_depth: 75

Src_delin: Phase I delineation based on hydrogeologic data

Provol: 0

 Yield:
 500
 X_coord:
 987171.563

 Y_coord:
 350737
 Longitude:
 71 39 20.384

Latitude: 43 27 44.415

Map ID Direction Distance

Elevation Database EDR ID Number

Type of ground water site:

F39
North
FED USGS USGS2080687
1/2 - 1 Mile

Lower

Agency cd: USGS Site no: 432745071330701

Site name: NH-FKW 2 Latitude: 432745 Longitude: 0713921

Dec lat: 43.4625761 -71.6553547 Coor meth: Dec Ion: Μ Coor accr: Latlong datum: NAD27 NAD83 Dec latlong datum: District: 33 33 County: 013 State:

Country: US Land net: Not Reported Location map: **FRANKLIN** Map scale: 24000 Altitude: 320 Altitude method: M NGVD29 Altitude accuracy: 10 Altitude datum:

Hydrologic: Pemigewasset. New Hampshire. Area = 1000 sq.mi.

Topographic: Not Reported

Site type: Ground-water other than Spring Date construction: 19640425

Date inventoried: Not Reported Date inventoried: 19640425

Local standard time flag: Y

Aquifer Type: Not Reported

Aquifer: Not Reported

Well depth: Hole depth: Not Reported Source of depth data: Not Reported 443303500 Project number: Real time data flag: Not Reported Daily flow data begin date: Not Reported Daily flow data end date: Not Reported Daily flow data count: Not Reported Peak flow data begin date: Not Reported Peak flow data end date: Not Reported Peak flow data count: Not Reported Water quality data begin date: Not Reported Water quality data end date:Not Reported Water quality data count: Not Reported Ground water data end date: Ground water data begin date: Not Reported Not Reported

Ground water data count: Not Reported

Ground-water levels, Number of Measurements: 0

40 East FED USGS USGS2080919

1/2 - 1 Mile Higher

Agency cd: USGS Site no: 432703071381801

Site name: NH-FKW9997372

Latitude: 432703.00

Longitude: 0713818.00 Dec lat: 43.45083333 -71.63833333 Dec Ion: Coor meth: G NAD83 Coor accr: S Latlong datum: Dec latlong datum: NAD83 District: 33 State: 33 County: 013

US Not Reported Country: Land net: Location map: Not Reported Map scale: Not Reported Not Reported Altitude: Altitude method: Not Reported Altitude accuracy: Not Reported Altitude datum: Not Reported

Hydrologic: Not Reported

Topographic: Not Reported

Site type: Ground-water other than Spring Date construction: 20030820 Date inventoried: Not Reported Mean greenwich time offset: EST

Single well, other than collector or Ranney type

Local standard time flag: Y

Aquifer Type: Not Reported **BEDROCK** Aquifer: Well depth: 140.0 driller Source of depth data: Real time data flag: Not Reported Daily flow data end date: Not Reported Peak flow data begin date: Not Reported Peak flow data count: Not Reported Water quality data end date:Not Reported Ground water data begin date: Not Reported Ground water data count: Not Reported

Ground-water levels, Number of Measurements: 0

Type of ground water site: Single well, other than collector or Ranney type

Hole depth:
Project number:
Daily flow data begin date:
Daily flow data count:
Peak flow data end date:
Water quality data begin date:
Water quality data begin date:
Water quality data count:
Water quality data count:
Ground water data end date:
Not Reported
Not Reported
Not Reported

AREA RADON INFORMATION

State Database: NH Radon

Radon Test Results

County	Num Results	Avg. Pci/L	Max. Pci/L	Pct. > 4 Pci/L	Pct. > 12 Pci/L
					
MERRIMACK 1,961		2.0	152.8	25.2	6.0

Federal EPA Radon Zone for MERRIMACK County: 2

Note: Zone 1 indoor average level > 4 pCi/L.

: Zone 2 indoor average level >= 2 pCi/L and <= 4 pCi/L.

: Zone 3 indoor average level < 2 pCi/L.

Federal Area Radon Information for MERRIMACK COUNTY, NH

Number of sites tested: 199

Area	Average Activity	% <4 pCi/L	% 4-20 pCi/L	% >20 pCi/L
Living Area	1.320 pCi/L	81%	16%	3%
Basement	2.560 pCi/L	72%	26%	3%

PHYSICAL SETTING SOURCE RECORDS SEARCHED

TOPOGRAPHIC INFORMATION

USGS 7.5' Digital Elevation Model (DEM)

Source: United States Geologic Survey

EDR acquired the USGS 7.5' Digital Elevation Model in 2002. 7.5-Minute DEMs correspond to the USGS

1:24,000- and 1:25,000-scale topographic quadrangle maps.

HYDROLOGIC INFORMATION

Flood Zone Data: This data, available in select counties across the country, was obtained by EDR in 1999 from the Federal Emergency Management Agency (FEMA). Data depicts 100-year and 500-year flood zones as defined by FEMA.

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002 from the U.S. Fish and Wildlife Service.

HYDROGEOLOGIC INFORMATION

AQUIFLOW^R Information System

Source: EDR proprietary database of groundwater flow information

EDR has developed the AQUIFLOW Information System (AIS) to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted to regulatory authorities at select sites and has extracted the date of the report, hydrogeologically determined groundwater flow direction and depth to water table information.

GEOLOGIC INFORMATION

Geologic Age and Rock Stratigraphic Unit

Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - A digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

STATSGO: State Soil Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Services

The U.S. Department of Agriculture's (USDA) Natural Resources Conservation Service (NRCS) leads the national Conservation Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps.

ADDITIONAL ENVIRONMENTAL RECORD SOURCES

FEDERAL WATER WELLS

PWS: Public Water Systems

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Public Water System data from the Federal Reporting Data System. A PWS is any water system which provides water to at least 25 people for at least 60 days annually. PWSs provide water from wells, rivers and other sources.

PWS ENF: Public Water Systems Violation and Enforcement Data

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Violation and Enforcement data for Public Water Systems from the Safe Drinking Water Information System (SDWIS) after August 1995. Prior to August 1995, the data came from the Federal Reporting Data System (FRDS).

USGS Water Wells: USGS National Water Inventory System (NWIS)

This database contains descriptive information on sites where the USGS collects or has collected data on surface water and/or groundwater. The groundwater data includes information on wells, springs, and other sources of groundwater.

PHYSICAL SETTING SOURCE RECORDS SEARCHED

STATE RECORDS

Public Water Supply Sources

Source: Department of Environmental Services

Telephone: 603-271-3503

Well Locations

Source: University of New Hampshire, GRANIT

Telephone: 603-862-1792

RADON

State Database: NH Radon

Source: Department of Health and Human Services

Telephone: 603-271-4610

Summary Table of Short-term Radon Test Results

Area Radon Information

Source: USGS

Telephone: 703-356-4020

The National Radon Database has been developed by the U.S. Environmental Protection Agency

(USEPA) and is a compilation of the EPA/State Residential Radon Survey and the National Residential Radon Survey. The study covers the years 1986 - 1992. Where necessary data has been supplemented by information collected at private sources such as universities and research institutions.

EPA Radon Zones

Source: EPA

Telephone: 703-356-4020

Sections 307 & 309 of IRAA directed EPA to list and identify areas of U.S. with the potential for elevated indoor

radon levels.

OTHER

Airport Landing Facilities: Private and public use landing facilities

Source: Federal Aviation Administration, 800-457-6656

Epicenters: World earthquake epicenters, Richter 5 or greater

Source: Department of Commerce, National Oceanic and Atmospheric Administration

ORPHAN SUMMARY

City	EDR ID	Site Name	Site Address	Zip	Database(s)
FRANKLIN	S106697155	NH DOT BRIDGE MAINTENANCE	ROUTE 127		SHWS, ALLSITES
FRANKLIN	U001557525	NH DOT PS 211	RTE 127	03235	UST, ALLSITES
FRANKLIN	1007204083	JOHN'S EXXON	RTE 3 SOUTH MAIN ST	03235	RCRA-SQG
FRANKLIN	U001558164	ACME STAPLE COMPANY	RTE 3A	03235	UST, SHWS, ALLSITES
FRANKLIN	1000418273	J. P. STEVENS TEXTILE	EAST BOW STREET	03235	RCRA-SQG, RCRA-TSDF, FINDS,
ED ANIZUM	4000040000	L D. OTEVENO TEVTUE	EAGT DOWN OTDEET	00005	CORRACTS, CERC-NFRAP
FRANKLIN	1006812623		EAST BOW STREET	03235	CERC-NFRAP
FRANKLIN	1007203826	SAFETY-KLEEN (NE) INC	43 WEST BOW ST RTE 127	03235	RCRA-SQG
FRANKLIN		GHI ASSOCIATES, INC.	EAST BOW STREET	00005	SHWS, ALLSITES
FRANKLIN		FRANKLIN JR/SR HIGH SCHOOL	115 CENTER ST/RTE 3	03235	UST
FRANKLIN	1004751203	NH ARMY NATIONAL GUARD	FRANKLIN STATE ARMORY	03235	RCRA-SQG, FINDS
FRANKLIN	S102777770		FRANKLIN INDUSTRIAL PARK		NH Spills, ALLSITES
FRANKLIN	S106201343		GRANITE DRIVE		ALLSITES
FRANKLIN	94426003	INDUSTRIAL PARK DR., POLYCLAD LAMINATES	INDUSTRIAL PARK DR., POLYCLAD LAMINATES INC.	03235	ERNS
		INC.			
FRANKLIN	1000388451	WEBSTER VALVE INC	S MAIN ST	03235	RCRA-LQG, FINDS, TRIS
FRANKLIN	1000414840	EASTMAN FALLS HYDRO STATION - PSNH	N MAIN ST	03235	RCRA-SQG, FINDS
FRANKLIN	U002177125	FORMER RADIO SHACK	S MAIN ST	03235	UST
FRANKLIN	1003862542	ACME STAPLE COMPANY	NORTH MAIN STREET	03235	CERC-NFRAP
FRANKLIN	U001557223	FRANKLIN ARMORY	SOUTH MAIN STREET/RTE 3	03235	UST
FRANKLIN	S105771398	ACME WELL SITE - FRANKLIN WATER WORKS	N.MAIN ST.@ WEBSTER LAKE RD		ALLSITES
FRANKLIN	U000347009	WINNIPESAUKEE RIVER BASIN WWTP	OFF RTE 3	03235	UST, ALLSITES
FRANKLIN	S105426282	FRANKLIN TRANSFER STATION	PUNCH BROOK ROAD	03235	ALLSITES, SWF/LF
FRANKLIN	S105426283	FRANKLIN ASH LANDFILL	PUNCH BROOK ROAD	03235	SWF/LF
FRANKLIN	1000348237	OAK MATERIALS GROUP LAMINATES DIV	RANGE RD	03235	RCRA-SQG, FINDS
FRANKLIN	S105426281	FRANKLIN MUNICIPAL LANDFILL	RIVER ROAD	03235	SWF/LF
FRANKLIN	S102610552	LAKES REGION ARTESIAN WELL	TANNERY STREET		NH Spills, ALLSITES
WEST FRANKLIN	94426085	POLYCLAD LAMINATES	POLYCLAD LAMINATES	03235	ERNS

NH DOT BRIDGE MAINTENANCE SHWS S106697155 **ROUTE 127 ALLSITES** N/A

FRANKLIN, NH

SHWS:

Facility ID: 200409198 Proj Type: **HAZWASTE**

No. of Permits:

Project Manager: MINICUCCI

NH Sites:

Facility ID: 200409198 Project Type: **HAZWASTE** Project Manager: MINICUCCI

Num of Permits: 0

NH DOT PS 211 UST U001557525 **RTE 127 ALLSITES** N/A FRANKLIN, NH 03235

UST:

Facility ID: 0113952 Tank ID:

Install Date: 1991-08-01 00:00:00 Last Test: Not reported Close Date: Not reported Closure Type: Not reported

Chemical: Diesel. Capacity (gal): 3000 Owner: NH DOT

PO BOX 483 CONCORD, NH 03302

Lust Tracking Number: 199702061

Type of Tank Construction: Steel, corrosion protected

Type of Pipe Construction: Fiberglass

Double Wall Construction: Yes

1991-08-01 00:00:00 Spill Installed: Overfill: 1991-08-01 00:00:00

Line Leak Detection: Not reported Permanent Closure: Not reported Permanent Closure Analysis: Not reported

Facility ID: 0113952 Tank ID:

Install Date: 1993-08-01 00:00:00 Last Test: Not reported Close Date: Not reported Closure Type: Not reported #2 heating oil. Chemical:

Capacity (gal): 1000 Owner: NH DOT PO BOX 483

CONCORD, NH 03302

Lust Tracking Number: 199702061 Composite material Type of Tank Construction: Type of Pipe Construction: Other Material

Double Wall Construction: Yes

Spill Installed: 1993-08-01 00:00:00 Overfill: 1993-08-01 00:00:00

Line Leak Detection: Not reported Permanent Closure: Not reported Permanent Closure Analysis: Not reported

NH DOT PS 211 (Continued)

U001557525

Facility ID: 0113952 Tank ID: 2

Install Date: 1911-11-11 00:00:00 Last Test: Not reported Close Date: Not reported Closure Type: Removed Chemical: #2 heating oil.

Capacity (gal): 1000

Owner: NH DOT
PO BOX 483
CONCORD, NH 03302

Lust Tracking Number: 199702061
Type of Tank Construction: Steel
Type of Pipe Construction: Unknown
Double Wall Construction: No

 Spill Installed:
 1991-10-16 00:00:00

 Overfill:
 1991-10-16 00:00:00

 Line Leak Detection:
 Not reported

Permanent Closure: 1993-06-30 00:00:00 Permanent Closure Analysis: 1993-11-02 00:00:00

NH Sites:

Facility ID: 199702061
Project Type: UIC
Project Manager: CLOSED
Num of Permits: 0

Facility ID: 199702061
Project Type: UIC
Project Manager: CLOSED
Num of Permits: 0

JOHN'S EXXON RTE 3 SOUTH MAIN ST FRANKLIN, NH 03235

RCRAInfo:

Contact: JOHN SANBORN

(603) 934-6225

Classification: Small Quantity Generator

TSDF Activities: Not reported

Violation Status: No violations found

ACME STAPLE COMPANY
RTE 3A
FRANKLIN, NH 03235
UST U001558164
SHWS N/A
ALLSITES

UST:

Facility ID: 0330041 Tank ID: 1

Install Date: 1959-04-23 00:00:00 Last Test: Not reported Close Date: Not reported Closure Type: Filled In Place

Chemical: #4 heating oil. Capacity (gal): 10000

Owner: NEW ENGLAND WIRE PRODUCTS CO

N MAIN ST

FRANKLIN, NH 03235

Lust Tracking Number: 198705001 Type of Tank Construction: Steel RCRA-SQG

1007204083

NHD510123540

EDR ID Number Site **EPA ID Number** Database(s)

ACME STAPLE COMPANY (Continued)

Type of Pipe Construction: Steel Double Wall Construction: No

Spill Installed: Not reported Not reported Overfill: Line Leak Detection: Not reported

1987-09-01 00:00:00 Permanent Closure:

Permanent Closure Analysis: Not reported

SHWS:

Facility ID: 198705001 Proi Type: **HAZWASTE**

No. of Permits:

Project Manager: UNASSIGNED

NH Sites:

198705001 Facility ID: Project Type: **HAZWASTE** Project Manager: UNASSIGNED

Num of Permits: 5

J. P. STEVENS TEXTILE **EAST BOW STREET** FRANKLIN, NH 03235

RCRA-SQG 1000418273 RCRA-TSDF **FINDS CORRACTS CERC-NFRAP**

CTD001180462

U001558164

RCRAInfo Corrective Action Summary:

Current Human Exposures under Control, Current human exposures are NOT under Event:

control.

Event Date: 09/05/1996

Event: Igration of Contaminated Groundwater under Control, Unacceptable migration

of contaminated groundwater is observed or expected.

Event Date: 09/05/1996

Event: Stabilization Measures Evaluation, This facility is not amenable to

> stabilization activity at the present time for reasons other than 1) it appears to be technically infeasible or inappropriate (NF) or 2) there is a lack of technical information (IN). Reasons for this conclusion may be the

status of closure at the facility, the degree of risk, timing

considerations, the status of corrective action work at the facility, or

other administrative considerations.

Event Date: 06/20/1996

Stabilization Construction Completed Event:

Event Date: 02/15/1995

Stabilization Measures Evaluation, This facility is amenable to stabilization Event:

activity based on the status of corrective action work at the facility, technical factors, the degree of risk, timing considerations and

administrative considerations.

Event Date: 02/14/1995

Stabilization Measures Implemented, Primary measure is exposure control by Event:

barrier and/or institutional control (e.g., capping, fencing, deed

restrictions).

Event Date: 02/01/1995

J. P. STEVENS TEXTILE (Continued)

1000418273

Event: Stabilization Measures Evaluation, This facility is amenable to stabilization

activity based on the status of corrective action work at the facility, technical factors, the degree of risk, timing considerations and

administrative considerations.

Event Date: 09/20/1993

Event: CA Prioritization, Facility or area was assigned a high corrective action

priority.

Event Date: 11/22/1991

Event: RFA Completed
Event Date: 03/15/1987

RCRAInfo:

EPA ID:

Owner: CONTRACT PLATING COMPANY INC

(203) 375-4437 CTD001180462

Contact: VERONICA PETERS

(203) 375-9246

Classification: TSDF TSDF Activities: Not reported Violation Status: Violations exist

Regulation Violated: 22a-449(c)-102(a)

Area of Violation: PREPARDNESS AND PREVENTION

Date Violation Determined: 04/25/1995 Actual Date Achieved Compliance: 02/04/2000

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 06/28/1995

Penalty Type: Final Monetary Penalty

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 01/12/1996

Penalty Type: Final Monetary Penalty

Enforcement Action: STIPULATED JUDICIAL ORDER, WITH PENALTY

Enforcement Action Date: 04/03/1996

Penalty Type: Final Monetary Penalty
Regulation Violated: 22a-449(c)-105(c)(3)

Area of Violation: TSD-GOUNDWATER MONITORING REQUIREMENTS

Date Violation Determined: 05/18/1994 Actual Date Achieved Compliance: 02/04/2000

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 06/28/1995

Penalty Type: Final Monetary Penalty

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 01/12/1996

Penalty Type: Final Monetary Penalty

Enforcement Action: STIPULATED JUDICIAL ORDER, WITH PENALTY

Enforcement Action Date: 04/03/1996

Penalty Type: Final Monetary Penalty

Regulation Violated: 22a-449(c)-105(c)

Area of Violation: TSD-GOUNDWATER MONITORING REQUIREMENTS

Date Violation Determined: 05/18/1994 Actual Date Achieved Compliance: 02/04/2000

J. P. STEVENS TEXTILE (Continued)

1000418273

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 06/28/1995

Penalty Type: Final Monetary Penalty

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 01/12/1996

Penalty Type: Final Monetary Penalty

Enforcement Action: STIPULATED JUDICIAL ORDER, WITH PENALTY

Enforcement Action Date: 04/03/1996

Penalty Type: Final Monetary Penalty

Regulation Violated: 22a-449(c)-102(a)

Area of Violation: HAZARDOUS WASTE DETERMINATIONS

Date Violation Determined: 05/18/1994 Actual Date Achieved Compliance: 02/04/2000

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 06/28/1995

Penalty Type: Final Monetary Penalty

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 01/12/1996

Penalty Type: Final Monetary Penalty

Enforcement Action: STIPULATED JUDICIAL ORDER, WITH PENALTY

Enforcement Action Date: 04/03/1996

Penalty Type: Final Monetary Penalty

Regulation Violated: 22a-449(c)-105(b)

Area of Violation: TSD-CONTAINERS REQUIREMENTS

Date Violation Determined: 05/18/1994 Actual Date Achieved Compliance: 02/04/2000

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 06/28/1995

Penalty Type: Final Monetary Penalty

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 01/12/1996

Penalty Type: Final Monetary Penalty

Enforcement Action: STIPULATED JUDICIAL ORDER, WITH PENALTY

Enforcement Action Date: 04/03/1996

Penalty Type: Final Monetary Penalty

Regulation Violated: 262.34(a)

Area of Violation: CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER

Date Violation Determined: 05/18/1994 Actual Date Achieved Compliance: 02/04/2000

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 06/28/1995

Penalty Type: Final Monetary Penalty

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 01/12/1996

Penalty Type: Final Monetary Penalty

Enforcement Action: STIPULATED JUDICIAL ORDER, WITH PENALTY

Enforcement Action Date: 04/03/1996

Penalty Type: Final Monetary Penalty

Regulation Violated: 265.171

J. P. STEVENS TEXTILE (Continued)

1000418273

Area of Violation: TSD-CONTAINERS REQUIREMENTS

Date Violation Determined: 05/18/1994 Actual Date Achieved Compliance: 02/04/2000

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 06/28/1995

Penalty Type: Final Monetary Penalty

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 01/12/1996

Penalty Type: Final Monetary Penalty

Enforcement Action: STIPULATED JUDICIAL ORDER, WITH PENALTY

Enforcement Action Date: 04/03/1996

Penalty Type: Final Monetary Penalty

Regulation Violated: 22a-449(c)-102(a)

Area of Violation: TSD-CONTAINERS REQUIREMENTS

Date Violation Determined: 05/18/1994 Actual Date Achieved Compliance: 02/04/2000

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 06/28/1995

Penalty Type: Final Monetary Penalty

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 01/12/1996

Penalty Type: Final Monetary Penalty

Enforcement Action: STIPULATED JUDICIAL ORDER, WITH PENALTY

Enforcement Action Date: 04/03/1996

Penalty Type: Final Monetary Penalty

Regulation Violated: 265.93(d)(4)

Area of Violation: TSD-GOUNDWATER MONITORING REQUIREMENTS

Date Violation Determined: 02/28/1993 Actual Date Achieved Compliance: 05/18/1994

Enforcement Action: WRITTEN INFORMAL

Enforcement Action Date: 04/13/1993
Penalty Type: Not reported

Regulation Violated: Not reported

Area of Violation: TSD-GOUNDWATER MONITORING REQUIREMENTS

Date Violation Determined: 05/24/1991
Actual Date Achieved Compliance: 02/28/1993
Regulation Violated: Not reported

Area of Violation: TSD-GOUNDWATER MONITORING REQUIREMENTS

Date Violation Determined: 05/24/1991
Actual Date Achieved Compliance: 02/28/1993
Regulation Violated: Not reported

Area of Violation: TSD-OTHER REQUIREMENTS (OVERSIGHT)

Date Violation Determined: 04/12/1991 Actual Date Achieved Compliance: 08/28/1992

Enforcement Action: CONSENT ORDER, NO PENALTIES

Enforcement Action Date: 09/22/1992

Penalty Type: Final Monetary Penalty

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 11/12/1992

Penalty Type: Final Monetary Penalty

J. P. STEVENS TEXTILE (Continued)

1000418273

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 06/28/1995

Penalty Type: Final Monetary Penalty

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 01/12/1996

Penalty Type: Final Monetary Penalty

Enforcement Action: STIPULATED JUDICIAL ORDER, WITH PENALTY

Enforcement Action Date: 04/03/1996

Penalty Type: Final Monetary Penalty

Regulation Violated: Not reported

Area of Violation: TSD-GOUNDWATER MONITORING REQUIREMENTS

Date Violation Determined: 04/12/1991 Actual Date Achieved Compliance: 02/28/1993

Enforcement Action: CONSENT ORDER, NO PENALTIES

Enforcement Action Date: 09/22/1992
Penalty Type: Not reported
Regulation Violated: Not reported

Area of Violation: TSD-OTHER REQUIREMENTS (OVERSIGHT)

Date Violation Determined: 04/12/1991 Actual Date Achieved Compliance: 08/28/1992

Enforcement Action: CONSENT ORDER, NO PENALTIES

Enforcement Action Date: 09/22/1992

Penalty Type: Final Monetary Penalty

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 11/12/1992

Penalty Type: Final Monetary Penalty

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 06/28/1995

Penalty Type: Final Monetary Penalty

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 01/12/1996

Penalty Type: Final Monetary Penalty

Enforcement Action: STIPULATED JUDICIAL ORDER, WITH PENALTY

Enforcement Action Date: 04/03/1996

Penalty Type: Final Monetary Penalty

Regulation Violated: Not reported

Area of Violation: TSD-OTHER REQUIREMENTS (OVERSIGHT)

Date Violation Determined: 12/18/1989 Actual Date Achieved Compliance: 08/28/1992

Enforcement Action: CONSENT ORDER, NO PENALTIES

Enforcement Action Date: 09/22/1992

Penalty Type: Final Monetary Penalty

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 11/12/1992

Penalty Type: Final Monetary Penalty

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 06/28/1995

Penalty Type: Final Monetary Penalty

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

J. P. STEVENS TEXTILE (Continued)

1000418273

Enforcement Action Date: 01/12/1996

Penalty Type: Final Monetary Penalty

Enforcement Action: STIPULATED JUDICIAL ORDER, WITH PENALTY

Enforcement Action Date: 04/03/1996

Penalty Type: Final Monetary Penalty

Regulation Violated: Not reported

Area of Violation: GENERATOR-LAND BAN REQUIREMENTS

Date Violation Determined: 12/18/1989 Actual Date Achieved Compliance: 01/21/1991

Enforcement Action: WRITTEN INFORMAL

Enforcement Action Date: 12/19/1990
Penalty Type: Not reported
Regulation Violated: Not reported

Area of Violation: TSD-LAND BAN REQUIREMENTS

Date Violation Determined: 12/18/1989 Actual Date Achieved Compliance: 01/21/1991

Enforcement Action: WRITTEN INFORMAL

Enforcement Action Date: 12/19/1990
Penalty Type: Not reported
Regulation Violated: Not reported

Area of Violation: TSD-OTHER REQUIREMENTS (OVERSIGHT)

Date Violation Determined: 12/09/1988 Actual Date Achieved Compliance: 08/28/1992

Enforcement Action: CONSENT ORDER, NO PENALTIES

Enforcement Action Date: 09/22/1992

Penalty Type: Final Monetary Penalty

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 11/12/1992

Penalty Type: Final Monetary Penalty

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 06/28/1995

Penalty Type: Final Monetary Penalty

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 01/12/1996

Penalty Type: Final Monetary Penalty

Enforcement Action: STIPULATED JUDICIAL ORDER, WITH PENALTY

Enforcement Action Date: 04/03/1996

Penalty Type: Final Monetary Penalty

Regulation Violated: Not reported

Area of Violation: FORMAL ENFORCEMENT AGREEMENT

Date Violation Determined: 11/13/1988
Actual Date Achieved Compliance: 08/28/1992
Regulation Violated: Not reported

Area of Violation: FORMAL ENFORCEMENT AGREEMENT

Date Violation Determined: 11/13/1988
Actual Date Achieved Compliance: 08/28/1992
Regulation Violated: Not reported

Area of Violation: FORMAL ENFORCEMENT AGREEMENT

Date Violation Determined: 11/13/1987 Actual Date Achieved Compliance: 08/28/1992

J. P. STEVENS TEXTILE (Continued)

1000418273

Regulation Violated: Not reported

Area of Violation: TSD-GOUNDWATER MONITORING REQUIREMENTS

Date Violation Determined: 11/13/1987 Actual Date Achieved Compliance: 02/28/1993

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 03/30/1990

Penalty Type: Final Monetary Penalty

Enforcement Action: STIPULATED JUDICIAL ORDER, WITH PENALTY

Enforcement Action Date: 05/16/1990

Penalty Type: Final Monetary Penalty

Regulation Violated: Not reported

Area of Violation: TSD-GOUNDWATER MONITORING REQUIREMENTS

Date Violation Determined: 11/13/1987 Actual Date Achieved Compliance: 02/28/1993

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 03/30/1990

Penalty Type: Final Monetary Penalty

Enforcement Action: STIPULATED JUDICIAL ORDER, WITH PENALTY

Enforcement Action Date: 05/16/1990

Penalty Type: Final Monetary Penalty

Regulation Violated: Not reported

Area of Violation: TSD-OTHER REQUIREMENTS (OVERSIGHT)

Date Violation Determined: 11/13/1987 Actual Date Achieved Compliance: 08/28/1992

Enforcement Action: CONSENT ORDER, NO PENALTIES

Enforcement Action Date: 09/22/1992

Penalty Type: Final Monetary Penalty

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 11/12/1992

Penalty Type: Final Monetary Penalty

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 06/28/1995

Penalty Type: Final Monetary Penalty

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 01/12/1996

Penalty Type: Final Monetary Penalty

Enforcement Action: STIPULATED JUDICIAL ORDER, WITH PENALTY

Enforcement Action Date: 04/03/1996

Penalty Type: Final Monetary Penalty

Regulation Violated: Not reported

Area of Violation: TSD-OTHER REQUIREMENTS (OVERSIGHT)

Date Violation Determined: 04/09/1986 Actual Date Achieved Compliance: 08/28/1992

Enforcement Action: CONSENT ORDER, NO PENALTIES

Enforcement Action Date: 09/22/1992

Penalty Type: Final Monetary Penalty

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 11/12/1992

Penalty Type: Final Monetary Penalty

J. P. STEVENS TEXTILE (Continued)

1000418273

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 06/28/1995

Penalty Type: Final Monetary Penalty

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 01/12/1996

Penalty Type: Final Monetary Penalty

Enforcement Action: STIPULATED JUDICIAL ORDER, WITH PENALTY

Enforcement Action Date: 04/03/1996

Penalty Type: Final Monetary Penalty

Regulation Violated: Not reported

Area of Violation: TSD-OTHER REQUIREMENTS (OVERSIGHT)

Date Violation Determined: 04/09/1986 Actual Date Achieved Compliance: 08/28/1992

Enforcement Action: CONSENT ORDER, NO PENALTIES

Enforcement Action Date: 09/22/1992

Penalty Type: Final Monetary Penalty

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 11/12/1992

Penalty Type: Final Monetary Penalty

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 06/28/1995

Penalty Type: Final Monetary Penalty

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 01/12/1996

Penalty Type: Final Monetary Penalty

Enforcement Action: STIPULATED JUDICIAL ORDER, WITH PENALTY

Enforcement Action Date: 04/03/1996

Penalty Type: Final Monetary Penalty

Regulation Violated: Not reported

Area of Violation: TSD-GOUNDWATER MONITORING REQUIREMENTS

Date Violation Determined: 10/11/1985
Actual Date Achieved Compliance: 02/28/1993
Regulation Violated: Not reported

Area of Violation: TSD-CLOSURE/POST-CLOSURE REQUIREMENTS

Date Violation Determined: 10/11/1985 Actual Date Achieved Compliance: 11/13/1987

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 01/30/1986
Penalty Type: Not reported
Regulation Violated: Not reported

Area of Violation: TSD-FINANCIAL RESPONSIBILITY REQUIREMENTS

Date Violation Determined: 04/23/1985 Actual Date Achieved Compliance: 04/09/1986

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 07/31/1986
Penalty Type: Not reported

Regulation Violated: Not reported

Area of Violation: TSD-OTHER REQUIREMENTS (OVERSIGHT)

Date Violation Determined: 04/23/1985 Actual Date Achieved Compliance: 04/12/1991

J. P. STEVENS TEXTILE (Continued) 1000418273

Regulation Violated: Not reported

Area of Violation: TSD-CLOSURE/POST-CLOSURE REQUIREMENTS

Date Violation Determined: 04/23/1985
Actual Date Achieved Compliance: 11/13/1987
Regulation Violated: Not reported

Area of Violation: TSD-GOUNDWATER MONITORING REQUIREMENTS

Date Violation Determined: 04/23/1985
Actual Date Achieved Compliance: 04/09/1986
Regulation Violated: Not reported

Area of Violation: TSD-OTHER REQUIREMENTS (OVERSIGHT)

Date Violation Determined: 04/23/1985
Actual Date Achieved Compliance: 04/12/1991
Regulation Violated: Not reported

Area of Violation: TSD-OTHER REQUIREMENTS (OVERSIGHT)

Date Violation Determined: 04/23/1985
Actual Date Achieved Compliance: 04/12/1991
Regulation Violated: Not reported

Area of Violation: TSD-OTHER REQUIREMENTS (OVERSIGHT)

Date Violation Determined: 04/23/1985
Actual Date Achieved Compliance: 04/12/1991
Regulation Violated: Not reported

Area of Violation: TSD-FINANCIAL RESPONSIBILITY REQUIREMENTS

Date Violation Determined: 04/30/1984 Actual Date Achieved Compliance: 04/09/1986

Enforcement Action: CIVIL ACTION FOR COMPLIANCE

Enforcement Action Date: 07/31/1986
Penalty Type: Not reported
Regulation Violated: Not reported

Area of Violation: TSD-OTHER REQUIREMENTS (OVERSIGHT)

Date Violation Determined: 04/30/1984
Actual Date Achieved Compliance: 04/12/1991
Regulation Violated: Not reported

Area of Violation: TSD-GOUNDWATER MONITORING REQUIREMENTS

Date Violation Determined: 04/30/1984 Actual Date Achieved Compliance: 10/11/1985

Enforcement Action: WRITTEN INFORMAL

Enforcement Action Date: 05/15/1984
Penalty Type: Not reported

Penalty Summary:

There are 38 violation record(s) reported at this site:

		Date of
Evaluation	Area of Violation	Compliance
Non-Financial Record Review	TSD-GOUNDWATER MONITORING REQUIREMENTS	20000204
	TSD-GOUNDWATER MONITORING REQUIREMENTS	20000204
	HAZARDOUS WASTE DETERMINATIONS	20000204
	TSD-CONTAINERS REQUIREMENTS	20000204
	TSD-CONTAINERS REQUIREMENTS	20000204
	TSD-CONTAINERS REQUIREMENTS	20000204

Date of

J. P. STEVENS TEXTILE (Continued)		1000418273
	CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER	20000204
	PREPARDNESS AND PREVENTION	20000204
PEI	CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER	20000204
DEL	PREPARDNESS AND PREVENTION	20000204
PEI	CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER	20000204
Compliance Evaluation Inspection	PREPARDNESS AND PREVENTION TSD-GOUNDWATER MONITORING REQUIREMENTS	20000204 20000204
Compliance Evaluation Inspection	TSD-GOUNDWATER MONITORING REQUIREMENTS TSD-GOUNDWATER MONITORING REQUIREMENTS	20000204
	HAZARDOUS WASTE DETERMINATIONS	20000204
	TSD-CONTAINERS REQUIREMENTS	20000204
	TSD-CONTAINERS REQUIREMENTS	20000204
	TSD-CONTAINERS REQUIREMENTS	20000204
	CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER	20000204
Compliance GW Monitoring Evaluation	TSD-GOUNDWATER MONITORING REQUIREMENTS	19940518
Compliance Evaluation Inspection	TSD-OTHER REQUIREMENTS (OVERSIGHT)	19920828
	TSD-GOUNDWATER MONITORING REQUIREMENTS	19930228
	TSD-OTHER REQUIREMENTS (OVERSIGHT)	19920828
Compliance GW Monitoring Evaluation	TSD-GOUNDWATER MONITORING REQUIREMENTS	19930228
	TSD-GOUNDWATER MONITORING REQUIREMENTS	19930228
Compliance Evaluation Inspection	TSD-OTHER REQUIREMENTS (OVERSIGHT)	19920828
	TSD-GOUNDWATER MONITORING REQUIREMENTS	19930228
	TSD-OTHER REQUIREMENTS (OVERSIGHT)	19920828
Compliance Evaluation Inspection	TSD-OTHER REQUIREMENTS (OVERSIGHT)	19920828
	GENERATOR-LAND BAN REQUIREMENTS	19910121
Compliance Evaluation Increasing	TSD-LAND BAN REQUIREMENTS	19910121
Compliance Evaluation Inspection	TSD-FINANCIAL RESPONSIBILITY REQUIREMENTS	19860409
Compliance Schedule Evaluation	TSD-OTHER REQUIREMENTS (OVERSIGHT) FORMAL ENFORCEMENT AGREEMENT	19920828 19920828
Compliance Schedule Evaluation	FORMAL ENFORCEMENT AGREEMENT	19920828
Compliance Schedule Evaluation	FORMAL ENFORCEMENT AGREEMENT	19920828
Compliance Evaluation Inspection	TSD-OTHER REQUIREMENTS (OVERSIGHT)	19920828
Compliance GW Monitoring Evaluation	TSD-GOUNDWATER MONITORING REQUIREMENTS	19930228
Compilation OVV Mornioring Evaluation	TSD-GOUNDWATER MONITORING REQUIREMENTS	19930228
Compliance Evaluation Inspection	TSD-CLOSURE/POST-CLOSURE REQUIREMENTS	19871113
Compliance Evaluation Inspection	TSD-OTHER REQUIREMENTS (OVERSIGHT)	19920828
·	TSD-OTHER REQUIREMENTS (OVERSIGHT)	19920828
Compliance GW Monitoring Evaluation	TSD-GOUNDWATER MONITORING REQUIREMENTS	19930228
Non-Financial Record Review	TSD-CLOSURE/POST-CLOSURE REQUIREMENTS	19871113
Compliance Evaluation Inspection	TSD-FINANCIAL RESPONSIBILITY REQUIREMENTS	19860409
	TSD-OTHER REQUIREMENTS (OVERSIGHT)	19910412
	TSD-GOUNDWATER MONITORING REQUIREMENTS	19860409
	TSD-CLOSURE/POST-CLOSURE REQUIREMENTS	19871113
	TSD-OTHER REQUIREMENTS (OVERSIGHT)	19910412
Sampling Inspection	TSD-OTHER REQUIREMENTS (OVERSIGHT)	19910412
	TSD-OTHER REQUIREMENTS (OVERSIGHT)	19910412
Compliance Evaluation Inspection	TSD-FINANCIAL RESPONSIBILITY REQUIREMENTS	19860409
Compliance OW Marketon Freshold	TSD-OTHER REQUIREMENTS (OVERSIGHT)	19910412
Compliance GW Monitoring Evaluation	TSD-GOUNDWATER MONITORING REQUIREMENTS	19851011

J. P. STEVENS TEXTILE (Continued)

1000418273

CT MANIFEST

The CT MANIFEST database may contain additional details for this site. Please contact your EDR Account Executive for more information

FINDS:

Other Pertinent Environmental Activity Identified at Site:

AEROMETRIC INFORMATION RETRIEVAL SYSTEM/AIRS FACILITY SYSTEM

PERMIT COMPLIANCE SYSTEM

RESOURCE CONSERVATION AND RECOVERY ACT INFORMATION SYSTEM

TOXIC CHEMICAL RELEASE INVENTORY SYSTEM

CORRACTS Data:

EPA ld: CTD001180462

Region: 1

Area Name: ENTIRE FACILITY

Actual Date: 03/15/1987

Corrective Action: CA050 - RFA Completed

2002 NAICS Title: Electroplating, Plating, Polishing, Anodizing, and Coloring

EPA Id: CTD001180462

Region:

Area Name: ENTIRE FACILITY
Actual Date: 06/20/1996

Corrective Action: CA225NR - Stabilization Measures Evaluation, This facility is , not amenable to

stabilization activity at the, present time for reasons other than (1) it appears to be technically, infeasible or inappropriate (NF) or (2) there is a lack of technical, information (IN). Reasons for this conclusion may be the status of, closure at the facility, the degree of risk, timing considerations, the status of corrective action work at the facility, or other, administrative

considerations

2002 NAICS Title: Electroplating, Plating, Polishing, Anodizing, and Coloring

EPA ld: CTD001180462

Region: 1

Area Name: ENTIRE FACILITY
Actual Date: 09/20/1993

Corrective Action: CA225YE - Stabilization Measures Evaluation, This facility ,is amenable to

stabilization activity based on the, status of corrective action work at the facility, technical factors, the degree of risk, timing considerations and

administrative considerations

2002 NAICS Title: Electroplating, Plating, Polishing, Anodizing, and Coloring

EPA ld: CTD001180462

Region: 1

Area Name: ENTIRE FACILITY
Actual Date: 02/14/1995

Corrective Action: CA225YE - Stabilization Measures Evaluation, This facility ,is amenable to

stabilization activity based on the, status of corrective action work at the facility, technical factors, the degree of risk, timing considerations and

administrative considerations

2002 NAICS Title: Electroplating, Plating, Polishing, Anodizing, and Coloring

EPA ld: CTD001180462

Region:

Area Name: ENTIRE FACILITY

Actual Date: 11/22/1991

EDR ID Number Site **EPA ID Number** Database(s)

J. P. STEVENS TEXTILE (Continued)

1000418273

Corrective Action: CA075HI - CA Prioritization, Facility or area was assigned a high corrective

2002 NAICS Title: Electroplating, Plating, Polishing, Anodizing, and Coloring

> The CORRACTS database contains 4 additional records for this site. Please contact your EDR Account Executive for more information

CERCLIS-NFRAP Classification Data:

Federal Facility: Not a Federal Facility

Non NPL Code: Removal Only Site (No Site Assessment Work Needed)

NPL Status: Not on the NPL CERCLIS-NFRAP Assessment History:

REMOVAL ASSESSMENT Completed: 02/07/1995 Assessment: ARCHIVE SITE Completed: 07/03/1996 Assessment:

J. P. STEVENS TEXTILE **EAST BOW STREET** FRANKLIN, NH 03235

CERC-NFRAP 1006812623

NH0001901123

CERCLIS-NFRAP Classification Data:

Federal Facility: Not a Federal Facility

Removal Only Site (No Site Assessment Work Needed) Non NPL Code:

Not on the NPL NPL Status: CERCLIS-NFRAP Assessment History:

Assessment: REMOVAL ASSESSMENT Completed: 05/19/1997 Completed: Assessment: REMOVAL 09/30/1998 REMOVAL ASSESSMENT Completed: Assessment: 10/30/1998 **REMOVAL** Completed: Assessment: 10/26/1999 NON-NPL PRP SEARCH Completed: Assessment: 09/28/2001 Assessment: ARCHIVE SITE Completed: 10/25/2002

SAFETY-KLEEN (NE) INC 43 WEST BOW ST RTE 127 FRANKLIN, NH 03235

RCRA-SQG 1007203826

SHWS

ALLSITES

NHD510080286

S103093992

N/A

RCRAInfo:

BRENDA LEONARDO Contact:

(508) 683-1002

Classification: **Small Quantity Generator**

TSDF Activities: Not reported

Violation Status: No violations found

GHI ASSOCIATES, INC. **EAST BOW STREET**

SHWS:

FRANKLIN, NH

199702034 Facility ID: Proj Type: **HAZWASTE**

No. of Permits: 0 Project Manager: CLOSED

NH Sites:

Facility ID: 199702034 Project Type: **HAZWASTE** Project Manager: CLOSED

ORPHAN DETAIL TC1469641.11s Page 14

DETAILED ORPHAN LISTING

EDR ID Number
Site Database(s) EPA ID Number

GHI ASSOCIATES, INC. (Continued) S103093992

Num of Permits: 0

FRANKLIN JR/SR HIGH SCHOOL

115 CENTER ST/RTE 3

FRANKLIN, NH 03235

UST U001150945

N/A

UST:

Owner:

Facility ID: 0112668 Tank ID:

Install Date: 1962-01-01 00:00:00 Last Test: 1986-07-11 00:00:00

Close Date: Not reported Closure Type: Removed

Chemical: #2 heating oil.
Capacity (gal): 6600

119 CENTRAL ST FRANKLIN, NH 03235

SAU 18

Lust Tracking Number: 199508041
Type of Tank Construction: Steel
Type of Pipe Construction: Steel
Double Wall Construction: No

Double Wall Construction: No
Spill Installed: Not reported
Overfill: Not reported

Line Leak Detection: Not reported
Permanent Closure: 1995-08-15 00:00:00
Permanent Closure Analysis: 1995-08-31 00:00:00

Facility ID: 0112668 Tank ID: 2

Install Date: 1995-08-25 00:00:00 Last Test: Not reported Close Date: Not reported Closure Type: Not reported

Chemical: #2 heating oil.
Capacity (gal): 10000
Owner: SAU 18

119 CENTRAL ST FRANKLIN, NH 03235

Lust Tracking Number: 199508041
Type of Tank Construction: Composite material

Type of Pipe Construction: Fiberglass
Double Wall Construction: Yes

 Spill Installed:
 1995-08-25 00:00:00

 Overfill:
 1995-08-25 00:00:00

Line Leak Detection: Not reported
Permanent Closure: Not reported
Permanent Closure Analysis: Not reported

NH ARMY NATIONAL GUARD FRANKLIN STATE ARMORY FRANKLIN, NH 03235 RCRA-SQG 1004751203 FINDS NHD986486389

NH ARMY NATIONAL GUARD (Continued)

1004751203

S102777770

N/A

NH Spills

ALLSITES

RCRAInfo:

Owner: STATE OF NH OFFICE OF THE ADJUTANT GEN

(603) 225-1361

EPA ID: NHD986486389

Contact: ZACHARY L BOYAJIAN

(603) 228-1135

Classification: Conditionally Exempt Small Quantity Generator

TSDF Activities: Not reported

Violation Status: No violations found

FINDS:

Other Pertinent Environmental Activity Identified at Site:

RESOURCE CONSERVATION AND RECOVERY ACT INFORMATION SYSTEM

FORMER ALCAN/JARL EXTRUSION FACILITY
FRANKLIN INDUSTRIAL PARK

FRANKLIN, NH

NH SPILL:

Facility ID: 199607045 Project Type: SPILL/RLS

No. of Permits: 0
Project Manager: CLOSED

NH Sites:

Facility ID: 199607045
Project Type: SPILL/RLS
Project Manager: CLOSED
Num of Permits: 0

Train of Formic.

CITY OF FRANKLIN - FRANKLIN FALLS WELL

GRANITE DRIVE

ALLSITES S106201343

N/A

FRANKLIN, NH

NH Sites:

Facility ID: 200402013
Project Type: UIC
Project Manager: CLOSED
Num of Permits: 0

INDUSTRIAL PARK DR., POLYCLAD LAMINATES INC. ERNS 94426003
INDUSTRIAL PARK DR., POLYCLAD LAMINATES INC. N/A

FRANKLIN, NH 03235

Site ID: 94426003

FRANKLIN, NH 03235-MERRIMACK County

Report No: Not reported

EPA Region: 01

Spill Date: 03/09/1994 Spill Time: 04:00

Medium Desc: Land, Groundwater

Damage/Amt: Yes / \$0.00

Evacuation: No Injured: None

Fatalities: None Disch Org: POLYCLAD LAMINATES INC.

INDUSTRIAL PARK DR., POLYCLAD LAMINATES INC. (Continued)

94426003

Notes: Not reported

Disch Add: INDUSTRIAL PARK DR.

FRANKLIN, NH 03235

Disch County: MERRIMACK C.G. Unit: Not reported

Cause: DUMPING

HYDROGEN PEROXIDE (52%) 1.00 UNK 0.00 UNK UN2015 82550584 Description: 55 GAL. DRUM AT A MANUFACTURING PLANT. LEAK IN THE DRUM. AN ELECTRIC

PUMP MALFUNCTIONED.

Resp Action: VAPOR CLOUD WAS KNOCKED DOWN WITH A FINE SPRAY. MATERIAL WENT INTO A

HOLDING TANK.

Misc. Info: Not reported

Location: INDUSTRIAL PARK DR., POLYCLAD LAMINATES INC.

WEBSTER VALVE INC RCRA-LQG 1000388451
S MAIN ST FINDS 03235WBSTRSO
FRANKLIN, NH 03235 TRIS

RCRAInfo:

EPA ID:

Contact:

Owner: OPERNAME

(603) 555-1212 NHD058537960 WALTER-G HALL

(603) 934-5110

Classification: Large Quantity Generator

TSDF Activities: Not reported

BIENNIAL REPORTS:

Last Biennial Reporting Year: 2001

<u>Waste</u>	Quantity (Lbs)	<u>Waste</u>	Quantity (Lbs)
D001	21738.00	D002	521.00
D006	178670.00	D007	4753.00
D008	460582.76	D035	8823.00
D039	2701.37	F001	5302.00
F003	31492.00	F005	12680.00

Violation Status: Violations exist

Regulation Violated: Env-Wm 509.03

Area of Violation: CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER

Date Violation Determined: 11/19/2002 Actual Date Achieved Compliance: 03/13/2003

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 04/12/1989
Penalty Type: 04/12/1989
Not reported

Enforcement Action: WRITTEN INFORMAL

Enforcement Action Date: 01/29/2003
Penalty Type: Not reported

Regulation Violated: RSA 147-A:2,IV

Area of Violation: TSD-GENERAL STANDARDS

Date Violation Determined: 08/22/1997 Actual Date Achieved Compliance: 02/24/1998

Enforcement Action: UNILATERAL ORDER, NO PENALTIES

Enforcement Action Date: 01/16/1998
Penalty Type: Not reported

WEBSTER VALVE INC (Continued) 1000388451

Regulation Violated: ENV-WM 506.01

Area of Violation: GENERATOR-GENERAL REQUIREMENTS

Date Violation Determined: 08/22/1997 Actual Date Achieved Compliance: 02/24/1998

Enforcement Action: UNILATERAL ORDER, NO PENALTIES

Enforcement Action Date: 01/16/1998
Penalty Type: Not reported

Regulation Violated: ENV-WM 353.04(M)

Area of Violation: CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER

Date Violation Determined: 08/22/1997
Actual Date Achieved Compliance: 09/24/1997

Enforcement Action: UNILATERAL ORDER, NO PENALTIES

Enforcement Action Date: 01/16/1998
Penalty Type: Not reported

Regulation Violated: ENV-WM 507.03(A)(1)B,C,D

Area of Violation: CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER

Date Violation Determined: 08/22/1997 Actual Date Achieved Compliance: 02/24/1998

Enforcement Action: UNILATERAL ORDER, NO PENALTIES

Enforcement Action Date: 01/16/1998
Penalty Type: Not reported

Regulation Violated: ENV-WM 509.02(A)(5)

Area of Violation: PREPARDNESS AND PREVENTION

Date Violation Determined: 08/22/1997 Actual Date Achieved Compliance: 08/11/1998

Enforcement Action: UNILATERAL ORDER, NO PENALTIES

Enforcement Action Date: 01/16/1998
Penalty Type: Not reported

Regulation Violated: ENV-WM 509.02(A)(6)

Area of Violation: GENERATOR-SPECIAL CONDITIONS

Date Violation Determined: 08/22/1997 Actual Date Achieved Compliance: 02/24/1998

Enforcement Action: UNILATERAL ORDER, NO PENALTIES

Enforcement Action Date: 01/16/1998
Penalty Type: Not reported

Regulation Violated: ENV-WM 510.03(1)
Area of Violation: GENERATOR-MANIFEST REQUIREMENTS

Date Violation Determined: 08/22/1997 Actual Date Achieved Compliance: 02/24/1998

Enforcement Action: UNILATERAL ORDER, NO PENALTIES

Enforcement Action Date: 01/16/1998
Penalty Type: Not reported

Regulation Violated: ENV-WM 807.06(B)(3)

Area of Violation:

Date Violation Determined:

Actual Date Achieved Compliance:

NHWOV

08/22/1997

02/24/1998

Enforcement Action: UNILATERAL ORDER, NO PENALTIES

Enforcement Action Date: 01/16/1998
Penalty Type: Not reported

Regulation Violated: ENV-WM 509.02(A)(1)

WEBSTER VALVE INC (Continued) 1000388451

Area of Violation: CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER

Date Violation Determined: 08/22/1997 Actual Date Achieved Compliance: 02/24/1998

Enforcement Action: UNILATERAL ORDER, NO PENALTIES

Enforcement Action Date: 01/16/1998
Penalty Type: Not reported

Regulation Violated: ENV-WM 807.06(B)(2)

Area of Violation:

Date Violation Determined:

Actual Date Achieved Compliance:

NHWOV

08/22/1997

02/24/1998

Enforcement Action: UNILATERAL ORDER, NO PENALTIES

Enforcement Action Date: 01/16/1998
Penalty Type: Not reported

Regulation Violated: ENV-WM 509.02(B)
Area of Violation: CONTINGENCY PLAN

Date Violation Determined: 08/22/1997 Actual Date Achieved Compliance: 02/24/1998

Enforcement Action: UNILATERAL ORDER, NO PENALTIES

Enforcement Action Date: 01/16/1998
Penalty Type: Not reported

Regulation Violated: ENV-WM 509.02(A)(5)
Area of Violation: CONTINGENCY PLAN

Date Violation Determined: 08/22/1997 Actual Date Achieved Compliance: 02/24/1998

Enforcement Action: UNILATERAL ORDER, NO PENALTIES

Enforcement Action Date: 01/16/1998
Penalty Type: Not reported

Regulation Violated: ENV-WM 509.02(A)(2)

Area of Violation: PERSONNEL TRAINING RECORDS

Date Violation Determined: 08/22/1997 Actual Date Achieved Compliance: 08/11/1998

Enforcement Action: UNILATERAL ORDER, NO PENALTIES

Enforcement Action Date: 01/16/1998
Penalty Type: Not reported

Regulation Violated: ENV-WM 507.03(A)(1)A

Area of Violation: CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER

Date Violation Determined: 08/22/1997 Actual Date Achieved Compliance: 02/24/1998

Enforcement Action: UNILATERAL ORDER, NO PENALTIES

Enforcement Action Date: 01/16/1998
Penalty Type: Not reported

Regulation Violated: ENV-WM 507.01(A)(3)

Area of Violation: CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER

Date Violation Determined: 08/22/1997
Actual Date Achieved Compliance: 02/24/1998

Enforcement Action: UNILATERAL ORDER, NO PENALTIES

Enforcement Action Date: 01/16/1998
Penalty Type: Not reported

Regulation Violated: ENV-WM 513.01(A)

Area of Violation: GENERATOR-OTHER REQUIREMENTS

WEBSTER VALVE INC (Continued) 1000388451

Date Violation Determined: 08/08/1995 Actual Date Achieved Compliance: 01/12/1996

Enforcement Action: WRITTEN INFORMAL

Enforcement Action Date: 01/12/1996

Penalty Type: Final Monetary Penalty

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 01/12/1996

Penalty Type: Final Monetary Penalty

Regulation Violated: ENV-WM 513.02

Area of Violation: GENERATOR-OTHER REQUIREMENTS

Date Violation Determined: 08/08/1995 Actual Date Achieved Compliance: 06/11/1996

Enforcement Action: WRITTEN INFORMAL

Enforcement Action Date: 01/12/1996

Penalty Type: Final Monetary Penalty

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 01/12/1996

Penalty Type: Final Monetary Penalty
Regulation Violated: ENV-WM 506.01(B)(4)

Area of Violation: GENERATOR-OTHER REQUIREMENTS

Date Violation Determined: 09/22/1994 Actual Date Achieved Compliance: 04/07/1995

Enforcement Action: UNILATERAL ORDER, NO PENALTIES

Enforcement Action Date: 03/16/1995

Penalty Type: Final Monetary Penalty

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 01/12/1996
Penalty Type: Final Monetary Penalty

Regulation Violated: ENV-WM 507.01(A)(3)

Area of Violation: CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER

Date Violation Determined: 09/22/1994 Actual Date Achieved Compliance: 08/08/1995

Enforcement Action: UNILATERAL ORDER, NO PENALTIES

Enforcement Action Date: 03/16/1995
Penalty Type: Not reported

Regulation Violated: ENV-WM 507.01(F)

Area of Violation: CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER

Date Violation Determined: 09/22/1994 Actual Date Achieved Compliance: 08/08/1995

Enforcement Action: UNILATERAL ORDER, NO PENALTIES

Enforcement Action Date: 03/16/1995
Penalty Type: 03/16/1995
Not reported

Regulation Violated: ENV-WM 507.03(A)(1)B, D

Area of Violation: CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER

Date Violation Determined: 09/22/1994 Actual Date Achieved Compliance: 08/08/1995

Enforcement Action: UNILATERAL ORDER, NO PENALTIES

Enforcement Action Date: 03/16/1995 Penalty Type: Not reported

WEBSTER VALVE INC (Continued) 1000388451

Regulation Violated: ENV-WM 509.02(A)(1)

Area of Violation: GENERATOR INSPECTION SCHEDULE & LOG

Date Violation Determined: 09/22/1994 Actual Date Achieved Compliance: 04/07/1995

Enforcement Action: UNILATERAL ORDER, NO PENALTIES

Enforcement Action Date: 03/16/1995
Penalty Type: Not reported

Regulation Violated: ENV-WM 509.02(A)(4)

Area of Violation: PREPARDNESS AND PREVENTION

Date Violation Determined: 09/22/1994 Actual Date Achieved Compliance: 05/15/1995

Enforcement Action: UNILATERAL ORDER, NO PENALTIES

Enforcement Action Date: 03/16/1995

Penalty Type: Final Monetary Penalty

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 01/12/1996

Penalty Type: Final Monetary Penalty
Regulation Violated: ENV-WM 509.02(A)(6)

Area of Violation: CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER

Date Violation Determined: 09/22/1994 Actual Date Achieved Compliance: 08/08/1995

Enforcement Action: UNILATERAL ORDER, NO PENALTIES

Enforcement Action Date: 03/16/1995

Penalty Type: Final Monetary Penalty

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 01/12/1996

Penalty Type: Final Monetary Penalty
Regulation Violated: ENV-WM 510.03(A)

Area of Violation: GENERATOR-MANIFEST REQUIREMENTS

Date Violation Determined: 09/22/1994 Actual Date Achieved Compliance: 04/07/1995

Enforcement Action: UNILATERAL ORDER, NO PENALTIES

Enforcement Action Date: 03/16/1995
Penalty Type: Not reported

Regulation Violated: ENV-WM 509.02(B)
Area of Violation: CONTINGENCY PLAN

Date Violation Determined: 09/22/1994 Actual Date Achieved Compliance: 05/15/1995

Enforcement Action: UNILATERAL ORDER, NO PENALTIES

Enforcement Action Date: 03/16/1995
Penalty Type: Not reported

Regulation Violated: ENV-WM 509.02(A)(5)
Area of Violation: CONTINGENCY PLAN

Date Violation Determined: 09/22/1994 Actual Date Achieved Compliance: 05/15/1995

Enforcement Action: UNILATERAL ORDER, NO PENALTIES

Enforcement Action Date: 03/16/1995 Penalty Type: Not reported

Regulation Violated: ENV-WM 509.02(A)(2)

Area of Violation: PERSONNEL TRAINING RECORDS

WEBSTER VALVE INC (Continued) 1000388451

Date Violation Determined: 09/22/1994 Actual Date Achieved Compliance: 04/07/1995

Enforcement Action: UNILATERAL ORDER, NO PENALTIES

Enforcement Action Date: 03/16/1995
Penalty Type: Not reported

Regulation Violated: ENV-WM 507.03(A)(2)

Area of Violation: CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER

Date Violation Determined: 09/22/1994 Actual Date Achieved Compliance: 08/08/1995

Enforcement Action: UNILATERAL ORDER, NO PENALTIES

Enforcement Action Date: 03/16/1995
Penalty Type: Not reported

Regulation Violated: ENV-WM 507.03(A)(1)A

Area of Violation: CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER

Date Violation Determined: 09/22/1994 Actual Date Achieved Compliance: 08/08/1995

Enforcement Action: UNILATERAL ORDER, NO PENALTIES

Enforcement Action Date: 03/16/1995
Penalty Type: Not reported
Regulation Violated: Not reported

Area of Violation: GENERATOR-ALL REQUIREMENTS (OVERSIGHT)

Date Violation Determined: 02/07/1989 Actual Date Achieved Compliance: 04/07/1995

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 04/12/1989
Penalty Type: Not reported

Enforcement Action: WRITTEN INFORMAL

Enforcement Action Date: 01/29/2003
Penalty Type: Not reported
Regulation Violated: Not reported

Area of Violation: GENERATOR-ALL REQUIREMENTS (OVERSIGHT)

Date Violation Determined: 02/07/1989 Actual Date Achieved Compliance: 04/07/1995

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 04/12/1989
Penalty Type: Not reported

Penalty Summary:

 Penalty Description
 Penalty Date
 Penalty Amount
 Lead Agency

 Final Monetary Penalty
 5/4/1999
 215126
 STATE

 Final Monetary Penalty
 1/12/1996
 6177
 STATE

There are 33 violation record(s) reported at this site:

Evaluation Area of Violation Compliance CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER Compliance Evaluation Inspection 20030313 Compliance Evaluation Inspection **TSD-GENERAL STANDARDS** 19980224 CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER 19970924 GENERATOR-GENERAL REQUIREMENTS 19980224 CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER 19980224 CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER 19980224

Date of

Site	Da	atabase(s)	EPA ID Number
WEBSTER VALVE INC (Continued)			1000388451
	CONTAINER MGT=SAT'LITE ACCUMS/CONTA	INER	19980224
	PERSONNEL TRAINING RECORDS		19980811
	DDEDADDNIEGO AND DDEVENTION		40000044

PREPARDNESS AND PREVENTION 19980811 **CONTINGENCY PLAN** 19980224 **GENERATOR-SPECIAL CONDITIONS** 19980224 **CONTINGENCY PLAN** 19980224 GENERATOR-MANIFEST REQUIREMENTS 19980224 NHWOV 19980224 NHWOW 19980224 CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER 19980224 GENERATOR-OTHER REQUIREMENTS 19960112 **GENERATOR-OTHER REQUIREMENTS** 19960611 **GENERATOR-OTHER REQUIREMENTS** 19950407 CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER 19950808 **GENERATOR INSPECTION SCHEDULE & LOG** 19950407 PERSONNEL TRAINING RECORDS 19950407 PREPARDNESS AND PREVENTION 19950515 **CONTINGENCY PLAN** 19950515 CONTAINER MGT=SAT'LITE ACCUMS/CONTAINER 19950808

NY MANIFEST

Compliance Evaluation Inspection

Compliance Evaluation Inspection

The NY MANIFEST database may contain additional details for this site.

CONTINGENCY PLAN

GENERATOR-MANIFEST REQUIREMENTS

GENERATOR-ALL REQUIREMENTS (OVERSIGHT)

GENERATOR-ALL REQUIREMENTS (OVERSIGHT)

Please contact your EDR Account Executive for more information

CT MANIFEST

The CT MANIFEST database may contain additional details for this site. Please contact your EDR Account Executive for more information

FINDS:

PEI

Other Pertinent Environmental Activity Identified at Site:

AEROMETRIC INFORMATION RETRIEVAL SYSTEM/AIRS FACILITY SYSTEM

INTEGRATED COMPLIANCE INFORMATION SYSTEM

NATIONAL COMPLIANCE DATABASE SYSTEM

NATIONAL EMISSIONS INVENTORY

RESOURCE CONSERVATION AND RECOVERY ACT INFORMATION SYSTEM

TOXIC CHEMICAL RELEASE INVENTORY SYSTEM

EASTMAN FALLS HYDRO STATION - PSNH N MAIN ST FRANKLIN, NH 03235

RCRA-SQG 1000414840 FINDS NHD982542441

19950515

19950407

19950407

19950407

EDR ID Number

EASTMAN FALLS HYDRO STATION - PSNH (Continued)

1000414840

UST U002177125

N/A

RCRAInfo:

Owner: PUBLIC SERVICE CO OF NH

(603) 634-2684

EPA ID: NHD982542441

Contact: PAUL BASILLIERE (603) 634-2684

Classification: Small Quantity Generator

TSDF Activities: Not reported

Violation Status: No violations found

FINDS:

Other Pertinent Environmental Activity Identified at Site:

RESOURCE CONSERVATION AND RECOVERY ACT INFORMATION SYSTEM

FORMER RADIO SHACK S MAIN ST

UST:

FRANKLIN, NH 03235

Facility ID: 0114777 Tank ID:

Install Date: 1911-11-11 00:00:00 Last Test: Not reported Close Date: Not reported Closure Type: Removed

Chemical: Gasoline.
Capacity (gal): 2000
Owner: NH DOT
PO BOX 483

CONCORD, NH 03302

Lust Tracking Number: 199507032
Type of Tank Construction: Steel
Type of Pipe Construction: Steel
Double Wall Construction: No

Spill Installed: Not reported
Overfill: Not reported
Line Leak Detection: Not reported

Permanent Closure: 1995-06-09 00:00:00
Permanent Closure Analysis: 1995-07-10 00:00:00

Facility ID: 0114777 Tank ID: 3
Install Date: 1911-11-11 00:00:00 Last Test: Not reported

Closure Type:

Removed

Install Date: 1911-11-11 00:00:00
Close Date: Not reported
Chemical: Gasoline.

Chemical: Gasoline.
Capacity (gal): 3000
Owner: NH DOT
PO BOX 483

CONCORD, NH 03302

Lust Tracking Number: 199507032
Type of Tank Construction: Steel
Type of Pipe Construction: Steel
Double Wall Construction: No

Spill Installed: Not reported Overfill: Not reported Line Leak Detection: Not reported

Permanent Closure: 1995-06-09 00:00:00 Permanent Closure Analysis: 1995-07-10 00:00:00

FORMER RADIO SHACK (Continued)

U002177125

Facility ID: 0114777

Install Date: 1911-11-11 00:00:00
Close Date: Not reported
Chemical: #2 heating oil.
Capacity (gal): 500
Owner: NH DOT

Owner: NH DOT PO BOX 483

CONCORD, NH 03302
Lust Tracking Number: 199507032
Type of Tank Construction: Steel
Type of Pipe Construction: Copper
Double Wall Construction: No
Spill Installed: Not reported

Overfill: Not reported
Line Leak Detection: Not reported
Permanent Closure: 1995-06-09 00:00:00
Permanent Closure Analysis: 1995-07-10 00:00:00

Facility ID: 0114777

Install Date: 1911-11-11 00:00:00
Close Date: Not reported
Chemical: Used oil
Capacity (gal): 500
Owner: NH DOT

NH DOT PO BOX 483

CONCORD, NH 03302

Lust Tracking Number: 199507032
Type of Tank Construction: Steel
Type of Pipe Construction: Steel
Double Wall Construction: No
Spill Installed: Not reported
Overfill: Not reported

Line Leak Detection: Not reported Permanent Closure: 1995-06-09 00:

Permanent Closure: 1995-06-09 00:00:00
Permanent Closure Analysis: 1995-07-10 00:00:00

Facility ID: 0114777

Install Date: 1911-11-11 00:00:00
Close Date: Not reported
Chemical: Gasoline.
Capacity (gal): 3000
Owner: NH DOT
PO BOX 483

CONCORD, NH 03302

Lust Tracking Number: 199507032
Type of Tank Construction: Steel
Type of Pipe Construction: Steel
Double Wall Construction: No

Spill Installed: Not reported
Overfill: Not reported
Line Leak Detection: Not reported

Permanent Closure: 1995-06-09 00:00:00
Permanent Closure Analysis: 1995-07-10 00:00:00

Tank ID: 5

Last Test: Not reported Closure Type: Removed

Tank ID: 4

Last Test: Not reported Closure Type: Removed

Tank ID: 2

Last Test: Not reported Closure Type: Removed

ACME STAPLE COMPANY CERC-NFRAP 1003862542
NORTH MAIN STREET NHD981203342
FRANKLIN, NH 03235

CERCLIS-NFRAP Classification Data:

Federal Facility: Not a Federal Facility

Non NPL Code: NFRAP

NPL Status: Not on the NPL
CERCLIS-NFRAP Assessment History:
Assessment: DISCOVERY

Assessment: DISCOVERY Completed: 04/08/1986
Assessment: PRELIMINARY ASSESSMENT Completed: 04/29/1987
Assessment: SITE INSPECTION Completed: 06/26/1990
Assessment: ARCHIVE SITE Completed: 03/24/1998

CERCLIS-NFRAP Alias Name(s): ACME STAPLE COMPANY

FRANKLIN ARMORY SOUTH MAIN STREET/RTE 3 FRANKLIN, NH 03235

UST:

Facility ID: 0113319 Tank ID:

Install Date: 1966-01-01 00:00:00 Last Test: 1988-09-26 00:00:00

Closure Type:

Closure Type:

Removed

Not reported

Close Date: Not reported Chemical: #2 heating oil.

Capacity (gal): 6600

Owner: NH ADJUTANT GENERAL

4 PEMBROKE RD CONCORD, NH 03301

Lust Tracking Number: 199302039
Type of Tank Construction: Steel
Type of Pipe Construction: Other Material

Double Wall Construction: No

Spill Installed: Not reported
Overfill: Not reported
Line Leak Detection: Not reported
Permanent Closure: 1992-05-04.0

Permanent Closure: 1992-05-04 00:00:00 Permanent Closure Analysis: 1993-02-24 00:00:00

Facility ID: 0113319 Tank ID: 2
Install Date: 1992-05-06 00:00:00 Last Test: Not reported

Install Date: 1992-05-06 00:00:00
Close Date: Not reported
Chemical: #2 heating oil.

Capacity (gal): 3000

Owner: NH ADJUTANT GENERAL

4 PEMBROKE RD

CONCORD, NH 03301

Lust Tracking Number: 199302039
Type of Tank Construction: Composite material

Type of Pipe Construction: Copper Double Wall Construction: Yes

Spill Installed: 1992-05-06 00:00:00
Overfill: 1992-05-06 00:00:00
Line Leak Detection: Not reported
Permanent Closure: Not reported
Permanent Closure Analysis: Not reported

UST U001557223

N/A

ACME WELL SITE - FRANKLIN WATER WORKS N.MAIN ST.@ WEBSTER LAKE RD

ALLSITES S105771398 N/A

FRANKLIN, NH

NH Sites:

Facility ID: 199506003
Project Type: UIC
Project Manager: CLOSED
Num of Permits: 1

WINNIPESAUKEE RIVER BASIN WWTP
OFF RTE 3

UST U000347009 ALLSITES N/A

FRANKLIN, NH 03235

UST:

Facility ID: 0110307 Tank ID:

Install Date: 1979-01-01 00:00:00 Last Test: 1991-05-01 00:00:00

Close Date: Not reported Closure Type: Removed

Chemical: #2 heating oil.

Capacity (gal): 2000

Owner: WINNIPESAUKEE RIVER BASIN

PO BOX 68

FRANKLIN, NH 03235

Lust Tracking Number: 198811021
Type of Tank Construction: Steel
Type of Pipe Construction: Copper
Double Wall Construction: No

Spill Installed: Not reported
Overfill: Not reported
Line Leak Detection: Not reported

Permanent Closure: 1995-12-13 00:00:00 Permanent Closure Analysis: 1996-02-23 00:00:00

Facility ID: 0110307 Tank ID:

Install Date: 1979-01-01 00:00:00 Last Test: 1991-04-30 00:00:00

Closure Type:

Removed

Close Date: Not reported Chemical: #2 heating oil.

Capacity (gal): 1000

Owner: WINNIPESAUKEE RIVER BASIN

PO BOX 68

FRANKLIN, NH 03235

Lust Tracking Number: 198811021
Type of Tank Construction: Steel
Type of Pipe Construction: Copper
Double Wall Construction: No
Spill Installed: Not reported

Spill Installed: Not reported Overfill: Not reported Line Leak Detection: Not reported

Permanent Closure: 1995-12-13 00:00:00 Permanent Closure Analysis: 1996-02-23 00:00:00

Facility ID: 0110307 Tank ID: 6

Install Date: 1979-01-01 00:00:00 Last Test: Not reported Close Date: Not reported Closure Type: Filled In Place

Chemical: Hazardous materials Capacity (gal): 5000

Owner: WINNIPESAUKEE RIVER BASIN

PO BOX 68

FRANKLIN, NH 03235

Lust Tracking Number: 198811021

WINNIPESAUKEE RIVER BASIN WWTP (Continued)

Type of Tank Construction: Fiberglass
Type of Pipe Construction: Other Material

Double Wall Construction: No

Spill Installed: Not reported
Overfill: Not reported
Line Leak Detection: Not reported

Permanent Closure: 1979-10-01 00:00:00

Permanent Closure Analysis: Not reported

Facility ID: 0110307 Tank ID: 8

Install Date: 1996-01-30 00:00:00 Last Test: Not reported Close Date: Not reported Closure Type: Not reported Chemical: #2 heating oil.

Capacity (gal): 1000

Owner: WINNIPESAUKEE RIVER BASIN

PO BOX 68

FRANKLIN, NH 03235

Lust Tracking Number: 198811021
Type of Tank Construction: Composite material
Type of Pipe Construction: Other Material

Double Wall Construction: Yes

 Spill Installed:
 1996-01-30 00:00:00

 Overfill:
 1996-01-30 00:00:00

Line Leak Detection: Not reported Permanent Closure: Not reported Permanent Closure Analysis: Not reported

Facility ID: 0110307 Tank ID: 10

Install Date: 1996-01-30 00:00:00 Last Test: Not reported Close Date: Not reported Closure Type: Not reported Chemical: #2 heating oil.

Capacity (gal): 5000

Owner: WINNIPESAUKEE RIVER BASIN

PO BOX 68

FRANKLIN, NH 03235

Lust Tracking Number: 198811021
Type of Tank Construction: Composite material
Type of Pipe Construction: Other Material

Double Wall Construction: Yes

Spill Installed: 1996-01-30 00:00:00
Overfill: 1996-01-30 00:00:00
Line Leak Detection: Not reported
Permanent Closure: Not reported
Permanent Closure Analysis: Not reported

Facility ID: 0110307 Tank ID: 12

Install Date: 1996-01-30 00:00:00 Last Test: Not reported Close Date: Not reported Chemical: Kerosene Closure Type: Not reported Chemical: Not reported Chemical

Chemical: Kerosene Capacity (gal): 2000

Owner: WINNIPESAUKEE RIVER BASIN

PO BOX 68

FRANKLIN, NH 03235

Lust Tracking Number: 198811021
Type of Tank Construction: Composite material
Type of Pipe Construction: Other Material

Double Wall Construction: Yes

ORPHAN DETAIL TC1469641.11s Page 28

U000347009

WINNIPESAUKEE RIVER BASIN WWTP (Continued)

 Spill Installed:
 1996-01-30 00:00:00

 Overfill:
 1996-01-30 00:00:00

Line Leak Detection: Not reported Permanent Closure: Not reported Permanent Closure Analysis: Not reported

Facility ID: 0110307 Tank ID: 11

Install Date: 1996-01-30 00:00:00 Last Test: Not reported Close Date: Not reported Closure Type: Not reported

Chemical: #2 heating oil. Capacity (gal): 5000

Owner: WINNIPESAUKEE RIVER BASIN

PO BOX 68

FRANKLIN, NH 03235

Lust Tracking Number: 198811021
Type of Tank Construction: Composite material
Type of Pipe Construction: Other Material

Double Wall Construction: Yes

 Spill Installed:
 1996-01-30 00:00:00

 Overfill:
 1996-01-30 00:00:00

Line Leak Detection: Not reported Permanent Closure: Not reported Permanent Closure Analysis: Not reported

Facility ID: 0110307 Tank ID: 9

Install Date: 1996-01-30 00:00:00 Last Test: Not reported Close Date: Not reported Closure Type: Not reported Chemical: #2 heating oil.

Capacity (gal): 1000

Owner: WINNIPESAUKEE RIVER BASIN

PO BOX 68

FRANKLIN, NH 03235 Lust Tracking Number: 198811021

Type of Tank Construction: Composite material Type of Pipe Construction: Other Material

Double Wall Construction: Yes

Spill Installed: 1996-01-30 00:00:00
Overfill: 1996-01-30 00:00:00
Line Leak Detection: Not reported
Permanent Closure: Not reported
Permanent Closure Analysis: Not reported

Facility ID: 0110307 Tank ID:

Install Date: 1979-01-01 00:00:00 Last Test: Not reported
Close Date: Not reported Closure Type: Filled In Place
Chemical: Hazardous materials

Capacity (gal): 5000

Owner: WINNIPESAUKEE RIVER BASIN

PO BOX 68

FRANKLIN, NH 03235

Lust Tracking Number: 198811021
Type of Tank Construction: Fiberglass
Type of Pipe Construction: Other Material

Double Wall Construction: No

Spill Installed: Not reported Overfill: Not reported Line Leak Detection: Not reported

ORPHAN DETAIL TC1469641.11s Page 29

U000347009

EDR ID Number Site **EPA ID Number** Database(s)

WINNIPESAUKEE RIVER BASIN WWTP (Continued)

Permanent Closure: 1979-10-01 00:00:00

Permanent Closure Analysis: Not reported

0110307 Tank ID: Facility ID:

1979-01-01 00:00:00 1991-04-30 00:00:00 Install Date: Last Test:

Closure Type: Close Date: Not reported Removed Chemical: #2 heating oil.

Capacity (gal): 2000

WINNIPESAUKEE RIVER BASIN Owner:

PO BOX 68

FRANKLIN, NH 03235 198811021 Lust Tracking Number: Type of Tank Construction: Steel Type of Pipe Construction: Copper Double Wall Construction: No

Spill Installed: Not reported Overfill: Not reported Line Leak Detection: Not reported

Permanent Closure: 1995-12-13 00:00:00 Permanent Closure Analysis: 1996-02-23 00:00:00

0110307 Facility ID: Tank ID:

Install Date: 1979-01-01 00:00:00 1991-05-01 00:00:00 Last Test: Closure Type: Removed

Close Date: Not reported Chemical: #2 heating oil.

Capacity (gal): 9960

WINNIPESAUKEE RIVER BASIN Owner:

PO BOX 68

FRANKLIN, NH 03235

Lust Tracking Number: 198811021 Type of Tank Construction: Steel Type of Pipe Construction: Copper Double Wall Construction: No Spill Installed: Not reported Overfill: Not reported

Line Leak Detection: Not reported 1995-12-13 00:00:00 Permanent Closure:

Permanent Closure Analysis: 1996-02-23 00:00:00

Facility ID: 0110307 Tank ID:

1979-01-01 00:00:00 Install Date: 1991-05-02 00:00:00 Last Test: Closure Type: Removed

Close Date: Not reported Chemical: #2 heating oil.

Capacity (gal): 5000

WINNIPESAUKEE RIVER BASIN Owner:

PO BOX 68

FRANKLIN, NH 03235

Lust Tracking Number: 198811021 Type of Tank Construction: Steel Type of Pipe Construction: Copper Double Wall Construction: No

Spill Installed: Not reported Overfill: Not reported Line Leak Detection: Not reported

1995-12-13 00:00:00 Permanent Closure: Permanent Closure Analysis: 1996-02-23 00:00:00

ORPHAN DETAIL TC1469641.11s Page 30

U000347009

WINNIPESAUKEE RIVER BASIN WWTP (Continued)

U000347009

NH Sites:

Facility ID: 198811021 Project Type: SLUDGAP

Project Manager: PERMITS-DISCHARGE

Num of Permits: 3

Facility ID: 198811021 Project Type: SLUD/LAG

Project Manager: PERMITS-DISCHARGE

Num of Permits: 3

Facility ID: 198811021 Project Type: SLUD/LAG

Project Manager: PERMITS-DISCHARGE

Num of Permits: 3

FRANKLIN TRANSFER STATION PUNCH BROOK ROAD FRANKLIN, NH 03235

NH Sites:

Facility ID: 198401092 Project Type: LAND/LN Project Manager: BEBLOWSKI

Num of Permits: 6

LF:

Owner Name: CITY OF FRANKLIN

Owner Phone: 0

Facility type: Tr/Coll/Stor
Status: Operating
Ownership: PUBLIC
Contact: same as owner
Consultant: Not reported

Acres: 0

Cap type: Not reported Address 2: Not reported

FRANKLIN ASH LANDFILL PUNCH BROOK ROAD FRANKLIN, NH 03235

LF:

Owner Name: CONCORD REGIONAL SW DISTRICT

Owner Phone: 6037538534
Facility type: Landfill
Status: Operating
Ownership: PUBLIC

Contact: JAMES PRESHER
Consultant: CMA ENGINEERS

Acres: 15

Cap type: Not reported Address 2: Not reported

ALLSITES S105426282 SWF/LF N/A

SWF/LF S105426283 N/A

OAK MATERIALS GROUP LAMINATES DIV RANGE RD

RCRA-SQG 1000348237 FINDS NHD000477620

Date of

S102610552

N/A

FRANKLIN, NH 03235

RCRAInfo:

Owner: OAK MATERIALS GROUP

(603) 934-5736

EPA ID: NHD000477620
Contact: ROBERT-J HILL (603) 934-5736

Classification: Small Quantity Generator

TSDF Activities: Not reported Violation Status: Violations exist

Regulation Violated: Not reported

Area of Violation: GENERATOR-ALL REQUIREMENTS (OVERSIGHT)

Date Violation Determined: 03/01/1984 Actual Date Achieved Compliance: 06/21/1984

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 04/05/1984
Penalty Type: Not reported

There are 1 violation record(s) reported at this site:

Evaluation Area of Violation

Area of Violation Compliance
GENERATOR-ALL REQUIREMENTS (OVERSIGHT) 19840621

Compliance Evaluation Inspection GENERATOR-ALL REQUIREMENTS (OVERSIGHT) 19840621

FINDS:

Other Pertinent Environmental Activity Identified at Site:

RESOURCE CONSERVATION AND RECOVERY ACT INFORMATION SYSTEM

TOXIC CHEMICAL RELEASE INVENTORY SYSTEM

FRANKLIN MUNICIPAL LANDFILL
RIVER ROAD
SWF/LF S105426281
N/A

FRANKLIN, NH 03235

LF:

Owner Name: TOWN OF FRANKLIN

Owner Phone: 6039343900
Facility type: Landfill
Status: Capped
Ownership: PUBLIC
Contact: same as owner

Consultant: HOYLE, TANNER & ASSOCIATES

Acres: 13

Cap type: Not reported Address 2: Not reported

LAKES REGION ARTESIAN WELL TANNERY STREET

FRANKLIN, NH

NH SPILL:

Facility ID: 199402021 Project Type: SPILL/RLS

No. of Permits: 0 Project Manager: CLOSED NH Spills

ALLSITES

DETAILED ORPHAN LISTING

EDR ID Number
Site Database(s) EPA ID Number

LAKES REGION ARTESIAN WELL (Continued)

S102610552

N/A

Qty

NH Sites:

Facility ID: 199402021 Project Type: SPILL/RLS Project Manager: CLOSED Num of Permits: 0

POLYCLAD LAMINATES ERNS 94426085

POLYCLAD LAMINATES
WEST FRANKLIN, NH 03235

Site ID: 94426085

Site Location: POLYCLAD LAMINATES

WEST FRANKLIN, NH 03235-

Report No: Not reported

EPA Region: 01

 Spill Date:
 03/09/1994

 Spill Time:
 04:00

 Medium Desc:
 Water

 Damage/Amt:
 Yes / \$0.00

Evacuation: No Injured: None

Fatalities: None Disch Org: POLYCLAD LAMINATES

Notes: Not reported

Disch Add: Not reported

WEST FRANKLIN, NH 03235

Disch County: Not reported C.G. Unit: Not reported

Cause: OTHER
Spilled Material Total Qty In Water Undot Cas

HYDOGEN PEROXIDE 20.00 GAL 0.00 UNK Not reported 53897628 0.00 lbs.

Description: MATERIAL SPILLED

Resp Action: OPEN DOOR TO ALLOW VAPOR TO ESCAPE. KNOCKED DOWN VAPOR WITH A WATER

SPRAY.

Misc. Info: MATERIAL WENT INTO A BUILT IN HOLDING TANK. INDUSTRIAL GRADE IS ABOUT

50% HYDOGEN PEROXIDE. NEWSCLIP.

Location: POLYCLAD LAMINATES

EDR Site ReportTM

POLYCLAD LAMINATES INC 45 TANNERY ST FRANKLIN, NH 03235

Inquiry Number:

August 1, 2005

The Standard in Environmental Risk Management Information

440 Wheelers Farms Road Milford, Connecticut 06460

Nationwide Customer Service

Telephone: 1-800-352-0050 Fax: 1-800-231-6802 Internet: www.edrnet.com

TABLE OF CONTENTS

The EDR-Site ReportTM is a comprehensive presentation of government filings on a facility identified in a search of over 4 million government records from more than 600 federal, state and local environmental databases. The report is divided into three sections:

Section	on 1: Facility Summary	Page 3
	Summary of facility filings including a review of the following areas: waste management, waste disposal, multi-media issues, and Superfund liability.	
Section	on 2: Facility Detail Reports	Page 4
	All available detailed information from databases where sites are identified.	
Section	on 3: Databases Searched and Update InformationF	Page 15
	Name, source, update dates, contact phone number and description of each of the databases searched for this report.	

Thank you for your business.
Please contact EDR at 1-800-352-0050
with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This report contains information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANYSUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OR DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES.ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this report "AS IS". Any analyses, estimates, ratings, or risk codes provided in this report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assesment performed by an environmental professional can produce information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2005 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

SECTION 1: FACILITY SUMMARY

FACILITY	FACILITY 1 POLYCLAD LAMINATES INC 45 TANNERY ST FRANKLIN, NH 03235 EDR ID #1000441187 EPA #NHD099362048
WASTE MANAGEMENT Facility generates hazardous waste (RCRA)	YES - p4
Facility treats, stores, or disposes of hazardous waste on-site (RCRA/TSDF)	NO
Facility has received Notices of Violations (RCRA/VIOL)	YES - p6
Facility has been subject to RCRA administrative actions (RAATS)	NO
Facility has been subject to corrective actions (CORRACTS)	NO
Facility handles PCBs (PADS)	NO
Facility uses radioactive materials (MLTS)	NO
Facility manages registered aboveground storage tanks (AST)	NO
Facility manages registered underground storage tanks (UST)	YES - p8
Facility has reported leaking underground storage tank incidents (LUST)	NO
Facility has reported emergency releases to the soil (ERNS)	NO
Facility has reported hazardous material incidents to DOT (HMIRS)	NO
WASTE DISPOSAL Facility is a Superfund Site (NPL)	NO
Facility has a known or suspect abandoned, inactive or uncontrolled hazardous waste site (CERCLIS)	NO
Facility has a reported Superfund Lien on it (LIENS)	NO
Facility is listed as a state hazardous waste site (SHWS)	NO
Facility has disposed of solid waste on-site (SWF/LF)	NO
MULTIMEDIA Facility uses toxic chemicals and has notified EPA under SARA Title III, Section 313 (TRIS)	YES - p10
Facility produces pesticides and has notified EPA under Section 7 of FIFRA (SSTS)	NO
Facility manufactures or imports toxic chemicals on the TSCA list (TSCA)	NO
Facility has inspections under FIFRA, TSCA or EPCRA (FTTS)	NO
Facility is listed in EPA's index system (FINDS)	YES - p14
Facility is listed in a county/local unique database (LOCAL)	NO
POTENTIAL SUPERFUND LIABILITY Facility has a list of potentially responsible parties PRP	NO
TOTAL (YES)	5

WASTE MANAGEMENT

Facility generates hazardous waste

DATABASE: Resource Conservation and Recovery Information (RCRAInfo)

POLYCLAD LAMINATES INC 45 TANNERY ST FRANKLIN, NH 03235 EDR ID #1000441187

Facility Name: POLYCLAD LAMINATES INC

45 TANNERY ST FRANKLIN, NH 03235

Mailing Address:

INDUSTRIAL PARK DR FRANKLIN, NH 03235

Contact: DONALD MAURER

Not reported (603) 934-5642

EPA-ID: NHD099362048

Classification: Large Quantity Generator

Description: Handler:

- generates 1,000 kg or more of hazardous waste during any calendar month; or - generates more than 1 kg of acutely hazardous waste during any calendar month; or - generates more than 100 kg of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste during any calendar month; or

generates 1 kg or less of acutely hazardous waste during any calendar month, and accumulates more than 1 kg of acutely hazardous waste at any time; or

generates 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste during any calendar month, and accumulates more than 100 kg of that material

at any time

Legal Status: Private

Owner: **COOKSON AMERICA**

ONE COOKSON PLAZA PROVIDENCE, RI

BIENNIAL REPORTS

Last Biennial Reporting Year: 2001

Annual Waste Handled:

Waste Code	Amount (Lbs)	Waste Code	Amount (Lbs)
			
D001 D009 D035 F005	56602.08 458.53 30721.82 22926.73	D002 D022 F003	2292.67 8712.16 94649.89

NY MANIFEST DATA

NYG2734992 NYD049253 Document ID: Manifest Status: Not reported Trans1 State ID: Trans2 State ID: Not reported Generator Ship Date: 08/28/2003 Trans1 Recv Date: 08/28/2003 Trans2 Recv Date: Not reported TSD Site Recv Date: 08/29/2003 Part A Recv Date: Not reported Part B Recv Date: Not reported Generator EPA ID: NHD099362048 Trans1 EPA ID: NYD049253719 TSDF ID: Trans2 EPA ID: Not reported 2450B7NY Facility Type: GEN

POLYCLAD LAMINATES Facility Name : Facility Address: 45 TANNERY ST FRANKLIN, NH 03235

Country:

County : Not reported Code: Not reported

POLYCLAD LAMINATES Mailing Name:

...Continued...

Mailing Contact: RYAN EMERSON Mailing Address : 45 TANNERY ST FRANKLIN, NH 03235

Mailing Country: Not reported

Waste Code(s) Description:

F003 - UNKNOWN F003 F005 - UNKNOWN F005

Waste Code Quantity Num of Containers **Container Type** Handling Method Specific Gravity

F003 G 0 012 Metal drums, barrels 01.00 Recycle 00055 Gallons F005 001 Metal drums, barrels Recycle 01.00

CT MANIFEST DATA

EDR ID: 1000441187 Manifest ID: MAK1723126

TSDF EPA ID: TSDF Name: Not reported TSDF Telephone: Not reported Not reported

TSDF Address: Not reported Not reported TSDF Country: USA

Transporter 1 EPA ID Not reported Trans. 1 Phone: Not reported

Trans. 1 Name: Not reported

Trans. 1 Address: Not reported

Trans. 1 Country: ŬŜA Transporter 2 EPA ID: Not reported Trans. 2 Phone: Not reported

Trans. 2 Name: Trans. 2 Address: Not reported Not reported

CT Trans. 2 Country: USA

Transp. 1 date: Facility Phone: Transp. 1 date: Generator EPA ID: Not reported Not reported NHD099362048 6039345642

POLYCLAD LAMINATES, INC 45 TANNERY ST Facility Name: Fac. Address:

NH 03235

Site Address: Not reported Not reported Site County: Not reported Special Handling:

Not reported 19970410 Discrepancies: Date Received: Not reported Date Shipped: Not reported

Not reported Comments: Year: 1997

20040426 Last modified date: Last modified by: IG

Manifest ID: TSDF Telephone: EDR ID: 1000441187 MAM131112 TSDF EPA ID: TSDF Name: MAD047075734 Not reported

JONES ENVIRONMENTAL SERVICES NE INC

TSDF Address: 263 HOWARD ST LOWELL, MA 01851 TSDF Country: USA

Transporter 1 EPA ID: MAR000008425 Trans. 1 Phone:

NORTH COUNTRY ENVIRONMENTAL SERVICES INC Trans. 1 Name:

Trans. 1 Address: Not reported

USA Trans. 1 Country Transporter 2 EPA ID: Not reported

Trans. 2 Phone: Not reported Trans. 2 Name:

Trans. 2 Address: Not reported

Trans. 2 Country: USA Transp. 1 date: 20000228 Generator EPA ID: NHD099362048

Transp. 1 date: Not reported Facility Phone: 6039345642

POLYCLAD LAMINATES (TANNERY) Facility Name:

Fac. Address: 45 TANNERY ST. FRANKLIN

NH 03235 Site Address: Not reported Not reported Site County: Not reported

Special Handling: Date Shipped: Not reported Discrepancies: 20000228 20000228 Date Received:

Not reported Comments: Year: 2000

20040427 Last modified date: Last modified by: IG

Not reported

...Continued...

WASTE MANAGEMENT

Facility Has Received Notices of Violations

DATABASE: Resource Conservation and Recovery Information (RCRAInfo)

POLYCLAD LAMINATES INC 45 TANNERY ST FRANKLIN, NH 03235 EDR ID #1000441187

> Regulation Violated: 509.03(b)

Area of Violation: PERSONNEL TRAINING RECORDS

Date Violation Determined: 04/10/2001 Actual Date Achieved Compliance: 02/20/2002

> **Enforcement Action:** FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 06/05/1986

Enforcement Action: EPA TO STATE ADMINISTRATIVE REFERRAL

Enforcement Action Date: 07/13/2001

Regulation Violated:

509.02(a) & (a)(1) GENERATOR INSPECTION SCHEDULE & LOG 04/10/2001 Area of Violation:
Date Violation Determined:

Actual Date Achieved Compliance: 02/20/2002

> **Enforcement Action:** EPA TO STATE ADMINISTRATIVE REFERRAL

Enforcement Action Date: 07/13/2001

Enforcement Action: WRITTEN INFORMAL

Enforcement Action Date: 11/13/2001

FINAL 3008(A) COMPLIANCE ORDER **Enforcement Action:**

Enforcement Action Date: 04/23/2002

Regulation Violated: ENV-Wm 509..02(a)(2)

PERSONNEL TRAINING RECORDS Area of Violation:

Date Violation Determined: 04/10/2001 Actual Date Achieved Compliance: 02/20/2002

> EPA TO STATE ADMINISTRATIVE REFERRAL **Enforcement Action:**

Enforcement Action Date: 07/13/2001

Enforcement Action: WRITTEN INFORMAL

Enforcement Action Date: 11/13/2001

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 04/23/2002

509.02(a)(1)
GENERATOR INSPECTION SCHEDULE & LOG Regulation Violated:

Area of Violation: Date Violation Determined: 04/10/2001

Actual Date Achieved Compliance: 02/20/2002

> **Enforcement Action:** WRITTEN INFORMAL

Enforcement Action Date: 11/13/2001

Enforcement Action: FINAL 3008(A) COMPLIANCE ORDER

Enforcement Action Date: 04/23/2002

Regulation Violated: Not reported

GENERATOR-ALL REQUIREMENTS (OVERSIGHT) Area of Violation:

Date Violation Determined: 05/16/1986 Actual Date Achieved Compliance: 09/25/1986

...Continued...

FINAL 3008(A) COMPLIANCE ORDER 06/05/1986 Enforcement Action:

Enforcement Action Date:

Enforcement Action: EPA TO STATE ADMINISTRATIVE REFERRAL

Enforcement Action Date: 07/13/2001

COMPLIANCE AND ENFORCEMENT SUMMARY

Responsible Agency: **EPA Personnel**

Compliance Evaluation Inspection Compliance Evaluation Inspection Compliance Schedule Evaluation Compliance Evaluation Inspection

Evaluation Date: 04/10/2001 Evaluation Date: 04/10/2001 Evaluation Date: 09/25/1986 Evaluation Date: 05/16/1986

...Continued...

WASTE MANAGEMENT

Facility manages registered underground storage tanks

DATABASE: Petroleum Storage Tank Database (UST)

POLYCLAD LAMINATES INC 45 TANNERY ST FRANKLIN, NH 03235 EDR ID #1000441187

UST:

Facility ID: 0110998

1983-01-01 00:00:00 Install Date: Close Date: Not reported Chemical: Hazardous materials

Capacity (gal): 6000

POLYCLAD LAMINATES INC Owner:

40 INDUSTRIAL PARK DR FRANKLIN, NH 03235

Lust Tracking Number: 199902062 Type of Tank Construction: Steel Type of Pipe Construction: Steel

Double Wall Construction: Spill Installed: 1994-10-07 00:00:00

Overfill: 1911-11-11 00:00:00 Line Leak Detection: Not reported

Permanent Closure: 1998-12-12 00:00:00 Permanent Closure Analysis: 1999-02-05 00:00:00

Facility ID: Install Date: 0110998

1998-12-23 00:00:00 Close Date: Not reported Chemical: Hazardous materials

Capacity (gal): 13500

POLYCLAD LAMINATES INC Owner:

40 INDUSTRIAL PARK DR FRANKLIN, NH 03235

Lust Tracking Number:
Type of Tank Construction:
Type of Pipe Construction:
Double Wall Construction: 199902062 Composite material Other Material

Yes 1998-12-23 00:00:00 1998-12-23 00:00:00 Spill Installed: Overfill:

Not reported Line Leak Detection: Permanent Closure: Not reported Permanent Closure Analysis: Not reported

Facility ID: Install Date: 0110998 1983-01-01 00:00:00 Close Date: Not reported

Chemical: #2 heating oil.

Capacity (gal): 12000

POLYCLAD LAMINATES INC Owner:

40 INDUSTRIAL PARK DR FRANKLIN, NH 03235

Lust Tracking Number: 199902062 Type of Tank Construction: Steel Type of Pipe Construction: Steel Double Wall Construction:

Spill Installed: Not reported Overfill: Not reported Line Leak Detection: Not reported Permanent Closure: 1992-11-10 (
Permanent Closure Analysis: Not reported 1992-11-10 00:00:00

0110998

Facility ID: Install Date: 1980-01-01 00:00:00 Close Date: 1999-01-21 00:00:00 Chemical: Hazardous materials

Capacity (gal): 4500

POLYCLAD LAMINATES INC Owner:

40 INDUSTRIAL PARK DR FRANKLIN, NH 03235

Lust Tracking Number: 199902062 Type of Tank Construction:
Type of Pipe Construction:
Double Wall Construction: Steel Steel Nο

1994-10-07 00:00:00 1911-11-11 00:00:00 Spill Installed: Overfill: Line Leak Detection: Not reported

Tank ID:

1998-12-07 00:00:00 Last Test: Closure Type:

Removed

Tank ID:

2004-03-05 00:00:00 Last Test:

Closure Type: Not reported

Tank ID:

1991-11-01 00:00:00 Last Test:

Closure Type: Removed

Tank ID:

1998-12-07 00:00:00 Last Test:

Closure Type: Filled In Place

...Continued...

Permanent Closure: 1999-06-08 00:00:00 Permanent Closure Analysis: 1999-07-19 00:00:00

0110998

Facility ID: Install Date: Close Date: 1980-01-01 00:00:00 1999-01-21 00:00:00 Chemical: Hazardous materials

Capacity (gal): 6000

Owner:

POLYCLAD LAMINATES INC 40 INDUSTRIAL PARK DR FRANKLIN, NH 03235

Lust Tracking Number: 199902062 Type of Tank Construction: Type of Pipe Construction: Steel Steel

Double Wall Construction: No Spill Installed:

1994-10-07 00:00:00 Overfill: 1911-11-11 00:00:00 Line Leak Detection: Not reported

Permanent Closure: 1999-06-08 00:00:00 1999-07-19 00:00:00 Permanent Closure Analysis:

0110998 Facility ID:

1983-01-01 00:00:00 Install Date:

Close Date: Not reported Chemical: Gasoline.

Capacity (gal): 4000

POLYCLAD LAMINATES INC 40 INDUSTRIAL PARK DR Owner:

FRANKLIN, NH 03235

Lust Tracking Number:
Type of Tank Construction: 199902062 Steel Type of Pipe Construction: Double Wall Construction: Steel No

Spill Installed: Not reported Overfill: Not reported Not reported 1992-11-10 00:00:00 Line Leak Detection: Permanent Closure:

Permanent Closure Analysis: Not reported

Facility ID: Install Date: 0110998

1980-01-01 00:00:00 1999-01-21 00:00:00 Close Date: Hazardous materials Chemical:

Capacity (gal): 4500

Owner:

POLYCLAD LAMINATES INC 40 INDUSTRIAL PARK DR FRANKLIN, NH 03235 199902062

Lust Tracking Number: Type of Tank Construction: Type of Pipe Construction: Steel Steel **Double Wall Construction:**

1994-10-07 00:00:00 Spill Installed: Overfill: 1911-11-11 00:00:00 Line Leak Detection: Not reported

Permanent Closure: 1999-06-08 00:00:00
Permanent Closure Analysis: 1999-07-19 00:00:00

Tank ID:

1998-01-14 00:00:00 Last Test: Closure Type:

Filled In Place

Tank ID:

Last Test: 1991-11-01 00:00:00

Closure Type: Removed

Tank ID:

Last Test: 1998-12-07 00:00:00 Filled In Place Closure Type:

...Continued...

MULTIMEDIA

Facility uses toxic chemicals and has notified EPA under SARA Title III, Section 313

DATABASE: Toxic Chemical Release Inventory System (TRIS)

POLYCLAD LAMINATES INC 45 TANNERY ST FRANKLIN, NH 03235 EDR ID #1000441187

Mailing Name: POLYCLAD LAMINATES INC. Mailing Addr: 40 INDUSTRIAL PARK DR.

FRANKLIN, NH 0323

03235-PLYCL-45TAN MIKE BEAUDIN TRIS ID: Reporting Year: 2002

Contact: Contact Tel: 6039345642 EPA ID: NHD099362048

DIRECTOR OF OPERATIONS - POLYCLAD NH MIKE BEAUDIN

Title of certifying official: Certifying official: DUNS number: 080027048

COOKSON AMERICA Parent Name:

Parent DUNS number: Not reported

3083, LAMINATED PLASTICS PLATE AND SHEET (1987) SIC Code:

NPDES ID: NH0021709

Not reported 71.657500 UIC ID: Not reported UIC ID: Reported Latitude: 43.461111 Reported Longitude: RCRA ID: Not reported

Chemical Summary (All amounts are in pounds)

Chemical name: METHYL ETHYL KETONE

CAS Number: 000078933

Indicates whether chemical is produced in facility: NO NO NO Indicates whether chemical is imported: Indicates whether chemical is for on-site use: Max chem. qty code:

Estimated qty of Fugitive air release pounds/yr:

Estimated qty of stack air release in pounds/yr: Not reported

Total air emissions: 250 Affected stream name:

Water stream release: Not reported

Percentage of total qty by weight of stream release: Affected stream name: NA

Water stream release:

Percentage of total qty by weight of stream release: Not reported Total number of streams reported as receiving releases: Total amount of all stream release: Total gty injected underground onsite to Class I well: ÑΑ

Total qty injected underground onsite to Class II-V well underground injection:
Total underground well injection in pounds/year: NA Estimated qty released to RCRA subtitle C Landfills: Non-RCRA Landfills Release: NA NA Land treatment/farming releases: NA Surface impoundments release: NA

Other disposal: Tot, onsite medium rel.: 0 NA Metals offsite transfers: 0 Tot. reprtd storage-only: POTWS offsite transfers: 0 Tot. qty reported as landfill/disposal surface impoundments: Undergroung injection:

Tot. qty reported as land treatment:

Other land disposal: Other offsite mgmnt: 0 Waster broker transfers: 0 Tot. offsite transfers: 0 4000

Tot. offsite transfers for further waste management:

Chemical name: **TOLUENE** 000108883 CAS Number:

Indicates whether chemical is produced in facility: NO Indicates whether chemical is imported: NO Indicates whether chemical is for on-site use: NO

Max chem. qty code: 04
Estimated qty of Fugitive air release pounds/yr:
Estimated qty of stack air release in pounds/yr:

NA Not reported

Total air emissions: Affected stream name:

Water stream release: Not reported

Percentage of total qty by weight of stream release: Affected stream name: NA

Water stream release:

Percentage of total gty by weight of stream release: Not reported

...Continued...

Total number of streams reported as receiving releases: Total amount of all stream release: Total amount of all stream release:
Total qty injected underground onsite to Class I well:
Total qty injected underground onsite to
Class II-V well underground injection:
Total underground well injection in pounds/year:
Estimated qty released to RCRA subtitle C Landfills:
Non-RCRA Landfills Release: NA NA ŇΑ NΑ Land treatment/farming releases: NA Surface impoundments release: NA Other disposal: Tot. onsite medium rel.: 0 Metals offsite transfers: 0 POTWS offsite transfers: 0 Tot. reprtd storage-only: Undergroung injection: Tot. qty reported as landfill/disposal surface impoundments: Tot. qty reported as land treatment: Other offsite mgmnt: Other land disposal: 0 Waster broker transfers: 0 Tot. offsite transfers: 0 Tot. offsite transfers for further waste management: 11401 Chemical name: N,N-DIMETHYLFORMAMIDE CAS Number: 000068122 Indicates whether chemical is produced in facility: NO Indicates whether chemical is imported: NO Indicates whether chemical is for on-site use: Max chem. qty code: Estimated qty of Fugitive air release pounds/yr: Estimated qty of stack air release in pounds/yr: Not reported Total air emissions: 750 Affected stream name: Water stream release: Not reported Percentage of total qty by weight of stream release: Affected stream name: ÑΑ Water stream release: Percentage of total qty by weight of stream release:
Total number of streams reported as receiving releases: Not reported Total number of streams reported as receiving releas Total amount of all stream release:
Total qty injected underground onsite to Class I well:
Total qty injected underground onsite to Class II-V well underground injection:
Total underground well injection in pounds/year:
Estimated qty released to RCRA subtitle C Landfills:
Non-RCRA Landfills Release:
Land treatment/farming releases:
Surface impoundments release: ŇΑ NΑ ÑΑ NA NA Surface impoundments release: NA Other disposal: NA Tot. onsite medium rel.: 0 Metals offsite transfers: 0 POTWS offsite transfers: 0 Tot. reprtd storage-only: 0 Undergroung injection: Tot. qty reported as landfill/disposal surface impoundments: Tot. qty reported as land treatment: Other land disposal: Other offsite mgmnt: Waster broker transfers: 0 Tot. offsite transfers: 0 Tot. offsite transfers for further waste management: 6000 Waste Management and Source Reduction Activities METHYL ETHYL KETONE Chemical Name: 3140 Qty released prior year: Qty released current yr: Qty rel. following year: 400 Qty released of Catastrophic/one-time event: Not reported Chemical Name: **TOLUENE** Qty released prior year: Qty released current yr: 899 1100 Qty rel. following year: 1200 Qtv released of Catastrophic/one-time event: Not reported Chemical Name: N,N-DIMETHYLFORMAMIDE Qty released prior year: 4080 Qty released current yr: 932.11 Qty rel. following year: Qty released of Catastrophic/one-time event: Not reported Off-site Transfers in pounds (non-POTW): Offsite RCRA ID: IND00064694 CAS Number: 000108883 POLUTION CONTROL INDUSTRIES Offsite name: Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312

Offsite County:

LAKE Estimated tot. qty of reported chemical in waste

0

...Continued...

transferred offsite for storage:	0
Estimated tot. qty of reported chemical in waste	0
transferred offsite for solidification/stabilization:	0
Estimated tot. qty of reported chemical in waste	0
transferred to offsite wastewater treatment:	0
Estimated tot. qty of reported chemical in waste	0
transferred to offsite underground injection:	0
Estimated tot. qty of reported chemical in waste	U
transferred to offsite landfill impoundments ponds:	0
Estimated tot. qty of reported chemical in waste subjected to land treatment:	U
	0
Estimated tot. qty of reported chemical in waste	0
subjected to other land disposal:	0
Estimated tot. qty of reported chemical in waste	0
subjected to other offsite management:	•
Estimated tot. qty of reported chemical in waste	0
subjected to waste broker disposal:	_
Estimated tot. qty of reported chemical	0
transferred offsite for unknown processing:	_
Estimated tot. qty of reported chemical transferred	0
offsite for solidification/stabilization:	
Estimated tot. qty of reported chemical transferred	0
offsite for incineration/chemical treatment:	
Estimated tot. qty of reported chemical transferred	0
offsite for incineration/insignificant fuel value:	
Estimated tot. qty of reported chemical transferred	0
to offsite wastewater treatment excluding POTW:	
Estimated tot. qty of reported chemical transferred	0
offsite for waste treatment:	-
Estimated tot. qty of reported chemical subjected	0
to waste broker disposal:	O
Amount range of toxic chemical sent offsite	Not reported
	Not reported
for energy recovery:	11401
System generated tot. qty of reported chemical in	11401
the waste sent offsite for energy recovery:	0
System generated tot. qty of reported chemical	0
sent to waste broker for energy recovery:	0
System generated tot, qty of reported chemical in	0
the waste transferred for solvents/organics recovery:	•
System generated tot, qty of reported chemical in	0
the waste transferred for metal recovery:	_
System generated tot, qty of reported chemical in	0
the waste transferred for other reuse/recovery:	
System generated tot. qty of reported chemical in	0
	0
System generated tot. qty of reported chemical in the waste transferred for acid regeneration:	0
System generated tot. qty of reported chemical in	
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling:	
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND00064694	
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND00064694 CAS Number: 000078933	
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND00064694 CAS Number: 000078933	
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND0064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE	
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND00064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312	
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND00064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE	0
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND00064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste	
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND00064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste transferred offsite for storage:	0
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND00064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste	0
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND00064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste transferred offsite for storage:	0
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND00064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste transferred offsite for storage: Estimated tot. qty of reported chemical in waste	0
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND0064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste transferred offsite for storage: Estimated tot. qty of reported chemical in waste transferred offsite for solidification/stabilization: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment:	0 0 0
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND0064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste transferred offsite for storage: Estimated tot. qty of reported chemical in waste transferred offsite for solidification/stabilization: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment:	0 0 0
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND00064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste transferred offsite for storage: Estimated tot. qty of reported chemical in waste transferred offsite for solidification/stabilization: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste	0 0 0 0
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND0064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste transferred offsite for storage: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite underground injection:	0 0 0 0
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND00064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste transferred offsite for storage: Estimated tot. qty of reported chemical in waste transferred offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite underground injection: Estimated tot. qty of reported chemical in waste transferred to offsite underground injection: Estimated tot. qty of reported chemical in waste	0 0 0 0
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND00064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste transferred offsite for storage: Estimated tot. qty of reported chemical in waste transferred to. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite underground injection: Estimated tot. qty of reported chemical in waste transferred to offsite underground injection: Estimated tot. qty of reported chemical in waste transferred to offsite landfill impoundments ponds:	0 0 0 0 0
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND00064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste transferred offsite for storage: Estimated tot. qty of reported chemical in waste transferred offsite for solidification/stabilization: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite underground injection: Estimated tot. qty of reported chemical in waste transferred to offsite landfill impoundments ponds: Estimated tot. qty of reported chemical in waste transferred to offsite landfill impoundments ponds: Estimated tot. qty of reported chemical in waste	0 0 0 0
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND00064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste transferred offsite for storage: Estimated tot. qty of reported chemical in waste transferred offsite vastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite underground injection: Estimated tot. qty of reported chemical in waste transferred to offsite landfill impoundments ponds: Estimated tot. qty of reported chemical in waste transferred to offsite landfill impoundments ponds: Estimated tot. qty of reported chemical in waste transferred to offsite landfill impoundments ponds: Estimated tot. qty of reported chemical in waste subjected to land treatment:	0 0 0 0 0
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND0064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste transferred offsite for storage: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite underground injection: Estimated tot. qty of reported chemical in waste transferred to offsite landfill impoundments ponds: Estimated tot. qty of reported chemical in waste transferred to offsite landfill impoundments ponds: Estimated tot. qty of reported chemical in waste subjected to land treatment: Estimated tot. qty of reported chemical in waste subjected to land treatment: Estimated tot. qty of reported chemical in waste	0 0 0 0 0
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND00064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste transferred offsite for storage: Estimated tot. qty of reported chemical in waste transferred offsite for solidification/stabilization: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite underground injection: Estimated tot. qty of reported chemical in waste transferred to offsite landfill impoundments ponds: Estimated tot. qty of reported chemical in waste subjected to land treatment: Estimated tot. qty of reported chemical in waste subjected to other land disposal:	0 0 0 0 0 0
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND00064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste transferred offsite for storage: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite underground injection: Estimated tot. qty of reported chemical in waste transferred to offsite landfill impoundments ponds: Estimated tot. qty of reported chemical in waste subjected to land treatment: Estimated tot. qty of reported chemical in waste subjected to other land disposal: Estimated tot. qty of reported chemical in waste subjected to other land disposal: Estimated tot. qty of reported chemical in waste	0 0 0 0 0
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND0064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste transferred offsite for storage: Estimated tot. qty of reported chemical in waste transferred offsite for solidification/stabilization: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite underground injection: Estimated tot. qty of reported chemical in waste transferred to offsite landfill impoundments ponds: Estimated tot. qty of reported chemical in waste subjected to land treatment: Estimated tot. qty of reported chemical in waste subjected to other land disposal: Estimated tot. qty of reported chemical in waste subjected to other offsite management:	0 0 0 0 0 0
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND00064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste transferred offsite for storage: Estimated tot. qty of reported chemical in waste transferred offsite for solidification/stabilization: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite underground injection: Estimated tot. qty of reported chemical in waste transferred to offsite landfill impoundments ponds: Estimated tot. qty of reported chemical in waste subjected to land treatment: Estimated tot. qty of reported chemical in waste subjected to other land disposal: Estimated tot. qty of reported chemical in waste subjected to other offsite management: Estimated tot. qty of reported chemical in waste subjected to other offsite management: Estimated tot. qty of reported chemical in waste subjected to other offsite management:	0 0 0 0 0 0
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND00064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste transferred offsite for storage: Estimated tot. qty of reported chemical in waste transferred offsite for solidification/stabilization: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite underground injection: Estimated tot. qty of reported chemical in waste transferred to offsite landfill impoundments ponds: Estimated tot. qty of reported chemical in waste subjected to land treatment: Estimated tot. qty of reported chemical in waste subjected to other land disposal: Estimated tot. qty of reported chemical in waste subjected to other land disposal: Estimated tot. qty of reported chemical in waste subjected to other offsite management: Estimated tot. qty of reported chemical in waste subjected to other offsite management: Estimated tot. qty of reported chemical in waste subjected to other offsite management: Estimated tot. qty of reported chemical in waste subjected to waste broker disposal:	0 0 0 0 0 0 0
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND00064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste transferred offsite for storage: Estimated tot. qty of reported chemical in waste transferred offsite for solidification/stabilization: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite underground injection: Estimated tot. qty of reported chemical in waste transferred to offsite landfill impoundments ponds: Estimated tot. qty of reported chemical in waste subjected to land treatment: Estimated tot. qty of reported chemical in waste subjected to other land disposal: Estimated tot. qty of reported chemical in waste subjected to other offsite management: Estimated tot. qty of reported chemical in waste subjected to waste broker disposal: Estimated tot. qty of reported chemical in waste subjected to waste broker disposal: Estimated tot. qty of reported chemical in waste subjected to waste broker disposal: Estimated tot. qty of reported chemical in waste subjected to waste broker disposal: Estimated tot. qty of reported chemical	0 0 0 0 0 0
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND0064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste transferred offsite for storage: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite underground injection: Estimated tot. qty of reported chemical in waste transferred to offsite landfill impoundments ponds: Estimated tot. qty of reported chemical in waste subjected to land treatment: Estimated tot. qty of reported chemical in waste subjected to other land disposal: Estimated tot. qty of reported chemical in waste subjected to other offsite management: Estimated tot. qty of reported chemical in waste subjected to waste broker disposal: Estimated tot. qty of reported chemical in waste subjected to waste broker disposal: Estimated tot. qty of reported chemical in waste subjected to waste broker disposal: Estimated tot. qty of reported chemical in waste subjected to waste broker disposal: Estimated tot. qty of reported chemical in waste subjected to waste broker disposal: Estimated tot. qty of reported chemical in waste subjected to waste broker disposal:	0 0 0 0 0 0 0 0
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND0064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste transferred offsite for storage: Estimated tot. qty of reported chemical in waste transferred offsite for solidification/stabilization: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite underground injection: Estimated tot. qty of reported chemical in waste transferred to offsite landfill impoundments ponds: Estimated tot. qty of reported chemical in waste subjected to land treatment: Estimated tot. qty of reported chemical in waste subjected to other land disposal: Estimated tot. qty of reported chemical in waste subjected to other offsite management: Estimated tot. qty of reported chemical in waste subjected to waste broker disposal: Estimated tot. qty of reported chemical in waste subjected to waste broker disposal: Estimated tot. qty of reported chemical transferred offsite for unknown processing: Estimated tot. qty of reported chemical transferred	0 0 0 0 0 0 0
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND00064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste transferred offsite for storage: Estimated tot. qty of reported chemical in waste transferred offsite for solidification/stabilization: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite underground injection: Estimated tot. qty of reported chemical in waste transferred to offsite landfill impoundments ponds: Estimated tot. qty of reported chemical in waste subjected to land treatment: Estimated tot. qty of reported chemical in waste subjected to other land disposal: Estimated tot. qty of reported chemical in waste subjected to other land disposal: Estimated tot. qty of reported chemical in waste subjected to waste broker disposal: Estimated tot. qty of reported chemical in waste subjected to waste broker disposal: Estimated tot. qty of reported chemical transferred offsite for unknown processing: Estimated tot. qty of reported chemical transferred offsite for unknown processing: Estimated tot. qty of reported chemical transferred offsite for unknown processing: Estimated tot. qty of reported chemical transferred offsite for unknown processing:	0 0 0 0 0 0 0 0
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND00064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste transferred offsite for storage: Estimated tot. qty of reported chemical in waste transferred offsite for solidification/stabilization: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite underground injection: Estimated tot. qty of reported chemical in waste transferred to offsite landfill impoundments ponds: Estimated tot. qty of reported chemical in waste subjected to land treatment: Estimated tot. qty of reported chemical in waste subjected to other land disposal: Estimated tot. qty of reported chemical in waste subjected to other offsite management: Estimated tot. qty of reported chemical in waste subjected to waste broker disposal: Estimated tot. qty of reported chemical transferred offsite for unknown processing: Estimated tot. qty of reported chemical transferred offsite for unknown processing: Estimated tot. qty of reported chemical transferred offsite for solidification/stabilization: Estimated tot. qty of reported chemical transferred	0 0 0 0 0 0 0 0
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND0064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste transferred offsite for storage: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite underground injection: Estimated tot. qty of reported chemical in waste transferred to offsite landfill impoundments ponds: Estimated tot. qty of reported chemical in waste subjected to land treatment: Estimated tot. qty of reported chemical in waste subjected to other land disposal: Estimated tot. qty of reported chemical in waste subjected to other offsite management: Estimated tot. qty of reported chemical in waste subjected to waste broker disposal: Estimated tot. qty of reported chemical transferred offsite for solidification/stabilization: Estimated tot. qty of reported chemical transferred offsite for solidification/stabilization: Estimated tot. qty of reported chemical transferred offsite for incineration/chemical treatment:	
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND0064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste transferred offsite for storage: Estimated tot. qty of reported chemical in waste transferred offsite for solidification/stabilization: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite underground injection: Estimated tot. qty of reported chemical in waste transferred to offsite landfill impoundments ponds: Estimated tot. qty of reported chemical in waste subjected to land treatment: Estimated tot. qty of reported chemical in waste subjected to other land disposal: Estimated tot. qty of reported chemical in waste subjected to waste broker disposal: Estimated tot. qty of reported chemical in waste subjected to waste broker disposal: Estimated tot. qty of reported chemical transferred offsite for unknown processing: Estimated tot. qty of reported chemical transferred offsite for solidification/stabilization: Estimated tot. qty of reported chemical transferred offsite for incineration/chemical treatment: Estimated tot. qty of reported chemical transferred offsite for incineration/chemical treatment: Estimated tot. qty of reported chemical transferred offsite for incineration/chemical treatment: Estimated tot. qty of reported chemical transferred	0 0 0 0 0 0 0 0
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND00064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste transferred offsite for storage: Estimated tot. qty of reported chemical in waste transferred offsite for solidification/stabilization: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite underground injection: Estimated tot. qty of reported chemical in waste transferred to offsite landfill impoundments ponds: Estimated tot. qty of reported chemical in waste subjected to land treatment: Estimated tot. qty of reported chemical in waste subjected to other land disposal: Estimated tot. qty of reported chemical in waste subjected to waste broker disposal: Estimated tot. qty of reported chemical in waste subjected to waste broker disposal: Estimated tot. qty of reported chemical transferred offsite for unknown processing: Estimated tot. qty of reported chemical transferred offsite for unknown processing: Estimated tot. qty of reported chemical transferred offsite for solidification/stabilization: Estimated tot. qty of reported chemical transferred offsite for incineration/chemical transferred offsite for incineration/chemical transferred offsite for incineration/chemical transferred offsite for incineration/insignificant fuel value:	
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND00064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste transferred offsite for storage: Estimated tot. qty of reported chemical in waste transferred offsite for solidification/stabilization: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite underground injection: Estimated tot. qty of reported chemical in waste transferred to offsite landfill impoundments ponds: Estimated tot. qty of reported chemical in waste subjected to land treatment: Estimated tot. qty of reported chemical in waste subjected to other land disposal: Estimated tot. qty of reported chemical in waste subjected to other land disposal: Estimated tot. qty of reported chemical in waste subjected to waste broker disposal: Estimated tot. qty of reported chemical in waste subjected to other offsite management: Estimated tot. qty of reported chemical transferred offsite for unknown processing: Estimated tot. qty of reported chemical transferred offsite for solidification/stabilization: Estimated tot. qty of reported chemical transferred offsite for incineration/chemical treatment: Estimated tot. qty of reported chemical transferred offsite for incineration/chemical transferred offsite for incineration/insignificant fuel value: Estimated tot. qty of reported chemical transferred	
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND00064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste transferred offsite for storage: Estimated tot. qty of reported chemical in waste transferred offsite for solidification/stabilization: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite underground injection: Estimated tot. qty of reported chemical in waste transferred to offsite landfill impoundments ponds: Estimated tot. qty of reported chemical in waste subjected to land treatment: Estimated tot. qty of reported chemical in waste subjected to other land disposal: Estimated tot. qty of reported chemical in waste subjected to other offsite management: Estimated tot. qty of reported chemical in waste subjected to waste broker disposal: Estimated tot. qty of reported chemical transferred offsite for unknown processing: Estimated tot. qty of reported chemical transferred offsite for solidification/stabilization: Estimated tot. qty of reported chemical transferred offsite for incineration/chemical treatment: Estimated tot. qty of reported chemical transferred offsite for incineration/chemical treatment: Estimated tot. qty of reported chemical transferred offsite for incineration/insignificant fuel value: Estimated tot. qty of reported chemical transferred offsite wastewater treatment excluding POTW:	
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND0064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste transferred offsite for storage: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite landfill impoundments ponds: Estimated tot. qty of reported chemical in waste transferred to offsite landfill impoundments ponds: Estimated tot. qty of reported chemical in waste subjected to land treatment: Estimated tot. qty of reported chemical in waste subjected to other land disposal: Estimated tot. qty of reported chemical in waste subjected to other offsite management: Estimated tot. qty of reported chemical in waste subjected to waste broker disposal: Estimated tot. qty of reported chemical transferred offsite for solidification/stabilization: Estimated tot. qty of reported chemical transferred offsite for solidification/stabilization: Estimated tot. qty of reported chemical transferred offsite for incineration/chemical treatment: Estimated tot. qty of reported chemical transferred offsite for incineration/chemical treatment: Estimated tot. qty of reported chemical transferred offsite for incineration/chemical treatment: Estimated tot. qty of reported chemical transferred offsite for incineration/chemical treatment: Estimated tot. qty of reported chemical transferred offsite for incineration/chemical treatment: Estimated tot. qty of reported chemical transferred offsite for incineration/chemical treatment: Estimated tot. qty of reported chemical transferred offsite wastewater treatment excluding POTW: Es	
System generated tot. qty of reported chemical in the waste transferred for acid regeneration: System generated tot. qty of reported chemical in the waste transferred to broker for recycling: Offsite RCRA ID: IND00064694 CAS Number: 000078933 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE EAST CHICAGO, IN 46312 Offsite County: LAKE Estimated tot. qty of reported chemical in waste transferred offsite for storage: Estimated tot. qty of reported chemical in waste transferred offsite for solidification/stabilization: Estimated tot. qty of reported chemical in waste transferred to offsite wastewater treatment: Estimated tot. qty of reported chemical in waste transferred to offsite underground injection: Estimated tot. qty of reported chemical in waste transferred to offsite landfill impoundments ponds: Estimated tot. qty of reported chemical in waste subjected to land treatment: Estimated tot. qty of reported chemical in waste subjected to other land disposal: Estimated tot. qty of reported chemical in waste subjected to other offsite management: Estimated tot. qty of reported chemical in waste subjected to waste broker disposal: Estimated tot. qty of reported chemical transferred offsite for unknown processing: Estimated tot. qty of reported chemical transferred offsite for solidification/stabilization: Estimated tot. qty of reported chemical transferred offsite for incineration/chemical treatment: Estimated tot. qty of reported chemical transferred offsite for incineration/chemical treatment: Estimated tot. qty of reported chemical transferred offsite for incineration/insignificant fuel value: Estimated tot. qty of reported chemical transferred offsite wastewater treatment excluding POTW:	

SECTION 2: FACILITY DETAIL REPORTS

...Continued...

to waste broker disposal:	
Amount range of toxic chemical sent offsite	Not reported
for energy recovery: System generated tot. qty of reported chemical in	4000
the waste sent offsite for energy recovery:	
System generated tot. qty of reported chemical sent to waste broker for energy recovery:	0
System generated tot. qty of reported chemical in	0
the waste transferred for solvents/organics recovery: System generated tot. qty of reported chemical in	0
the waste transferred for metal recovery: System generated tot. qty of reported chemical in	0
the waste transferred for other reuse/recovery:	
System generated tot. qty of reported chemical in the waste transferred for acid regeneration:	0
System generated tot. qty of reported chemical in the waste transferred to broker for recycling:	0
Offsite RCRA ID: IND00064694	
CAS Number: 000068122 Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE	
Offsite name: POLUTION CONTROL INDUSTRIES Offsite Address: 4343 KENNEDY AVENUE	
EAST CHICAGO, IN 46312	
Offsite County: LAKE	_
Estimated tot. qty of reported chemical in waste transferred offsite for storage:	0
Estimated tot. qty of reported chemical in waste	0
transferred offsite for solidification/stabilization:	
Estimated tot. qty of reported chemical in waste	0
transferred to offsite wastewater treatment: Estimated tot. gty of reported chemical in waste	0
transferred to offsite underground injection:	O
Estimated tot. qty of reported chemical in waste	0
transferred to offsite landfill impoundments ponds:	0
Estimated tot. qty of reported chemical in waste subjected to land treatment:	0
Estimated tot. qty of reported chemical in waste	0
subjected to other land disposal:	
Estimated tot. qty of reported chemical in waste	0
subjected to other offsite management: Estimated tot. qty of reported chemical in waste	0
subjected to waste broker disposal:	O
Estimated tot. qty of reported chemical	0
transferred offsite for unknown processing:	0
Estimated tot. qty of reported chemical transferred offsite for solidification/stabilization:	0
Estimated tot. qty of reported chemical transferred	0
offsite for incineration/chemical treatment:	_
Estimated tot. qty of reported chemical transferred	0
offsite for incineration/insignificant fuel value: Estimated tot. qty of reported chemical transferred	0
to offsite wastewater treatment excluding POTW:	Ü
Estimated tot. qty of reported chemical transferred	0
offsite for waste treatment: Estimated tot. qty of reported chemical subjected	0
to waste broker disposal:	U
Amount range of toxic chemical sent offsite	Not reported
for energy recovery:	
System generated tot. qty of reported chemical in the waste sent offsite for energy recovery:	6000
System generated tot. qty of reported chemical	0
sent to waste broker for energy recovery:	_
System generated tot. qty of reported chemical in	0
the waste transferred for solvents/organics recovery: System generated tot. qty of reported chemical in	0
the waste transferred for metal recovery:	O
System generated tot. qty of reported chemical in	0
the waste transferred for other reuse/recovery:	0
System generated tot. qty of reported chemical in the waste transferred for acid regeneration:	0
System generated tot. qty of reported chemical in	0
the waste transferred to broker for recycling:	
Transfers to Publicly Owned Treatment Works (POTW)	

POTW name: POTW Address: Not reported

Data covers entire facilityNC Sacility is federal:
NO Facility is GOCO:
NO Technical Contact:
CHRIS SMITH Tech. Contact Tel:
CONTECTION OF TECHNICAL CONTACT CHRIS SMITH CONTACT CHRIS CONTACT CHRIS SMITH CONTACT CHRIS SMITH CONTACT CHRIS CHRIS SMITH CONTACT CHRIS CHRIS

SECTION 2: FACILITY DETAIL REPORTS

...Continued...

MULTIMEDIA

Facility is listed in EPA's index system

DATABASE: Facility Index System (FINDS)

POLYCLAD LAMINATES INC 45 TANNERY ST FRANKLIN, NH 03235 EDR ID #1000441187

This site is listed in the Federal FINDS database. The FINDS database may contain references to records from government databases included elsewhere in the report. Please note: the FINDS database may also contain references to out of date records formerly associated with the site.

Registery ID: 110000313688

Facility Name: POLYCLAD LAMINATES INCORPORATED

Facility Address: 45 TANNERY ST.

FRANKLIN, NH 03235 - 6299

MERRIMAĆK

Facility County: Facility EPA Region: US Fed Gov Facility: 01 Nο

Indian Tribal Land: Not reported

Indian Tribal Land. Alternative Facility Names:

POLYCLAD LAMINATES INC.
POLYCLAD LAMINATES/TANNERY ST.

EPA Records Indicate Facility Is Listed In:

RESOURCE CONSERVATION AND RECOVERY ACT INFORMATION SYSTEM

NATIONAL EMISSIONS INVENTORY

NATIONAL EMISSIONS INVENTORY

TOXIC CHEMICAL RELEASE INVENTORY SYSTEM

RESOURCE CONSERVATION AND RECOVERY ACT INFORMATION SYSTEM

RESOURCE CONSERVATION AND RECOVERY ACT INFORMATION SYSTEM AEROMETRIC INFORMATION RETRIEVAL SYSTEM/AIRS FACILITY SYSTEM

Facility SIC Codes:

3083

Facility NAICS Codes:

32613

To maintain currency of the following federal, state and local databases, EDR contacts the appropriate government agency on a monthly or quarterly basis as required.

Elapsed ASTM days: Provides confirmation that this report meets or exceeds the 90-day updating requirement of the ASTM standard.

WASTE MANAGEMENT

RCRIS: Resource Conservation and Recovery Act Information

Source: EPA Telephone: 800-424-9346

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. RCRAInfo replaces the data recording and reporting abilities of the Resource Conservation and Recovery Information System (RCRIS). The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Conditionally exempt small quantity generators (CESQGs) generate less than 100 kg of hazardous waste, or less than 1 kg of acutely hazardous waste per month. Small quantity generators (SQGs) generate between 100 kg and 1,000 kg of hazardous waste per month. Large quantity generators (LQGs) generate over 1,000 kilograms (kg) of hazardous waste, or over 1 kg of acutely hazardous waste per month. Transporters are individuals or entities that move hazardous waste from the generator off-site to a facility that can recycle, treat, store, or dispose of the waste. TSDFs treat, store, or dispose of the waste.

Date of Last EDR Contact: 05/24/0405 Date of Government Version: 05/20/2005 Database Release Frequency: Quarterly Date of Next Scheduled Update: 08/22/2005

BRS: Biennial Reporting System Source: EPA/NTIS

Telephone: 800-424-9346

The Biennial Reporting System is a national system administered by the EPA that collects data on the generation and management of hazardous waste. BRS captures detailed data from two groups: Large Quantity Generators (LQG) and Treatment, Storage, and Disposal Facilities.

Date of Government Version: 12/01/2001 Date of Last EDR Contact: 06/17/2005 Date of Next Scheduled Update: 09/12/2005 Database Release Frequency: Biennially

RAATS: RCRA Administrative Action Tracking System

Source: EPA

Telephone: 202-564-4104

RCRA Administration Action Tracking System. RAATS contains records based on enforcement actions issued under RCRA pertaining to major violators and includes administrative and civil actions brought by the EPA. For administration actions after September 30, 1995, data entry in the RAATS database was discontinued. EPA will retain a copy of the database for historical records. It was necessary to terminate RAATS because a decrease in agency resources made it impossible to continue to update the information contained in the database.

Date of Government Version: 04/17/1995 Date of Last EDR Contact: 06/06/2005 Database Release Frequency: No Update Planned Date of Next Scheduled Update: 09/05/2005

CORRACTS: Corrective Action Report

Source: EPA

Telephone: 800-424-9346

CORRACTS identifies hazardous waste handlers with RCRA corrective action activity.

Date of Last EDR Contact: 06/05/2005 Date of Government Version: 03/29/2005 Database Release Frequency: Quarterly Date of Next Scheduled Update: 09/05/2005

PADS: PCB Activity Database System

Source: EPA

Telephone: 202-564-3887

PCB Activity Database. PADS Identifies generators, transporters, commercial storers and/or brokers and disposers of PCB's who are required to notify the EPA of such activities.

Date of Last EDR Contact: 05/10/2005 Date of Next Scheduled Update: 08/08/2005 Date of Government Version: 03/30/2005 Database Release Frequency: Annually

...Continued...

MLTS: Material Licensing Tracking System Source: Nuclear Regulatory Commission Telephone: 301-415-7169

MLTS is maintained by the Nuclear Regulatory Commission and contains a list of approximately 8,100 sites which possess or use radioactive materials and which are subject to NRC licensing requirements. To maintain currency, EDR contacts the Agency on a quarterly basis.

Date of Last EDR Contact: 07/05/2005 Date of Next Scheduled Update: 10/03/2005 Date of Government Version: 04/14/2005 Database Release Frequency: Quarterly

NH AST: Registered Aboveground Petroleum Storage Tank Database

Source: Department of Environmental Services

Telephone: 603-271-6058

Registered Aboveground Storage Tanks.

Date of Government Version: 06/21/2005 Date of Last EDR Contact: 06/06/2005 Database Release Frequency: Quarterly Date of Next Scheduled Update: 09/05/2005

NH UST: Underground Storage Tank Registration Data Source: Department of Environmental Services

Telephone: 603-271-2975

Registered Underground Storage Tanks. UST's are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA) and must be registered with the state department responsible for administering the UST program. Available information varies by state program.

Date of Government Version: 06/21/2005 Date of Last EDR Contact: 06/06/2005 Database Release Frequency: Quarterly Date of Next Scheduled Update: 09/05/2005

NH_LUST: Listing of All Sites

Source: Department of Environmental Services

Telephone: 603-271-2975

Leaking Underground Storage Tank Incident Reports. LUST records contain an inventory of reported leaking underground storage tank incidents. Not all states maintain these records, and the information stored varies by state.

Date of Last EDR Contact: 06/06/2005 Date of Government Version: 06/21/2005 Database Release Frequency: Quarterly Date of Next Scheduled Update: 09/05/2005

ERNS: Emergency Response Notification System

Source: National Response Center, United States Coast Guard

Telephone: 202-260-2342

Emergency Response Notification System. ERNS records and stores information on reported releases of

oil and hazardous substances.

Date of Last EDR Contact: 07/25/2005 Date of Government Version: 12/31/2004 Database Release Frequency: Annually Date of Next Scheduled Update: 10/24/2005

HMIRS: Hazardous Materials Information Reporting System

Source: U.S. Department of Transportation

Telephone: 202-366-4555

Hazardous Materials Incident Report System. HMIRS contains hazardous material spill incidents reported

Date of Government Version: 12/31/2004 Date of Last EDR Contact: 07/22/2005 Database Release Frequency: Annually Date of Next Scheduled Update: 10/17/2005

WASTE DISPOSAL

NPL: National Priority List

Source: FPA

Telephone: Not reported

National Priorities List (Superfund). The NPL is a subset of CERCLIS and identifies over 1,200 sites for priority cleanup under the Superfund Program. NPL sites may encompass relatively large areas. As such, EDR provides polygon coverage for over 1,000 NPL site boundaries produced by EPA's Environmental Photographic Interpretation Center (EPIC) and regional EPA offices.

Date of Government Version: 04/28/2005

Date of Data Arrival at EDR: 05/04/2005 Elapsed ASTM Days: 12
Date of Last EDR Contact: 05/04/2005 Date Made Active at EDR: 05/16/2005 Database Release Frequency: Quarterly

...Continued...

PROPOSED NPL: Proposed National Priority List Sites

Source: EPA

Telephone: Not reported

Date of Government Version: 04/27/2005 Date Made Active at EDR: 05/16/2005 Database Release Frequency: Quarterly Date of Data Arrival at EDR: 05/04/2005 Elapsed ASTM Days: 12 Date of Last EDR Contact: 05/04/2005

DELISTED NPL: National Priority List Deletions

Source: EPA

Telephone: Not reported

The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) establishes the criteria that the EPA uses to delete sites from the NPL. In accordance with 40 CFR 300.425.(e), sites may be deleted from the NPL where no further response is appropriate.

Date of Government Version: 04/28/2005 Date Made Active at EDR: 05/16/2005 Database Release Frequency: Quarterly

Date of Data Arrival at EDR: 05/04/2005 Elapsed ASTM Days: 12

Date of Last EDR Contact: 05/04/2005

CERCLIS: Comprehensive Environmental Response, Compensation, and Liability Information System

Source: EPA Telephone: 703-413-0223

CERCLIS contains data on potentially hazardous waste sites that have been reported to the USEPA by states, municipalities, private companies and private persons, pursuant to Section 103 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). CERCLIS contains sites which are either proposed to or on the National Priorities List (NPL) and sites which are in the screening and assessment phase for possible inclusion on the NPL.

Date of Government Version: 02/15/2005 Date Made Active at EDR: 04/06/2005 Database Release Frequency: Quarterly

Date of Data Arrival at EDR: 03/22/2005 Elapsed ASTM Days: 15
Date of Last EDR Contact: 07/22/2005

CERCLIS-NFRAP: CERCLIS No Further Remedial Action Planned

Source: EPA

Source: EPA
Telephone: 703-413-0223
As of February 1995, CERCLIS sites designated "No Further Remedial Action Planned" (NFRAP) have been removed from CERCLIS. NFRAP sites may be sites where, following an initial investigation, no contamination was found, contamination was removed quickly without the need for the site to be placed on the NPL, or the contamination was not serious enough to require Federal Superfund action or NPL consideration. EPA has removed approximately 25,000 NFRAP sites to lift the unintended barriers to the redevelopment of these properties and has archived them as historical records so EPA does not needlessly repeat the investigations in the future. This policy change is part of the EPA's Brownfields Redevelopment Program to belo cities, states, private investors and affected citizens to promote economic redevelopment of to help cities, states, private investors and affected citizens to promote economic redevelopment of unproductive urban sites.

Date of Government Version: 03/22/2005 Date of Last EDR Contact: 06/20/2005 Database Release Frequency: Quarterly Date of Next Scheduled Update: 09/19/2005

NPL LIENS: Federal Superfund Liens Source: EPA

Telephone: 202-564-4267

Federal Superfund Liens. Under the authority granted the USEPA by the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980, the USEPA has the authority to file liens against real property in order to recover remedial action expenditures or when the property owner receives notification of potential liability. USEPA compiles a listing of filed notices of Superfund Liens.

Date of Government Version: 10/15/1991 Date Made Active at EDR: 03/30/1994

Database Release Frequency: No Update Planned

Date of Data Arrival at EDR: 02/02/1994

Elapsed ASTM Days: 56

Date of Last EDR Contact: 05/23/2005

NH SHWS: Listing of All Sites Source: Department of Environmental Services

Telephone: 603-271-2919

State Hazardous Waste Sites. State hazardous waste site records are the states' equivalent to CERCLIS. These sites may or may not already be listed on the federal CERCLIS list. Priority sites planned for cleanup using state funds (state equivalent of Superfund) are identified along with sites where cleanup will be paid for by potentially responsible parties. Available information varies by state.

Date of Government Version: 06/21/2005 Database Release Frequency: Quarterly

Date of Last EDR Contact: 06/06/2005 Date of Next Scheduled Update: 09/05/2005

...Continued...

NH SWF/LF: Solid Waste Facility Information

Source: Department of Environmental Services Telephone: 603-271-5380

Solid Waste Facilities/Landfill Sites. SWF/LF type records typically contain an inventory of solid waste disposal facilities or landfills in a particular state. Depending on the state, these may be active or inactive facilities or open dumps that failed to meet RCRA Subtitle D Section 4004 criteria for solid waste landfills or disposal sites.

Date of Government Version: 05/16/2005 Database Release Frequency: Annually

Date of Last EDR Contact: 05/16/2005 Date of Next Scheduled Update: 08/15/2005

MULTIMEDIA

TRIS: Toxic Chemical Release Inventory System

Source: EPA

Telephone: 202-566-0250

Toxic Release Inventory System. TRIS identifies facilities which release toxic chemicals to the air,

water and land in reportable quantities under SARA Title III Section 313.

Date of Government Version: 12/31/2002 Date of Last EDR Contact: 07/13/2005 Database Release Frequency: Annually Date of Next Scheduled Update: 09/19/2005

SSTS: Section 7 Tracking Systems

Source: EPA

Telephone: 202-564-4203
Section 7 of the Federal Insecticide, Fungicide and Rodenticide Act, as amended (92 Stat. 829) requires all registered pesticide-producing establishments to submit a report to the Environmental Protection Agency by March 1st each year. Each establishment must report the types and amounts of pesticides. active ingredients and devices being produced, and those having been produced and sold or distributed in the past year.

Date of Government Version: 12/31/2003 Database Release Frequency: Annually

Date of Last EDR Contact: 07/18/2005 Date of Next Scheduled Update: 10/17/2005

TSCA: Toxic Substances Control Act

Source: EPA

Telephone: 202-260-5521

roxic Substances Control Act. TSCA identifies manufacturers and importers of chemical substances included on the TSCA Chemical Substance Inventory list. It includes data on the production volume of these substances

by plant site.

Date of Government Version: 12/31/2002 Date of Last EDR Contact: 07/18/2005 Database Release Frequency: N/A Date of Next Scheduled Update: 10/17/2005

FTTS: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act)

Source: EPA/Office of Prevention, Pesticides and Toxic Substances

Telephone: 202-566-1667

FTTS tracks administrative cases and pesticide enforcement actions and compliance activities related to FIFRA, TSCA and EPCRA (Emergency Planning and Community Right-to-Know Act). To maintain currency,

EDR contacts the Agency on a quarterly basis.

Date of Government Version: 04/13/2005 Date of Last EDR Contact: 06/20/2005 Database Release Frequency: Quarterly Date of Next Scheduled Update: 09/19/2005

FTTS INSP: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act)

Source: EPA

Telephone: 202-566-1667

Date of Government Version: 04/13/2005 Date of Last EDR Contact: 06/20/2005 Date of Next Scheduled Update: 09/19/2005 Database Release Frequency: Quarterly

ENG CONTROLS: Engineering Controls Sites List Source: Environmental Protection Agency

Telephone: 703-603-8867

A listing of sites with engineering controls in place. Engineering controls include various forms of caps, building foundations, liners, and treatment methods to create pathway elimination for regulated substances to enter environmental media or effect human health.

Date of Government Version: 01/10/2005 Date of Last EDR Contact: 07/05/2005 Date of Next Scheduled Update: 10/03/2005 Database Release Frequency: Varies

...Continued...

INST CONTROL: Sites with Institutional Controls Source: Environmental Protection Agency

Telephone: 703-603-8867

A listing of sites with institutional controls in place. Institutional controls include administrative measures, such as groundwater use restrictions, construction restrictions, property use restrictions, and post remediation care requirements intended to prevent exposure to contaminants remaining on site. Deed restrictions are generally required as part of the institutional controls.

Date of Government Version: 01/10/2005 Database Release Frequency: Varies

Date of Last EDR Contact: 07/05/2005 Date of Next Scheduled Update: 10/03/2005

FINDS: Facility Index System/Facility Identification Initiative Program Summary Report

Source: EPA

Telephone: Not reported

Facility Index System. FINDS contains both facility information and 'pointers' to other sources that contain more detail. EDR includes the following FINDS databases in this report: PCS (Permit Compliance System), AIRS (Aerometric Information Retrieval System), DOCKET (Enforcement Docket used to manage and track information on civil judicial enforcement cases for all environmental statutes), FURS (Federal Underground Injection Control), C-DOCKET (Criminal Docket System used to track criminal enforcement actions for all environmental statutes), FFIS (Federal Facilities Information System), STATE (State Environmental Laws and Statutes), and PADS (PCB Activity Data System).

Date of Government Version: 04/11/2005 Database Release Frequency: Quarterly

Date of Last EDR Contact: 07/05/2005 Date of Next Scheduled Update: 10/03/2005

NH LAST: Listing of All Sites

Source: Department of Environmental Services

Telephone: 603-271-2975

Leaking Aboveground Storage Tank Incident Reports.

Date of Government Version: 06/21/2005 Database Release Frequency: Quarterly

Date of Last EDR Contact: 06/06/2005 Date of Next Scheduled Update: 09/05/2005

NH BROWNFIELDS: Brownfields Sites

Source: Department of Environmental Services

Telephone: 603-271-6422

Sites that have benefited from one or more brownfields initiative.

Date of Government Version: 12/29/2004 Database Release Frequency: Varies

Date of Last EDR Contact: 06/10/2005 Date of Next Scheduled Update: 08/22/2005

NH ALLSITES: Site Remediation & Groundwater Hazard Inventory Listing of All Sites

Source: Department of Environmental Services

Telephone: 603-271-3503

Provides information on sites in New Hampshire, with activities that either have resulted in groundwater contamination or pose a potential hazard to groundwater supplies. The regulated activities and groundwater hazards include: confirmed releases of oil or hazardous materials to the soil and/or groundwater as a result of discharges, spills, and removal of underground storage tanks; underground injection wells such as floor drains, leaching galleries, and septic systems anything other than domestic wastewater; large discharges of wastewater such as domestic wastewater septic systems which are designed to discharge more than 20,000 gpd, land application of wastewater treatment facility effluent (spray irrigation, rapid infiltration basins, etc.) and unlined septage and wastewater lagoons; unpermitted hazardous waste storage facilities; landfills and other waste repositories in which groundwater quality is at

Date of Government Version: 06/21/2005 Database Release Frequency: Quarterly

Date of Last EDR Contact: 06/06/2005 Date of Next Scheduled Update: 09/05/2005

NH INSTITUTIONAL CONTROL: Activity and Use Restrictions

Source: Department of Environmental Services Telephone: 603-271-2659

An inventory of sites where Activity and Use Restrictions have been utilized.

Date of Government Version: 05/24/2005 Database Release Frequency: Semi-Annually

Date of Last EDR Contact: 05/24/2005 Date of Next Scheduled Update: 08/22/2005

...Continued...

NH SPILLS: Listing of All Sites

Source: Department of Environmental Services Telephone: 603-271-2975

Date of Government Version: 06/21/2005 Database Release Frequency: Quarterly

Date of Last EDR Contact: 06/06/2005 Date of Next Scheduled Update: 09/05/2005

NH_VCP: Voluntary Cleanup Program Sites Source: Department of Environmental Services

Telephone: 603-271-2183

The program provides comprehensive liability protections to eligible persons who voluntarily assume responsibility for the cleanup of contaminated properties. The sites on the list are ones where persons have applied to participate in the program and in most cases have been deemed eligible.

Date of Government Version: 02/09/2005 Database Release Frequency: Varies

Date of Last EDR Contact: 06/09/2005 Date of Next Scheduled Update: 08/22/2005

Former Manufactured Gas (Coal Gas) Sites: The existence and location of Coal Gas sites is provided exclusively to EDR by Real Property Scan, Inc. (C) Copyright 1993 Real Property Scan, Inc. For a technical description of the types of hazards which may be found at such sites, contact your EDR customer service representative.

Disclaimer Provided by Real Property Scan, Inc.

The information contained in this report has predominantly been obtained from publicly available sources produced by entities other than Real Property Scan. While reasonable steps have been taken to insure the accuracy of this report, Real Property Scan does not guarantee the accuracy of this report. Any liability on the part of Real Property Scan is strictly limited to a refund of the amount paid. No claim is made for the actual existence of toxins at any site. This report does not constitute a legal opinion.

POTENTIAL SUPERFUND LIABILITY

PRP: Potentially Responsible Parties

Source: EPA Telephone: 202-564-6064

A listing of verified Potentially Responsible Parties

Date of Government Version: 06/08/2005 Database Release Frequency: Quarterly

Date of Last EDR Contact: 07/06/2005 Date of Next Scheduled Update: 10/03/2005

EPA Waste Codes Addendum

Code	Description
D001	IGNITABLE HAZARDOUS WASTES ARE THOSE WASTES WHICH HAVE A FLASHPOINT OF LESS THAN 140 DEGREES FAHRENHEIT AS DETERMINED BY A PENSKY MARTENS CLOSED CUP FLASH POINT TESTER. ANOTHER METHOD OF DETERMINING THE FLASH POINT OF A WASTE IS TO REVIEW THE MATERIAL SAFETY DATA SHEET, WHICH CAN BE OBTAINED FROM THE MANUFACTURER OR DISTRIBUTOR OF THE MATERIAL. LACQUER THINNER IS AN EXAMPLE OF A COMMONLY USED SOLVENT WHICH WOULD BE CONSIDERED AS IGNITABLE HAZARDOUS WASTE.
D002	A WASTE WHICH HAS A PH OF LESS THAN 2 OR GREATER THAN 12.5 IS CONSIDERED TO BE A CORROSIVE HAZARDOUS WASTE. SODIUM HYDROXIDE A CAUSTIC SOLUTION WITH A HIGH PH, IS OFTEN USED BY INDUSTRIES TO CLEAN OR DEGREASE PARTS. HYDROCHLORIC ACID, A SOLUTION WITH A LOW PH, IS USED BY MANY INDUSTRIES TO CLEAN METAL PARTS PRIOR TO PAINTING. WHEN THESE CAUSTIC OR ACID SOLUTIONS BECOME CONTAMINATED AND MUST BE DISPOSED, THE WASTE WOULD BE A CORROSIVE HAZARDOUS WASTE.
D009	MERCURY
D022	CHLOROFORM
D035	METHYL ETHYL KETONE
F003	THE FOLLOWING SPENT NON-HALOGENATED SOLVENTS: XYLENE, ACETONE ETHYL ACETATE, ETHYL BENZENE, ETHYL ETHER, METHYL ISOBUTYL KETONE N-BUTYL ALCOHOL, CYCLOHEXANONE, AND METHANOL; ALL SPENT SOLVENT MIXTURES/BLENDS CONTAINING, BEFORE USE, ONLY THE ABOVE SPENT NON-HALOGENATED SOLVENTS; AND ALL SPENT SOLVENT MIXTURES/BLENDS CONTAINING, BEFORE USE, ONE OR MORE OF THE ABOVE NON-HALOGENATED SOLVENTS, AND, A TOTAL OF TEN PERCENT OR MORE (BY VOLUME) OF ONE OR MORE OF THOSE SOLVENTS LISTED IN F001, F002, F004, AND F005, AND STILL BOTTOMS FROM THE RECOVERY OF THESE SPENT SOLVENTS AND SPENT SOLVENT MIXTURES.
F005	THE FOLLOWING SPENT NON-HALOGENATED SOLVENTS: TOLUENE, METHYL ETHYL KETONE, CARBON DISULFIDE, ISOBUTANOL, PYRIDINE, BENZENE 2-ETHOXYETHANOL, AND 2-NITROPROPANE; ALL SPENT SOLVENT MIXTURES/BLENDS CONTAINING, BEFORE USE, A TOTAL OF TEN PERCENT OR MORE (BY VOLUME) OF ONE OR MORE OF THE ABOVE NON-HALOGENATED SOLVENTS OR THOSE SOLVENTS LISTED IN F001, F002, OR F004; AND STILL BOTTOMS FROM THE RECOVERY OF THESE SPENT SOLVENTS AND SPENT SOLVENT MIXTURES.

EDR Site ReportTM

45 TANNERY ST 45 TANNERY ST FRANKLIN, NH

Inquiry Number:

August 1, 2005

The Standard in Environmental Risk Management Information

440 Wheelers Farms Road Milford, Connecticut 06460

Nationwide Customer Service

Telephone: 1-800-352-0050 Fax: 1-800-231-6802 Internet: www.edrnet.com

TABLE OF CONTENTS

The EDR-Site ReportTM is a comprehensive presentation of government filings on a facility identified in a search of over 4 million government records from more than 600 federal, state and local environmental databases. The report is divided into three sections:

Section 1: Facility Summary	: 3
Summary of facility filings including a review of the following areas: waste management, waste disposal, multi-media issues, and Superfund liability.	
Section 2: Facility Detail Reports	: 4
All available detailed information from databases where sites are identified.	
Section 3: Databases Searched and Update Information	5
Name, source, update dates, contact phone number and description of each of the databases searched for this report.	

Thank you for your business.
Please contact EDR at 1-800-352-0050
with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This report contains information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANYSUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OR DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES.ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this report "AS IS". Any analyses, estimates, ratings, or risk codes provided in this report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assesment performed by an environmental professional can produce information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2005 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

SECTION 1: FACILITY SUMMARY

FACILITY	FACILITY 1 45 TANNERY ST 45 TANNERY ST FRANKLIN, NH EDR ID #91225829
WASTE MANAGEMENT Facility generates hazardous waste (RCRA)	NO
Facility treats, stores, or disposes of hazardous waste on-site (RCRA/TSDF)	NO
Facility has received Notices of Violations (RCRA/VIOL)	NO
Facility has been subject to RCRA administrative actions (RAATS)	NO
Facility has been subject to corrective actions (CORRACTS)	NO
Facility handles PCBs (PADS)	NO
Facility uses radioactive materials (MLTS)	NO
Facility manages registered aboveground storage tanks (AST)	NO
Facility manages registered underground storage tanks (UST)	NO
Facility has reported leaking underground storage tank incidents (LUST)	NO
Facility has reported emergency releases to the soil (ERNS)	YES - p4
Facility has reported hazardous material incidents to DOT (HMIRS)	NO
WASTE DISPOSAL Facility is a Superfund Site (NPL)	NO
Facility has a known or suspect abandoned, inactive or uncontrolled hazardous waste site (CERCLIS)	NO
Facility has a reported Superfund Lien on it (LIENS)	NO
Facility is listed as a state hazardous waste site (SHWS)	NO
Facility has disposed of solid waste on-site (SWF/LF)	NO
MULTIMEDIA Facility uses toxic chemicals and has notified EPA under SARA Title III, Section 313 (TRIS)	NO
Facility produces pesticides and has notified EPA under Section 7 of FIFRA (SSTS)	NO
Facility manufactures or imports toxic chemicals on the TSCA list (TSCA)	NO
Facility has inspections under FIFRA, TSCA or EPCRA (FTTS)	NO
Facility is listed in EPA's index system (FINDS)	NO
Facility is listed in a county/local unique database (LOCAL)	NO
POTENTIAL SUPERFUND LIABILITY Facility has a list of potentially responsible parties PRP	NO
TOTAL (YES)	1

SECTION 2: FACILITY DETAIL REPORTS

WASTE MANAGEMENT

Facility has reported emergency releases to the soil

DATABASE: Emergency Response Notification System (ERNS)

45 TANNERY ST 45 TANNERY ST FRANKLIN, NH EDR ID #91225829

> Site ID: 91225829

Site Location:

45 TANNERY ST FRANKLIN, NH MERRIMACK County

Report No: 81041 EPA Region: Spill Date: 07/24/1991 Spill Time: 16:30 Medium Desc: Water Damage/Amt: Injured: Yes / \$0.00 Evacuation: None

Yes Fatalities: STORM DRAIN> PEMMEGEWASIT RIVER None Notes:

POLYCLAD LAMINATES 45 TANNERY ST FRANKLIN

Disch Org: Disch Add: Disch City: Disch ST: NH Disch Zip: Disch County: 03235 Not reported C.G. Unit: Not reported Cause: Not reported

Total Qty Spilled Material In Water Undot Cas Qty HYDRAULIC OIL 100.00 GAL 5.00 GAL Not reported 834.00 lbs. Not reported

PORTABLE TANKED TIPPED OVER IN THE PARKING LOT Description:

Location: 45 TANNERY ST

ABSORBENT MATERIAL USED TO RECOVER THE MATERIAL Action:

Comments: SHEEN SIZE 15' X 4'

To maintain currency of the following federal, state and local databases, EDR contacts the appropriate government agency on a monthly or quarterly basis as required.

Elapsed ASTM days: Provides confirmation that this report meets or exceeds the 90-day updating requirement of the ASTM standard.

WASTE MANAGEMENT

RCRIS: Resource Conservation and Recovery Act Information

Source: EPA Telephone: 800-424-9346

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. RCRAInfo replaces the data recording and reporting abilities of the Resource Conservation and Recovery Information System (RCRIS). The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Conditionally exempt small quantity generators (CESQGs) generate less than 100 kg of hazardous waste, or less than 1 kg of acutely hazardous waste per month. Small quantity generators (SQGs) generate between 100 kg and 1,000 kg of hazardous waste per month. Large quantity generators (LQGs) generate over 1,000 kilograms (kg) of hazardous waste, or over 1 kg of acutely hazardous waste per month. Transporters are individuals or entities that move hazardous waste from the generator off-site to a facility that can recycle, treat, store, or dispose of the waste. TSDFs treat, store, or dispose of the waste.

Date of Last EDR Contact: 05/24/0405 Date of Government Version: 05/20/2005 Database Release Frequency: Quarterly Date of Next Scheduled Update: 08/22/2005

BRS: Biennial Reporting System Source: EPA/NTIS

Telephone: 800-424-9346

The Biennial Reporting System is a national system administered by the EPA that collects data on the generation and management of hazardous waste. BRS captures detailed data from two groups: Large Quantity Generators (LQG) and Treatment, Storage, and Disposal Facilities.

Date of Government Version: 12/01/2001 Date of Last EDR Contact: 06/17/2005 Date of Next Scheduled Update: 09/12/2005 Database Release Frequency: Biennially

RAATS: RCRA Administrative Action Tracking System

Source: EPA

Telephone: 202-564-4104

RCRA Administration Action Tracking System. RAATS contains records based on enforcement actions issued under RCRA pertaining to major violators and includes administrative and civil actions brought by the EPA. For administration actions after September 30, 1995, data entry in the RAATS database was discontinued. EPA will retain a copy of the database for historical records. It was necessary to terminate RAATS because a decrease in agency resources made it impossible to continue to update the information contained in the database.

Date of Government Version: 04/17/1995 Date of Last EDR Contact: 06/06/2005 Database Release Frequency: No Update Planned Date of Next Scheduled Update: 09/05/2005

CORRACTS: Corrective Action Report

Source: EPA

Telephone: 800-424-9346

CORRACTS identifies hazardous waste handlers with RCRA corrective action activity.

Date of Last EDR Contact: 06/05/2005 Date of Government Version: 03/29/2005 Database Release Frequency: Quarterly Date of Next Scheduled Update: 09/05/2005

PADS: PCB Activity Database System

Source: EPA

Telephone: 202-564-3887

PCB Activity Database. PADS Identifies generators, transporters, commercial storers and/or brokers and disposers of PCB's who are required to notify the EPA of such activities.

Date of Last EDR Contact: 05/10/2005 Date of Next Scheduled Update: 08/08/2005 Date of Government Version: 03/30/2005 Database Release Frequency: Annually

...Continued...

MLTS: Material Licensing Tracking System Source: Nuclear Regulatory Commission Telephone: 301-415-7169

MLTS is maintained by the Nuclear Regulatory Commission and contains a list of approximately 8,100 sites which possess or use radioactive materials and which are subject to NRC licensing requirements. To maintain currency, EDR contacts the Agency on a quarterly basis.

Date of Last EDR Contact: 07/05/2005 Date of Next Scheduled Update: 10/03/2005 Date of Government Version: 04/14/2005 Database Release Frequency: Quarterly

NH AST: Registered Aboveground Petroleum Storage Tank Database

Source: Department of Environmental Services

Telephone: 603-271-6058

Registered Aboveground Storage Tanks.

Date of Government Version: 06/21/2005 Date of Last EDR Contact: 06/06/2005 Database Release Frequency: Quarterly Date of Next Scheduled Update: 09/05/2005

NH UST: Underground Storage Tank Registration Data Source: Department of Environmental Services

Telephone: 603-271-2975

Registered Underground Storage Tanks. UST's are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA) and must be registered with the state department responsible for administering the UST program. Available information varies by state program.

Date of Government Version: 06/21/2005 Date of Last EDR Contact: 06/06/2005 Database Release Frequency: Quarterly Date of Next Scheduled Update: 09/05/2005

NH_LUST: Listing of All Sites

Source: Department of Environmental Services

Telephone: 603-271-2975

Leaking Underground Storage Tank Incident Reports. LUST records contain an inventory of reported leaking underground storage tank incidents. Not all states maintain these records, and the information stored varies by state.

Date of Last EDR Contact: 06/06/2005 Date of Government Version: 06/21/2005 Date of Next Scheduled Update: 09/05/2005 Database Release Frequency: Quarterly

ERNS: Emergency Response Notification System

Source: National Response Center, United States Coast Guard

Telephone: 202-260-2342

Emergency Response Notification System. ERNS records and stores information on reported releases of

oil and hazardous substances.

Date of Last EDR Contact: 07/25/2005 Date of Government Version: 12/31/2004 Database Release Frequency: Annually Date of Next Scheduled Update: 10/24/2005

HMIRS: Hazardous Materials Information Reporting System

Source: U.S. Department of Transportation

Telephone: 202-366-4555

Hazardous Materials Incident Report System. HMIRS contains hazardous material spill incidents reported

Date of Government Version: 12/31/2004 Date of Last EDR Contact: 07/22/2005 Database Release Frequency: Annually Date of Next Scheduled Update: 10/17/2005

WASTE DISPOSAL

NPL: National Priority List

Source: FPA

Telephone: Not reported

National Priorities List (Superfund). The NPL is a subset of CERCLIS and identifies over 1,200 sites for priority cleanup under the Superfund Program. NPL sites may encompass relatively large areas. As such, EDR provides polygon coverage for over 1,000 NPL site boundaries produced by EPA's Environmental Photographic Interpretation Center (EPIC) and regional EPA offices.

Date of Government Version: 04/28/2005

Date Made Active at EDR: 05/16/2005 Database Release Frequency: Quarterly

Date of Data Arrival at EDR: 05/04/2005 Elapsed ASTM Days: 12
Date of Last EDR Contact: 05/04/2005

...Continued...

PROPOSED NPL: Proposed National Priority List Sites

Source: EPA

Telephone: Not reported

Date of Government Version: 04/27/2005 Date Made Active at EDR: 05/16/2005 Database Release Frequency: Quarterly

Date of Data Arrival at EDR: 05/04/2005 Elapsed ASTM Days: 12 Date of Last EDR Contact: 05/04/2005

DELISTED NPL: National Priority List Deletions

Source: EPA

Telephone: Not reported

The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) establishes the criteria that the EPA uses to delete sites from the NPL. In accordance with 40 CFR 300.425.(e), sites may be deleted from the NPL where no further response is appropriate.

Date of Government Version: 04/28/2005 Date Made Active at EDR: 05/16/2005

Elapsed ASTM Days: 12 Database Release Frequency: Quarterly Date of Last EDR Contact: 05/04/2005

CERCLIS: Comprehensive Environmental Response, Compensation, and Liability Information System

Source: EPA Telephone: 703-413-0223

CERCLIS contains data on potentially hazardous waste sites that have been reported to the USEPA by states, municipalities, private companies and private persons, pursuant to Section 103 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). CERCLIS contains sites which are either proposed to or on the National Priorities List (NPL) and sites which are in the screening and assessment phase for possible inclusion on the NPL.

Date of Government Version: 02/15/2005 Date Made Active at EDR: 04/06/2005 Database Release Frequency: Quarterly

Date of Data Arrival at EDR: 03/22/2005 Elapsed ASTM Days: 15
Date of Last EDR Contact: 07/22/2005

Date of Data Arrival at EDR: 05/04/2005

CERCLIS-NFRAP: CERCLIS No Further Remedial Action Planned

Source: EPA

Source: EPA
Telephone: 703-413-0223
As of February 1995, CERCLIS sites designated "No Further Remedial Action Planned" (NFRAP) have been removed from CERCLIS. NFRAP sites may be sites where, following an initial investigation, no contamination was found, contamination was removed quickly without the need for the site to be placed on the NPL, or the contamination was not serious enough to require Federal Superfund action or NPL consideration. EPA has removed approximately 25,000 NFRAP sites to lift the unintended barriers to the redevelopment of these properties and has archived them as historical records so EPA does not needlessly repeat the investigations in the future. This policy change is part of the EPA's Brownfields Redevelopment Program to belo cities, states, private investors and affected citizens to promote economic redevelopment of to help cities, states, private investors and affected citizens to promote economic redevelopment of unproductive urban sites.

Date of Government Version: 03/22/2005 Date of Last EDR Contact: 06/20/2005 Database Release Frequency: Quarterly Date of Next Scheduled Update: 09/19/2005

NPL LIENS: Federal Superfund Liens Source: EPA

Telephone: 202-564-4267

Federal Superfund Liens. Under the authority granted the USEPA by the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980, the USEPA has the authority to file liens against real property in order to recover remedial action expenditures or when the property owner receives notification of potential liability. USEPA compiles a listing of filed notices of Superfund Liens.

Date of Government Version: 10/15/1991 Date Made Active at EDR: 03/30/1994

Database Release Frequency: No Update Planned

Date of Data Arrival at EDR: 02/02/1994

Elapsed ASTM Days: 56

Date of Last EDR Contact: 05/23/2005

NH SHWS: Listing of All Sites Source: Department of Environmental Services

Telephone: 603-271-2919

State Hazardous Waste Sites. State hazardous waste site records are the states' equivalent to CERCLIS. These sites may or may not already be listed on the federal CERCLIS list. Priority sites planned for cleanup using state funds (state equivalent of Superfund) are identified along with sites where cleanup will be paid for by potentially responsible parties. Available information varies by state.

Date of Government Version: 06/21/2005 Database Release Frequency: Quarterly

Date of Last EDR Contact: 06/06/2005 Date of Next Scheduled Update: 09/05/2005

...Continued...

NH SWF/LF: Solid Waste Facility Information

Source: Department of Environmental Services Telephone: 603-271-5380

Solid Waste Facilities/Landfill Sites. SWF/LF type records typically contain an inventory of solid waste disposal facilities or landfills in a particular state. Depending on the state, these may be active or inactive facilities or open dumps that failed to meet RCRA Subtitle D Section 4004 criteria for solid waste landfills or disposal sites.

Date of Government Version: 05/16/2005 Date of Last EDR Contact: 05/16/2005 Date of Next Scheduled Update: 08/15/2005 Database Release Frequency: Annually

MULTIMEDIA

TRIS: Toxic Chemical Release Inventory System

Source: EPA

Telephone: 202-566-0250

Toxic Release Inventory System. TRIS identifies facilities which release toxic chemicals to the air,

water and land in reportable quantities under SARA Title III Section 313.

Date of Government Version: 12/31/2002 Date of Last EDR Contact: 07/13/2005 Database Release Frequency: Annually Date of Next Scheduled Update: 09/19/2005

SSTS: Section 7 Tracking Systems

Source: EPA

Telephone: 202-564-4203
Section 7 of the Federal Insecticide, Fungicide and Rodenticide Act, as amended (92 Stat. 829) requires all registered pesticide-producing establishments to submit a report to the Environmental Protection Agency by March 1st each year. Each establishment must report the types and amounts of pesticides. active ingredients and devices being produced, and those having been produced and sold or distributed in the past year.

Date of Government Version: 12/31/2003 Date of Last EDR Contact: 07/18/2005 Database Release Frequency: Annually Date of Next Scheduled Update: 10/17/2005

TSCA: Toxic Substances Control Act

Source: EPA

Telephone: 202-260-5521

roxic Substances Control Act. TSCA identifies manufacturers and importers of chemical substances included on the TSCA Chemical Substance Inventory list. It includes data on the production volume of these substances

by plant site.

Date of Government Version: 12/31/2002 Date of Last EDR Contact: 07/18/2005 Database Release Frequency: N/A Date of Next Scheduled Update: 10/17/2005

FTTS: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act)

Source: EPA/Office of Prevention, Pesticides and Toxic Substances

Telephone: 202-566-1667

FTTS tracks administrative cases and pesticide enforcement actions and compliance activities related to FIFRA, TSCA and EPCRA (Emergency Planning and Community Right-to-Know Act). To maintain currency,

EDR contacts the Agency on a quarterly basis.

Date of Government Version: 04/13/2005 Date of Last EDR Contact: 06/20/2005 Database Release Frequency: Quarterly Date of Next Scheduled Update: 09/19/2005

FTTS INSP: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act)

Source: EPA

Telephone: 202-566-1667

Date of Government Version: 04/13/2005 Date of Last EDR Contact: 06/20/2005 Date of Next Scheduled Update: 09/19/2005 Database Release Frequency: Quarterly

ENG CONTROLS: Engineering Controls Sites List Source: Environmental Protection Agency

Telephone: 703-603-8867

A listing of sites with engineering controls in place. Engineering controls include various forms of caps, building foundations, liners, and treatment methods to create pathway elimination for regulated substances to enter environmental media or effect human health.

Date of Government Version: 01/10/2005 Date of Last EDR Contact: 07/05/2005 Date of Next Scheduled Update: 10/03/2005 Database Release Frequency: Varies

...Continued...

INST CONTROL: Sites with Institutional Controls Source: Environmental Protection Agency

Telephone: 703-603-8867

A listing of sites with institutional controls in place. Institutional controls include administrative measures, such as groundwater use restrictions, construction restrictions, property use restrictions, and post remediation care requirements intended to prevent exposure to contaminants remaining on site. Deed restrictions are generally required as part of the institutional controls.

Date of Government Version: 01/10/2005 Database Release Frequency: Varies

Date of Last EDR Contact: 07/05/2005 Date of Next Scheduled Update: 10/03/2005

FINDS: Facility Index System/Facility Identification Initiative Program Summary Report

Source: EPA

Telephone: Not reported

Facility Index System. FINDS contains both facility information and 'pointers' to other sources that contain more detail. EDR includes the following FINDS databases in this report: PCS (Permit Compliance System), AIRS (Aerometric Information Retrieval System), DOCKET (Enforcement Docket used to manage and track information on civil judicial enforcement cases for all environmental statutes), FURS (Federal Underground Injection Control), C-DOCKET (Criminal Docket System used to track criminal enforcement actions for all environmental statutes), FFIS (Federal Facilities Information System), STATE (State Environmental Laws and Statutes), and PADS (PCB Activity Data System).

Date of Government Version: 04/11/2005 Database Release Frequency: Quarterly

Date of Last EDR Contact: 07/05/2005 Date of Next Scheduled Update: 10/03/2005

NH LAST: Listing of All Sites

Source: Department of Environmental Services

Telephone: 603-271-2975

Leaking Aboveground Storage Tank Incident Reports.

Date of Government Version: 06/21/2005 Database Release Frequency: Quarterly

Date of Last EDR Contact: 06/06/2005 Date of Next Scheduled Update: 09/05/2005

NH BROWNFIELDS: Brownfields Sites

Source: Department of Environmental Services

Telephone: 603-271-6422

Sites that have benefited from one or more brownfields initiative.

Date of Government Version: 12/29/2004 Database Release Frequency: Varies

Date of Last EDR Contact: 06/10/2005 Date of Next Scheduled Update: 08/22/2005

NH ALLSITES: Site Remediation & Groundwater Hazard Inventory Listing of All Sites

Source: Department of Environmental Services

Telephone: 603-271-3503

Provides information on sites in New Hampshire, with activities that either have resulted in groundwater contamination or pose a potential hazard to groundwater supplies. The regulated activities and groundwater hazards include: confirmed releases of oil or hazardous materials to the soil and/or groundwater as a result of discharges, spills, and removal of underground storage tanks; underground injection wells such as floor drains, leaching galleries, and septic systems anything other than domestic wastewater; large discharges of wastewater such as domestic wastewater septic systems which are designed to discharge more than 20,000 gpd, land application of wastewater treatment facility effluent (spray irrigation, rapid infiltration basins, etc.) and unlined septage and wastewater lagoons; unpermitted hazardous waste storage facilities; landfills and other waste repositories in which groundwater quality is at

Date of Government Version: 06/21/2005 Database Release Frequency: Quarterly

Date of Last EDR Contact: 06/06/2005 Date of Next Scheduled Update: 09/05/2005

NH INSTITUTIONAL CONTROL: Activity and Use Restrictions

Source: Department of Environmental Services Telephone: 603-271-2659

An inventory of sites where Activity and Use Restrictions have been utilized.

Date of Government Version: 05/24/2005 Database Release Frequency: Semi-Annually

Date of Last EDR Contact: 05/24/2005 Date of Next Scheduled Update: 08/22/2005

...Continued...

NH SPILLS: Listing of All Sites

Source: Department of Environmental Services Telephone: 603-271-2975

Date of Government Version: 06/21/2005 Database Release Frequency: Quarterly

Date of Last EDR Contact: 06/06/2005 Date of Next Scheduled Update: 09/05/2005

NH_VCP: Voluntary Cleanup Program Sites Source: Department of Environmental Services

Telephone: 603-271-2183

The program provides comprehensive liability protections to eligible persons who voluntarily assume responsibility for the cleanup of contaminated properties. The sites on the list are ones where persons have applied to participate in the program and in most cases have been deemed eligible.

Date of Government Version: 02/09/2005 Database Release Frequency: Varies

Date of Last EDR Contact: 06/09/2005 Date of Next Scheduled Update: 08/22/2005

Former Manufactured Gas (Coal Gas) Sites: The existence and location of Coal Gas sites is provided exclusively to EDR by Real Property Scan, Inc. (C) Copyright 1993 Real Property Scan, Inc. For a technical description of the types of hazards which may be found at such sites, contact your EDR customer service representative.

Disclaimer Provided by Real Property Scan, Inc.

The information contained in this report has predominantly been obtained from publicly available sources produced by entities other than Real Property Scan. While reasonable steps have been taken to insure the accuracy of this report, Real Property Scan does not guarantee the accuracy of this report. Any liability on the part of Real Property Scan is strictly limited to a refund of the amount paid. No claim is made for the actual existence of toxins at any site. This report does not constitute a legal opinion.

POTENTIAL SUPERFUND LIABILITY

PRP: Potentially Responsible Parties

Source: EPA Telephone: 202-564-6064

A listing of verified Potentially Responsible Parties

Date of Government Version: 06/08/2005 Database Release Frequency: Quarterly

Date of Last EDR Contact: 07/06/2005 Date of Next Scheduled Update: 10/03/2005

APPENDIX C

Historical Topographic Maps

EDR Historical Topographic Map Report

Polyclad Laminates, Inc. 45 Tannery Street West Franklin, NH 03235

1469641.13

July 20, 2005

The Standard in Environmental Risk Management Information

440 Wheelers Farms Road Milford, Connecticut 06460

Nationwide Customer Service

Telephone: 1-800-352-0050 Fax: 1-800-231-6802 Internet: www.edrnet.com

Environmental Data Resources, Inc. Historical Topographic Map Report

Environmental Data Resources, Inc.'s (EDR) Historical Topographic Map Report is designed to assist professionals in evaluating potential liability on a target property, and its surrounding area, resulting from past activities. ASTM E 1527-00, Section 7.3 on Historical Use Information, identifies the prior use requirements for a Phase I environmental site assessment. The ASTM standard requires a review of reasonably ascertainable standard historical sources. Reasonably ascertainable is defined as information that is publicly available, obtainable from a source with reasonable time and cost constraints, and practically reviewable.

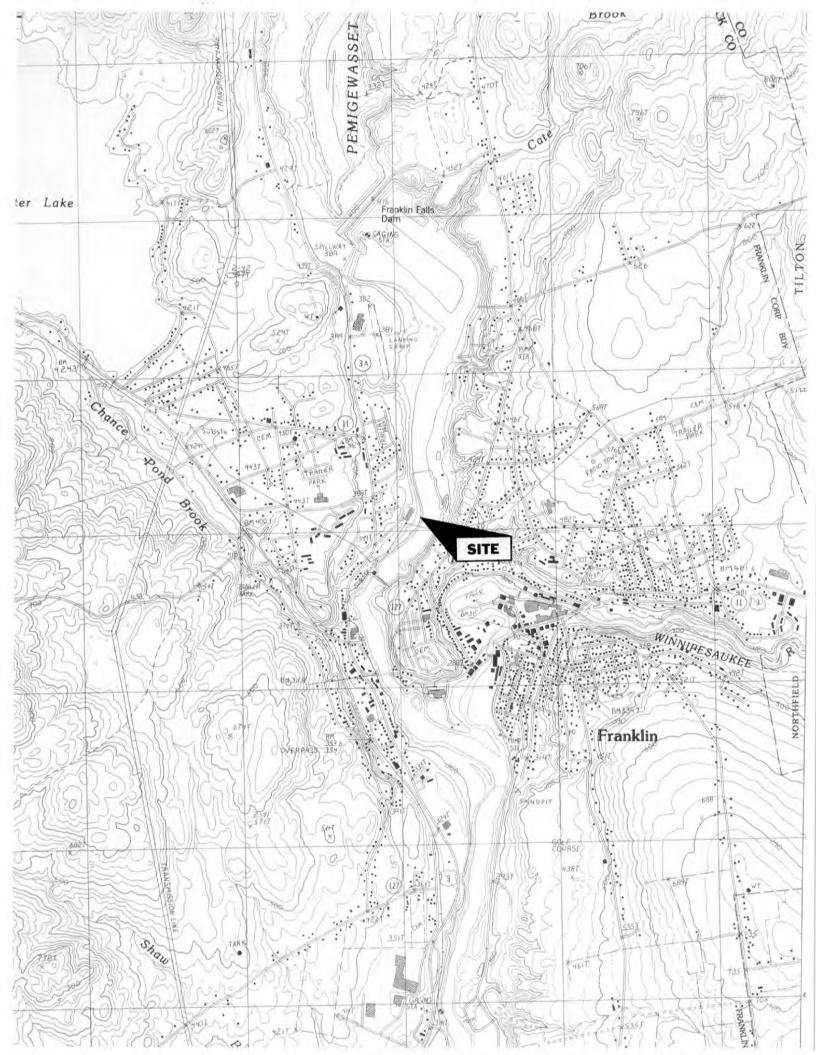
To meet the prior use requirements of ASTM E 1527-00, Section 7.3.4, the following standard historical sources may be used: aerial photographs, city directories, fire insurance maps, topographic maps, property tax files, land title records (although these cannot be the sole historical source consulted), building department records, or zoning/and use records. ASTM E 1527-00 requires "All obvious uses of the property shall be identified from the present, back to the property's obvious first developed use, or back to 1940, whichever is earlier. This task requires reviewing only as many of the standard historical sources as are necessary, and that are reasonably ascertainable and likely to be useful." (ASTM E 1527-00, Section 7.3.2 page 12.)

EDR's Historical Topographic Map Report includes a search of available public and private color historical topographic map collections.

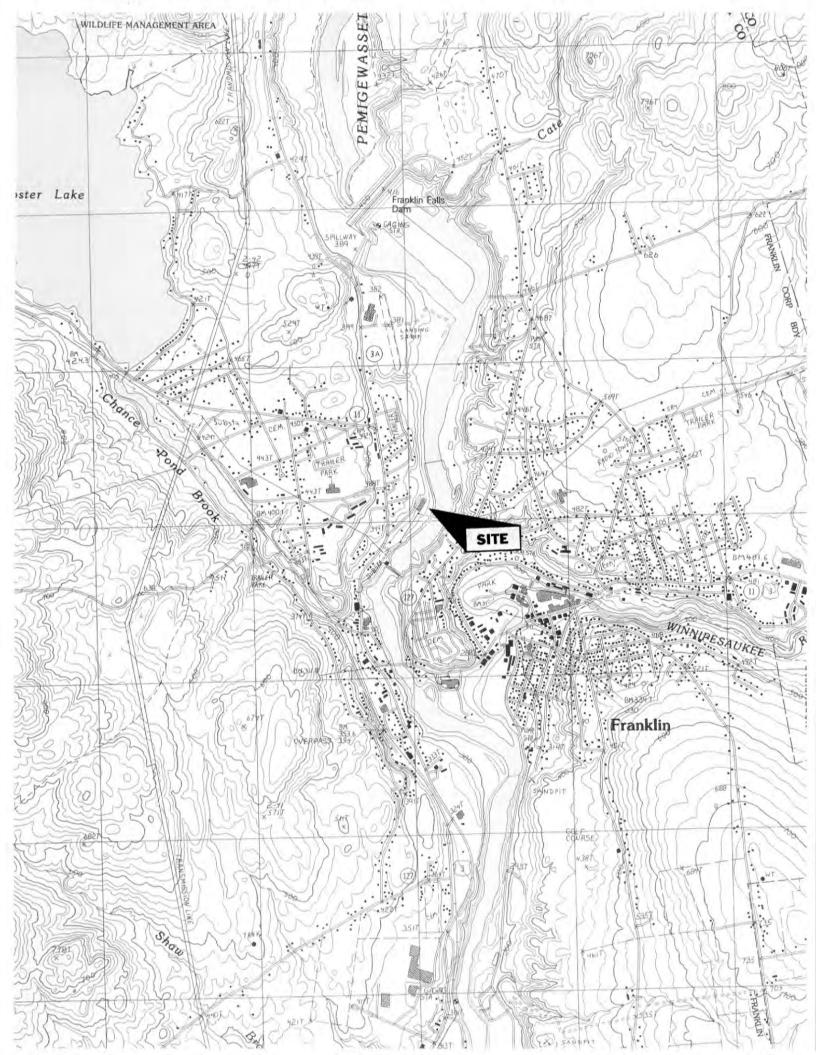
Topographic Maps

A topographic map (topo) is a color coded line-and-symbol representation of natural and selected artificial features plotted to a scale. Topos show the shape, elevation, and development of the terrain in precise detail by using contour lines and color coded symbols. Many features are shown by lines that may be straight, curved, solid, dashed, dotted, or in any combination. The colors of the lines usually indicate similar classes of information. For example, topographic contours (brown); lakes, streams, irrigation ditches, etc. (blue); land grids and important roads (red); secondary roads and trails, railroads, boundaries, etc. (black); and features that have been updated using aerial photography, but not field verified, such as disturbed land areas (e.g., gravel pits) and newly developed water bodies (purple).

For more than a century, the USGS has been creating and revising topographic maps for the entire country at a variety of scales. There are about 60,000 U.S. Geological Survey (USGS) produced topo maps covering the United States. Each map covers a specific quadrangle (quad) defined as a four-sided area bounded by latitude and longitude. Historical topographic maps are a valuable historical resource for documenting the prior use of a property and its surrounding area, and due to their frequent availability can be particularly helpful when other standard historical sources (such as city directories, fire insurance maps, or aerial photographs) are not reasonably ascertainable.

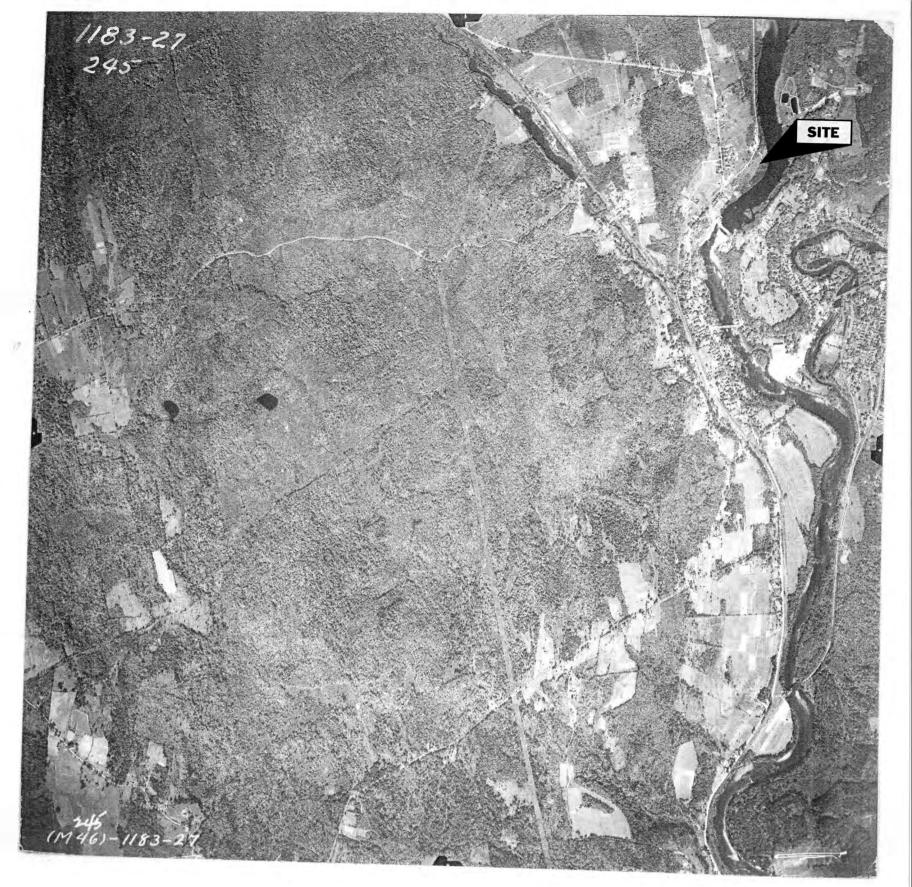

Please call EDR Nationwide Customer Service at 1-800-352-0050 (8am-8pm ET) with questions or comments about your report. Thank you for your business!

Disclaimer - Copyright and Trademark Notice


This report contains information obtained from a variety of public and other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL EDR BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OR DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. It can not be concluded from this report that coverage information for the target and surrounding properties does not exist from other sources. Any analyses, estimates, ratings or risk codes provided in this report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Any liability on the part of EDR is strictly limited to a refund of the amount paid for this report.

Copyright 2004 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc. or its affiliates, is prohibited without prior written permission.

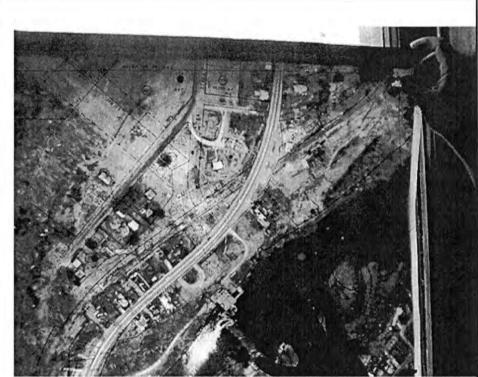
EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

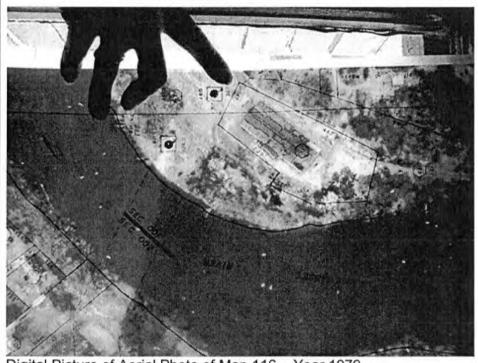

Inquiry Number: TP Quad {}	/ 4 6 9 6 4 1 + Adj Quad []	1N
Quad Fran Minute Series [] 7.5 Year 1987 []Photorevised []Insp Scale [] 1:24,000 [] 1:62,500	5 [] 15 [] 30 [] 30x60 Provisional Edition pected from	0,000

Inquiry Number:_ TP Quad -{	/469641-13 Adj Quad []	
Year 2060	Provisional Edition]Revised
[]Photorevised []In Scale _[] 1:24,000 [] 1:62,500	1:25,000 [] 1:50,0	00 000

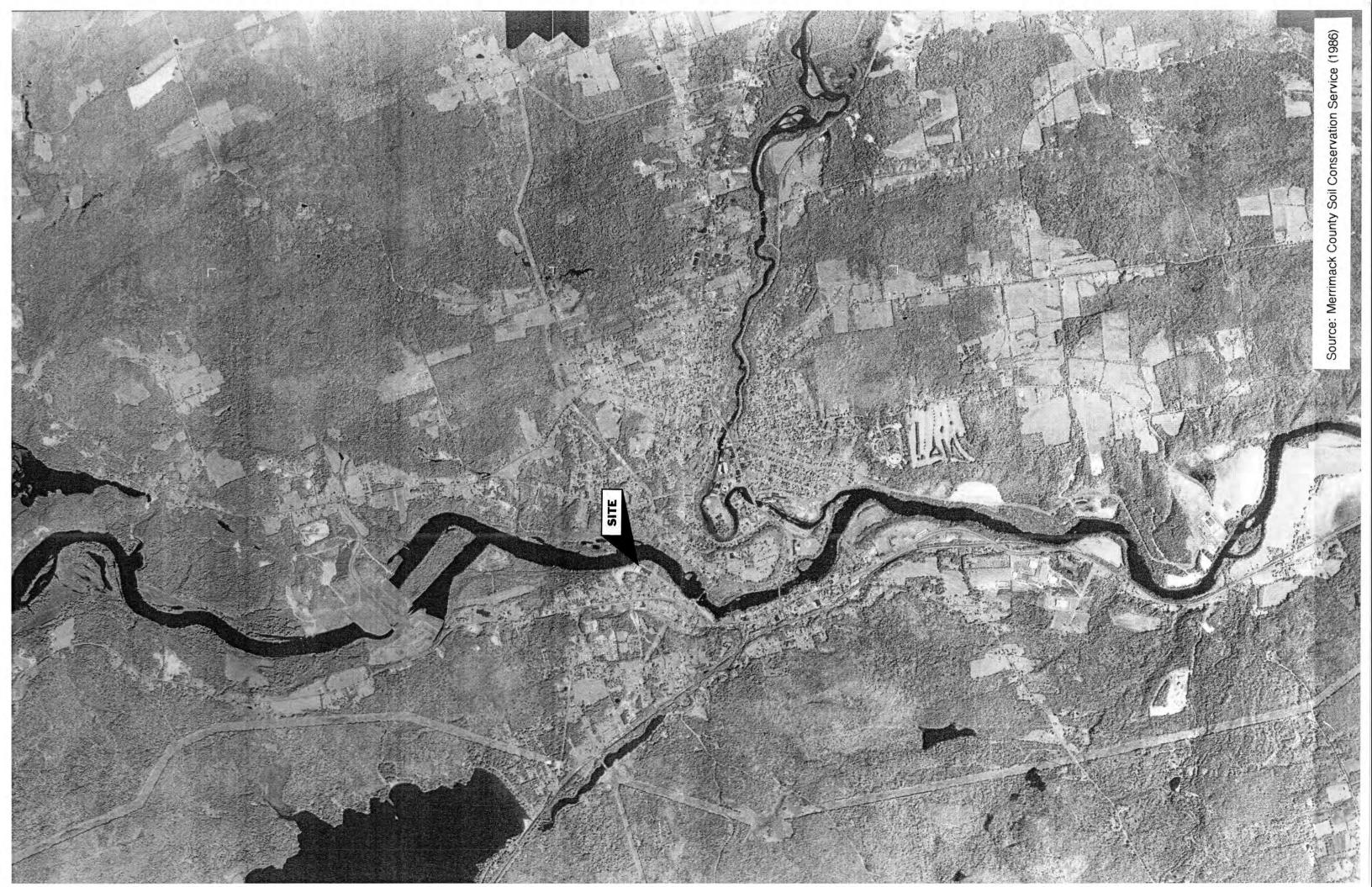
APPENDIX D

Aerial Photographs


Source: Merrimack County Soil Conservation Service (1946)


Source: Merrimack County Soil Conservation Service (1953)

Source: Merrimack County Soil Conservation Service (1974)



Digital Picture of Aerial Photo of Map 097 - Year 1979

Digital Picture of Aerial Photo of Map 116 - Year 1979

Source: City of Franklin Tax Assessor Office

ELEVATION LOW Source: Merrimack County Soil Conservation Service (1993)

APPENDIX E

City Directory Abstract

The EDR-City Directory Abstract

Polyclad Laminates Inc. 45 Tannery Street West Franklin, NH 03235

July 22, 2005

Inquiry Number: 1469641-16

The Standard In Environmental Risk Management Information

440 Wheelers Farms Road Milford, Connecticut 06460

Nationwide Customer Service

Telephone: 1-800-352-0050

Fax: 1-800-231-6802

Environmental Data Resources, Inc. City Directory Abstract

Environmental Data Resources, Inc.'s (EDR) City Directory Abstract is a screening tool designed to assist professionals in evaluating potential liability on a target property resulting from past activities. ASTM E 1527-00, Section 7.3 on Historical Use Information, identifies the prior use requirements for a Phase I environmental site assessment. The ASTM standard requires a review of reasonably ascertainable standard historical sources. Reasonably ascertainable means information that is publicly available, obtainable from a source with reasonable time and cost constraints, and practically reviewable.

To meet the prior use requirements of ASTM E 1527-00, Section 7.3.4, the following *standard historical sources* may be used: aerial photographs, fire insurance maps, property tax files, land title records (although these cannot be the sole historical source consulted), topographic maps, city directories, building department records, or zoning/land use records. ASTM E 1527-00 requires "All obvious uses of the property shall be identified from the present, back to the property's obvious first developed use, or back to 1940, whichever is earlier. This task requires reviewing only as many of the standard historical sources as are necessary, and that are reasonably ascertainable and likely to be useful." (ASTM E 1527-00, Section 7.3.2, page 12.)

EDR's City Directory Abstract includes a search and abstract of available city directory data.

City Directories

City directories have been published for cities and towns across the U.S. since the 1700s. Originally a list of residents, the city directory developed into a sophisticated tool for locating individuals and businesses in a particular urban or suburban area. Twentieth century directories are generally divided into three sections: a business index, a list of resident names and addresses, and a street index. With each address, the directory lists the name of the resident or, if a business is operated from this address, the name and type of business (if unclear from the name). While city directory coverage is comprehensive for major cities, it may be spotty for rural areas and small towns. ASTM E 1527-00 specifies that a "review of city directories (standard historical sources) at less than approximately five year intervals is not required by this practice." (ASTM E 1527-00, Section 7.3.2.1, page 12.)

NAICS (North American Industry Classification System) Codes

NAICS is a unique, all-new system for classifying business establishments. Adopted in 1997 to replace the prior Standard Industry Classification (SIC) system, it is the system used by the statistical agencies of the United States. It is the first economic classification system to be constructed based on a single economic concept. To learn more about the background, the development and difference between NAICS and SIC, visit the following Census website: http://www.census.gov/epcd/www/naicsdev.htm.

Please call EDR Nationwide Customer Service at 1-800-352-0050 (8am-8pm EST) with questions or comments about your report.

Thank you for your business!

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OR DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2005 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc. or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

4. SUMMARY

• City Directories:

City directories including Polk and cross reference directories were reviewed for the year 1964. A summary of the information obtained is provided in the text of this report.

Date EDR Searched Historical Sources:

City Directories Jul 22, 2005

Target Property:

45 Tannery Street West Franklin, NH 03235

PUR ID

Year Uses NAICS Source

1964 Street not listed in research source. N/A Manning''s City Directory

Adjoining Properties

SURROUNDING

Multiple Addresses West Franklin, NH 03235

PUR ID

<u>Year</u> <u>Uses</u> <u>NAICS</u> <u>Source</u>

1964 Street not listed in research source. N/A Manning''s City Directory

APPENDIX F

Sanborn® Fire Insurance Map

"Linking Technology with Tradition"®

Sanborn® Map Report

Ship To: Linda Opperman Order Date: 7/19/2005 Completion Date: 7/20/2005

Delta Environmental Inquiry #: 1469641.12s

5910 Rice Creek Parkway P.O. #: NA

651-639-9449

1011339CAR

Shoreview, MN 55126 Site Name: Polyclad Laminates Inc.

Address: 45 Tannery Street

Customer Project: 0503015 City/State: West Franklin, NH 03235

Cross Streets:

Based on client-supplied information, fire insurance maps for the following years were identified

1964 - 1 Map

Limited Permission to Photocopy Total Maps: 1

Delta Environmental (the client) is permitted to make up to THREE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report As Is. Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

USER'S GUIDE

This User's Guide provides guidelines for accessing Sanborn Map® images and for transferring them to your Word Processor.

Reading Sanborn Maps

Sanborn Maps document historical property use by displaying property information through words, abbreviations, and map symbols. The Sanborn Map Key provides information to help interpret the symbols and abbreviations used on Sanborn Maps. The Key is available from EDR's Web Site at: http://www.edrnet.com/reports/samples/key.pdf

Organization of Electronic Sanborn Image File

- Sanborn Map Report, listing years of coverage
- User's Guide
- Oldest Sanborn Map Image
- Most recent Sanborn Map Image

Navigating the Electronic Sanborn Image File

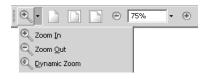
- 1. Open file on screen.
- 2. Identify TP (Target Property) on the most recent map.
- Find TP on older printed images.
- Using Acrobat® Reader®, zoom to 250% in order to view more clearly. (200-250% is the approximate equivalent scale of hardcopy Sanborn Maps.)
 - A. On the menu bar, click "View" and then "Zoom to..."
 - B. Or, use the magnifying tool and drag a box around the TP

Printing a Sanborn Map From the Electonic File

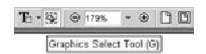
- EDR recommends printing images at 300 dpi (300 dpi prints faster than 600 dpi)
- To print only the TP area, cut and paste from Acrobat to your word processor application.

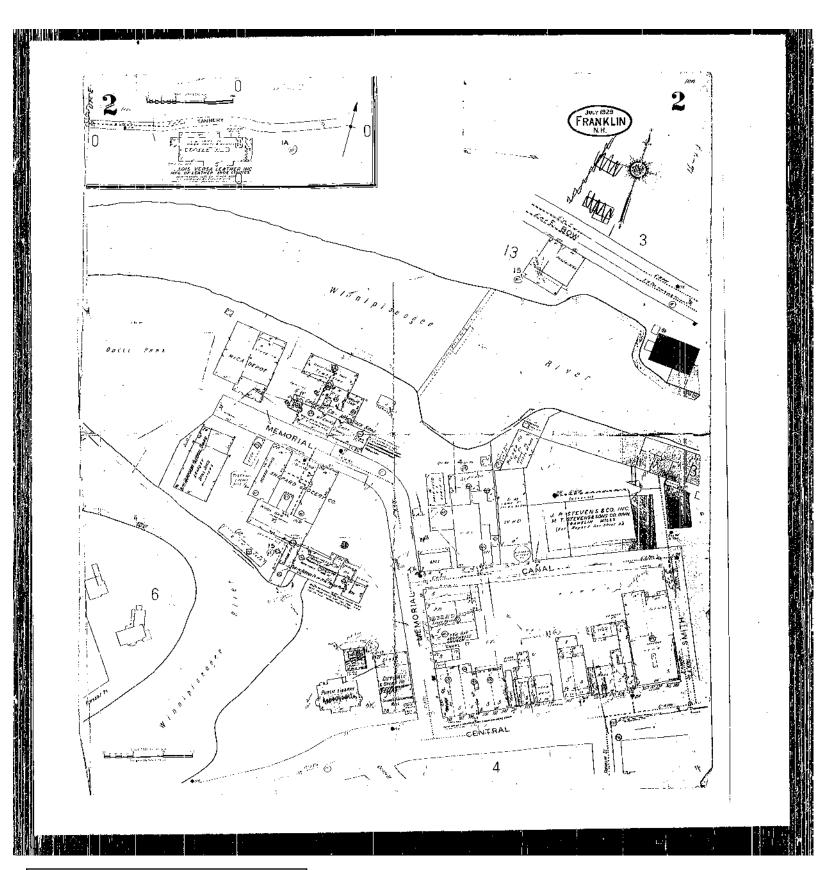
Acrobat Versions 6 and 7

- 1. Go to the menu bar
- 2. Click the "Select Tool"
- 3. Draw a box around the area selected
- 4. "Right click" on your mouse
- Select "Copy Image to Clipboard"
- 6. Go to Word Processor such as Microsoft Word, paste and print.


Acrobat Version 5

- 1. Go to the menu bar
- 2. Click the "Graphics Select Tool"
- 3. Draw a box around the area selected
- 4. Go to "Menu"
- 5. Highlight "Edit"
- 6. Highlight "Copy"
- 7. Go to Word Processor such as Microsoft Word, paste and print.


Important Information about Email Delivery of Electronic Sanborn Map Images


- Images are grouped intro one file, up to 2MB.
- In cases where in excess of 6-7 map years are available, the file size typically exceeds 2MB. In these cases, you will receive multiple files, labeled as "1 of 3", "2 of 3", etc. including all available map years.

 Due to file size limitations, certain ISPs, including AOL, may occasionally delay or decline to deliver files. Please
- contact your ISP to identify their specific file size limitations.

APPENDIX G

Underground Storage Tank Closure Documents

and the state of t	S. K ertahina kanada kanada ka	Name: INSULFAB 1 155 NORTH	PLASTICS INC MAIN STREET	Owner: INSULFA Zip: 03235	AB PLASTICS INC	Count	y; MERRIMACK
rank #		Tank Type STEEL - BARE/GALV	Substance Stored DIESEL FUEL	Installed 01-NOV-1973	Tightness Test 18-JAN-1987	Date Closed 02-MAY-1991	Closed Type REMOVED
FRANK		Name: JJ NEWBER		Owner: FBIDC F	RANKLIN BUSINESS II	C Count	y: MERRIMACK
0-11361	.5	384 CENTRA	L ST	Zip: 03235			•
Tank#	Capacity		Substance Stored	Installed	Tightness Test	Date Closed	Closed Type
1	2000	UNKNOWN	#2 HEATING OIL	01-JAN-1966	01-OCT-1987	13-JUN-1997	REMOVED
FRANK	LIN	Name: NH DOT PS	211	Owner: NH DOT			y: MERRIMACK
0-11395	2	RTE 127		Zip: 03235		Count	y; MERCHWACK
Tank #	Capacity	Tank Type	Substance Stored	Installed	Tightness Test	Date Closed	Closed Type
1		STEEL-CORR. PROT.	DIESEL FUEL	01-AUG-1991		2 410 010004	Closed Type
2	1000	STEEL - BARE/GALV	#2 HEATING OIL	UNKNOWN		30-JUN-1993	REMOVED
FRANK		Name: OAK LAMIN	VATES	Owner: NORPLE	X OAK INC		y: MERRIMACK
0-11254	9	RANGE RD		Zip: 03235		Count	y.MBRRIMACK
Tank #	Capacity	Tank Type	Substance Stored	Installed	Tightness Test	Date Closed	Closed Type
1		STEEL - BARE/GALV	HAZARDOUS SUBSTANCE	01-JAN-1976		04-AUG-1992	FILLED
2		STEEL - BARE/GALV	HAZARDOUS SUBSTANCE	01-JAN-1976		04-AUG-1992	FILLED
3		STEEL - BARE/GALV	HAZARDOUS SUBSTANCE	01-JAN-1976		04-AUG-1992	FILLED
4	8000	· · · · · · · · · · · · · · · · · · ·	HAZARDOUS SUBSTANCE	01-JAN-1976		04-AUG-1992	FILLED
5		STEEL - BARE/GALV	HAZARDOUS SUBSTANCE	01-JAN-1976		04-AUG-1992	REMOVED
6		STEEL - BARE/GALV	HAZARDOUS SUBSTANCE	01-JAN-1976		04-AUG-1992	REMOVED
7		STEEL - BARE/GALV	#2 HEATING OIL	UNKNOWN		04-AUG-1992	REMOVED
8		STEEL - BARE/GALV	#2 HEATING OIL	01-JAN-1975		04-AUG-1992	REMOVED
9		STEEL - BARE/GALV	#2 HEATING OIL	01-JAN-1975		04-AUG-1995	REMOVED
FRANK		Name: PACKERS O		Owner: GLORIA	& STEVE MURASZKO	County	: MERRIMACK
0-110673		195 CENTRAI	LST	Zip: 03235		O mili	
		Tank Type	Substance Stored	Installed	Tightness Test	Date Closed	Closed Type
1		STEEL-CORR. PROT.	GASOLINE	01-APR-1985	12-OCT-1994	<u>Data Closed</u>	Closed Type
2		STEEL-CORR. PROT.	GASOLINE	01-APR-1985	12-OCT-1994		
3		STEEL-CORR. PROT.	GASOLINE	01-APR-1985	13-OCT-1994		
4	4000	STEEL-CORR. PROT.	GASOLINE.	01-APR-1985	13-OCT-1994		
FRANK		Name: POLYCLAD 1	LAMINATES INC	Owner: POLYCLA	AD LAMINATES INC	County	: MERRIMACK
0-110998		45 TANNERY	ST	Zip: 03235		county	· MINIMINIACI
i i		Tank Type	Substance Stored	Installed	Tightness Test	Date Closed	Closed Type
1	<i></i> ✓ 6000	STEEL - BARE/GALV	HAZARDOUS SUBSTANCE	01-JAN-1983	14-JAN-1998	Daw Closed	Closed Type

	8 Capacity	Name: POLYCLAD 1	AMINATES INC	Owner: POLVCI A	D LAMINATES INC	County	: MERRIMACK
فانتفاذ .	6	45 TANNERY		Zip: 03235	DAMINATESTIC	County	
	8	45 TAINNER I		<u>-</u>			~
Tank #			Substance Stored	<u>Installed</u>	Tightness Test	Date Closed	Closed Type
2	√4500	STEEL - BARE/GALV	HAZARDOUS SUBSTANCE	01 -JAN-1 980	13-JAN-1998		
3	√4500	STEEL - BARE/GALV	HAZARDOUS SUBSTANCE	01 -J AN-1980	13-JAN-1998		
4	√6000	STEEL - BARE/GALV	HAZARDOUS SUBSTANCE	01-JAN-1980	14-JAN-1998		
5	4000	STEEL - BARE/GALV	GASOLINE	01-JAN-1983	01-NOV-1991	10-NOV-1992	REMOVED
6	12000	STEEL - BARE/GALV	#2 HEATING OIL	01-JAN-1983	01-NOV-1991	10-NOV-1992	REMOVED
FRANK	LIN	Name: PUBLIC SER	VICE COMPANY OF NH	Owner: PUBLIC S	ERVICE COMPANY C	F NH County	: MERRIMACK
0-11104	3	859 CENTRAI	_ ST	Zip: 03235			
Topk #	Canacity	Tank Type	Substance Stored	Installed	Tightness Test	Date Closed	Closed Type
1		STEEL - BARE/GALV	GASOLINE	07-MAY-1966	01-MAR-1988	01 - JUL-1989	REMOVED
-			RKS SUPPLY CO INC	Owner: LES REAL			y: MERRIMACK
FRANK		Name: PUBLIC WOR		Zip: 03235	ZII INOSI	County	, Mindelli Cit
0-22011	б	055 S MAIN S		•			
Tank#		Tank Type	Substance Stored	Installed	Tightness Test	Date Closed	Closed Type
1		STEEL - BARE/GALV	GASOLINE	01-JAN-1971		31 -J UL-1987	REMOVED
2	500	STEEL - BARE/GALV	USED / WASTE OIL	01 - JAN-1971		31 -J UL-1987	REMOVED
FRANK	KLIN	Name: R D EDMUNI	OS & SONS INC	Owner: R D EDMU	JNDS & SONS INC	County	y: MERRIMACK
0-11261	6	221 FRANKLI	N ST	Zip: 03235			
Tank#	Canacity	Tank Type	Substance Stored	Installed	Tightness Test	Date Closed	Closed Type
1		STEEL - BARE/GALV	GASOLINE	01-JAN-1976		03-MAR-1998	REMOVED
2		STEEL - BARE/GALV	GASOLINE	01-JAN-1980		12-MAY-1995	REMOVED
3		STEEL - BARE/GALV	GASOLINE	01-JAN-1978		12-MAY-1995	REMOVED
4		STEEL - BARE/GALV	DIESEL FUEL	01-JAN-1978		03-MAR-1998	REMOVED
FRANK			& RICHARD CROWLEY	Owner: RAYMON	D & RICHARD CROW	LEY County	y: MERRIMACK
0-11259		753 CENTRAI		Zip: 03235	D W ALL CLARKED CARO !!	ZZZ COUNT,	,
ŀ				-	m: 1	D + Cl - 1	OI1 T
		Tank Type	Substance Stored	Installed	Tightness Test	Date Closed	Closed Type REMOVED
1		STEEL - BARE/GALV	GASOLINE	01-JAN-1971	09-FEB-1989	31-DEC-1989	REMOVED
2		STEEL - BARE/GALV	DIESEL FUEL	01-JAN-1971	09 - FEB-1989	26-NOV-1996	-
FRANK		Name: REGAL THE			FERRY REALTY TR	UST County	y: MERRIMACK
0-11359	2	CENTRAL ST	•	Zip: 03235			
Tank #	Capacity	Tank Type	Substance Stored	Installed	Tightness Test	Date Closed	Closed Type
1		UNKNOWN	EMPTY	UNKNOWN			
FRANK	KLIN	Name: RIVERSIDE S	SERVICE CENTER	Owner: GEORGE	C STAFFORD & SONS	S INC Count	y: MERRIMACK
0-11170		150 S MAIN S		Zip: 03235			,
1				<u> </u>			

State of New Hampshire DEPARTMENT OF ENVIRONMENTAL SERVICES

6 Hazen Drive, P.O. Box 95, Concord, NH 03302-0095 (603) 271-3644 FAX (603) 271-2181

March 26, 1999

Polyclad Laminates P.O. Box 6299 West Franklin, New Hampshire 03235

SUBJECT: FRANKLIN - Polyclad Laminates, Inc., 45 Tannery Street: Tank Closure Report,

January 12, 1999, by Les A. Cartier and Associates, Inc.

(UST# 0-110998)

Dear Sir or Madam:

The New Hampshire Department of Environmental Services (DES) has reviewed the report for the December 2, 1998, tank closure by Les A. Cartier and Associates, Inc. for the 6,000 gallon chemical underground storage tank removed at the above referenced facility. Based upon the information contained in the report, DES has concluded that:

- 1. It does not appear that a discharge of petroleum that would ultimately impact surface water or groundwater of the State has occurred. Therefore, DES will not require additional investigation or remedial measures.
- 2. The owner(s) of this facility must meet the goals of the N.H. Administrative Rules Env-Wm-1403 "Groundwater Management and Groundwater Release Detection Permits", that is, groundwater at the site must continue to meet drinking water quality standards. The owner shall not undertake any activities which might result in Ambient Groundwater Quality Standards being exceeded at the site.

DES reserves the right, under N.H. Administrative Rules Env-Wm-1403 "Groundwater Management and Groundwater Release Detection Permits" and N.H. Administrative Rules Env-Ws 412, "Rules for Reporting and Remediation of Oil Discharges," to require additional hydrogeological investigations and/or remedial measures, if further information indicating the need for such work becomes known.

If you have any questions, please contact me at the Waste Management Division at 271-3644.

Sincerely,

Charles Berube

Oil Remediation and Compliance Bureau

F:\GWUSERS\GWLRM\CHARLIE\POLYCLAD.FRA

Frederick McGarry, P.E., Chief Engineer

Diane K. Cartier, Les A. Cartier and Associates, Inc.

file

Closure Report Review

A.	FEB 5, 1999 : Date 6	Closure I	Report Rec	eived	
	O110998 DES ID: 0 POLYCLAD LAMINATES INC FRANKLIN Tank Closure Information: HAZARDOUS SUBSTANCE 6000	gallon tank	POLY PO BC WEST	r Information: CLAD LAMINATES OX 6299 FRAN NH Dec 4, 1998	323
В.	feb. 08, 1999 Date Submitted				•
	Closure Reviewer:	Berle /	Date: 3/18	199	
١	Field Screening:	N		 	
	Analytical Results:	M M			
ı	Release Indicated:	YN	/		ļ.
	Contaminated Soils Stockpiled:	Y W		cu. yds.	
	NFA / SIR / SCR / Soil		Review	ver	
C	Date Submittee	d to UST C	ompliance		
	Compliance Reviewer:	D	ate:		
1	Compliance with Env-W m	1401:			
	Non Compliance with Env	-Wm 1401			
•			٠.		
D.	Date Fow	arded to Pl	M		
	Soil/SIR/SCR/NFA		Review	ver: <u>CBJ2</u>	
•	 				-

ES A. CARTIE PLANDASSOCIATES INC.

P.O. Box 559 • Candia, NH 03034 • (800) 639-7703 NH WE ARE SENDING YOU the following: Attached Under separate cover via Shop Drawings ☐ Specifications Copy of letter Change order Prints Plans Samples COPIES DATE NUMBER DESCRIPTION UST CLOSURE THESE TRANSMISSIONS ARE: For your approval Approved as submitted Resubmit with _____ copies for approval For your use Approved as noted Submit _____ copies for distribution As per your request Corrections noted Return _____ corrected prints For your review and comment(s) FOR BIDS DUE _ PRINTS RETURNED AFTER LOAN TO US REMARKS: COPY TO: Vestec Polyclad LCA File

McBee - 1055 East State St.- Athens, Ohio 45701 PLEASE ORDER FROM McBEE REORDER EXPRESS 1-800-662-2331

LETTER OF TRANSMITTAL

UNDERGROUND STQRAGE TANK CLOSURE REPORT

POLYCLAD LAMINATED INC. 45 TANNERY STREET FRANKLIN, NH 03235

LCA PROJECT NO. V13013 NHDES ID# 0-110998 DECEMBER 17, 1998

Prepared for:

MR. JAY JONES
VESTEC
99 NORTH STATE STREET
CONCORD, NEW HAMPSHIRE
03301

Prepared by: Les A. Cartier and Associates, Inc. PO Box 559 Candia, NH 03034 (603) 483-2180

A; #42

"Promoting Environmental Responsibility"

January 12, 1999

Mr. Jay Jones VECTEC 89 North State Street Concord, NH 03301

Re:

Closure of Underground Storage Tank

Polyclad Laminated, Inc. Franklin, NH 03235

Dear Mr. Jones:

Les A. Cartier and Associates, Inc. (LCA) is pleased to provide you with this report for the closure of one (1) underground storage tank (UST) at the above referenced property. On December 12, 1998 one(1) 6,000 gallon chemical single walled UST was permanently removed from the property.

The site is located on the east side of Tannery Street, Franklin, NH. The site operates as a commercial/industrial manufacturing facility.

The UST was located on the southwest side of the main building in a grassy area. The location of the UST is outlined on Figure #1 that is enclosed with this letter. The New Hampshire Department of Environmental Services (NHDES) Underground Storage Tank Closure report forms, Figure 1, site location map, and laboratory analytical results are attached. A copy of this report must be forwarded to the NHDES is accordance with NH Code of Administrative Rules ENV- Wm. 1401.18.

After all residual product was pumped out of the UST, it was cleaned and vapor freed. The tank was excavated from the ground and all piping was either removed or rendered inoperable. Water was not encountered while excavating the tank. A soil sample was collected from the base of UST and analyzed using EPA methods listed on the accompanying laboratory reports. The area was then backfilled to grade.

The tank was inspected as it was removed and was noted in good condition. The tank was disposed of at a NH scrap metal yard.

"Promoting Environmental Responsibility"

During the UST excavation, the soil was screened at the base of the excavation and a headspace analysis was performed using a Thermo-electron photoionization detector. Screening of the soils indicated volatiles in the soil of 0.0 ppm under UST #1.

In conclusion, it appears that there was no gross contamination as a result of the 6,000 gallon chemical UST that was removed from the property.

We appreciate the opportunity to have provided you with environmental services. If you would like LCA to assist you with any other environmental/remedial issues that may need to be addressed at this property, any future projects, or if you have any questions, please feel free to contact our office.

Sincerely,

LES A. CARTIER AND ASSOCIATES, INC.

Diane K. Cartier

Sr. Environmental Technician

IFCI #1079263-26

Les A. Cartier, REP, CET, CES

Certified Professional Consultant

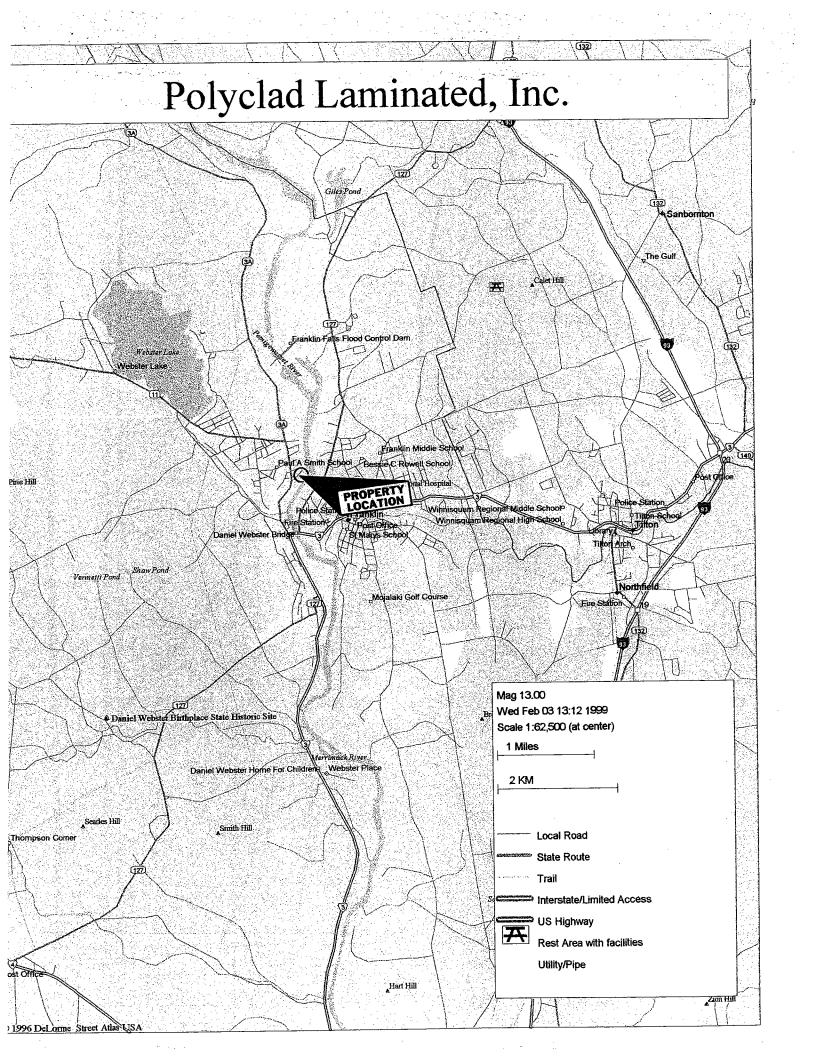
IFCI #1079262-26

NHDES, Client, File

enclosures

A: #42

CC:


w Hompshire Dept. of Environmental Services lazen Drive

O. Box 95 ncord, New Hampshire 03301	(603) 271-3644	<u> </u>	
Registration for Undergrou	or a Martin through the entry of the entry of the design of the anti-field of the entry of the day.	rangan kata pangarangan katalan dalah beringan kantan beringgan beringgan beringgan beringgan beringgan bering	
Type of Notification		State Use Only	
		NUMBER	
A. New Facility B. Amended X		TE RECEIVED	
WOTDLIGTIONS		Date entered to Computer	
INSTRUCTIONS Please type or print in ink all items except "signature" in		Data Entry Clerk Initials Owner was contacted to Clarify	
must be completed for each location containing undergroup	and storage tanks.	esponses, Comments	
If more than four (4) are owned at this location, photocopy	the following		
sheets, and staple additional sheets to this form.	•	CTIVE	
Also, provide a site plan and facility layout. (may be a hand sketch).	IN	ACTIVE	
I. OWNERSHIP OF TANK(S)	II. LOCATION O	FTANK(S)	
Owner Name -	Facility Name		
Polyclad Laminated, Inc.	Polyclad La	minated Tre	
Mailing Address	Street Address (DC	minated Inc NOTUSE POST OFFICE BOX)	
40 Industrial Park Drive	45 Tannery	Street	
City State Zip C		State Zip Code	 .
	7	NII 02025	
Franklin, NH 03235 Phone Number (include area code)	Franklin, County	NH 03235	
(603)934–5642	Merrimack		
III. TYPE OF OWNER	IV. MAPPING IN		
	If known please	provide: Location of the tanks by degree, minutes	bne s
Federal Gov't. X Commercial	seconds: (Exam	ple Lat 42. 36. 12 N Long. 95. 24. 17 W)	una
State Gov't. Private	Latitude:		
Local Gov't.	Tax Map #:	Lot #:	
V. 1	YPE OF FACILITY		
Gas Station	Local Government	Contractor	
Petroleum Distributor	State Government	Trucking / Transportation	
Air Taxi	Federal- Non-Military	Utilities	
Aircraft Owner	_Federal- Military Commercial	Farm or Residential Other (Explain)	
	Industrial	Other (Explain)	
	_		-
	RSON IN CHARGE OF TAN	IKS Phone Number (Include Area Co	ode)
Name Job Title Add	iress	Thore Number (moduce Area of	
Bill Ferrucci, Facilities Mgr. 40 Indu	strial Park Dr. Fran	nklin, NH (603)934-5642	
VII.	CERTIFICATION		
I certify under penalty of law that I have personally attached documents, and that based on my inquiry of the believe that the submitted information is true, accurate a	ose individuals immediately	with the information submitted in this and responsible for obtaining the information,	i all , İ
Name and title of owner Sig	nature	Date Signed	
es A. Cartier, Consultant	aa. C		

VIII. DESCRIPTION OF UNDERGROUND STORAGE	TANKS (Comp	lete for each	tank at this lo	cation.)
Tank Identification Number	Tank No1	Tank No		Tank No
Status of Tank (Mark Only One)				
Permanently Close				
Newly Installe				
Amendment of Information	·			
Date of Installation	unknown			
Compartment Tank (List each Tank Compartment in a Separate Column) Estimate Total Capacity (gallons)	6,000			
5. Material of Construction	6,000			
(Mark All That Apply) RAsphalt Coated or Bare Ste	el x			
Cathodically Protected Ste				
Lined Interi				
Epoxy Coated Ste				
Composite (steel with Fiberglas				
Fiberglass Reinforced Plas	1 ===			
Double Wall				
Polyethylene Tank Jack				
Concre Excavation Lin				
Unknov				
Other, Please Spec	j <u> </u>			
outer, riedde opee				
Has Tank been Repaire	4.5			
6. Product Piping Material (Mark all that Apply) Bare Ste	el X			
Galvanized Ste				
Fiberglass Reinforced Plas	1 ===			
Cathodically Protected Ste	.			
Double Wall				
Сорр				
Secondary Containme				
Unknov				
Other, Please Spec	ify			
7. Product Piping Type				
(Mark all that Apply) Suction: No Valve at Ta	nk			
Suction: Valve at Ta	nk			
Pressu	re			
Gravity F	ed			
Has piping been repaire				

Fank Identification Number	Tank No1	Tank No	Tank No	Fank No
8. Substance Currently or Last Stored in Greatest Quantity by Volume Gasoline Diesel Gasohol Kerosene Heating Oil Used Oil Other, Please Specify	Chemical			
Hazardous Substance CERCLA name and / or CAS number				
Mixture of Substances Please Specify				
Tank Currently Empty				
IX. PERMANENT / TEMPORARY CL		CHANGE IN S	SERVICE	
Tank Identification Number	Tank No. 1	Tank No	Tank No	Tank No
Closing of Tank A. Estimate date product and sludge removed from tank	12/17/98			
C. Tank was removed from ground D. Tank was closed in ground E. Tank filled with inert material F. Change in service 2. Tank Closure Assessment Completed Estimate date of action	x			
Estimate date of action (month / day / year) Evidence of a leak detected	12/17/98			

CERTIFICATION OF COMPLIANCE (COMPLETE FOR ALL	NEW AND UP	GRADED TAN	KS AT THIS L	OCATION
		Tank No	Tank No	Tank No
Installation				
A. Installer certified by tank and piping manufacturers				
B. Installer certified or licensed by the implementing agency				
C. Installation inspected by a registered engineer				
D. Installation inspected and approved by implementing agency				
E. Manufacturer's installation checklists have been completed				
F. Another method allowed by State agency. Please specify				
Release Detection (Mark all that apply)				
A. Manual tank gauging				
B. Tank tightness testing				
C. Monthly inventory controls				
D. Automatic tank gauging				
E. Vapor monitoring				
F. Groundwater monitoring				
G. interstitial monitoring / double walled tank				
H. Interstitial monituring / secondary containment				
I. Automatic line leak detectors				
J. Line tightness testing				
K. Other methods allowed by implementing agency				
3. Spill And Overfill Protection				
A. Overfill device installed				
B. Spill device installed	USIDILITY			
XI. FINANCIAL RESPO	ASIBILITY			
I have met the financial responsibilin accordance with NH Code of Ad Rules Env-Ws 411.10	lity requiremel Iministrative	nts		
Check All That Apply:	******************			
Self insuran	ce		Letter of C	redit
Risk Retention Gro			State Fu	nds
Guarant			Trust Fu	ınd
Surety Bo			Other Meth	nod
Surety Bo	<u></u>	S	pecify	
	 			
XII. OATH: I certify that the information concerning to the best of my belief and knowledge.	ng the install	ation provide	d in Section	X is true
Installer		Signature	 -	Date
Name		0.3101010		
Position		Company		
		:		
Page 4 of 4				

LABORATORY REPORT

Eastern Analytical, Inc. ID#: 15260

Client: Les A. Cartier & Associates Inc.

Client Designation: Poly CLAD (T.R)

Volatile Organic Compounds

Sample ID:	Polyclad1	Pol	yclad1
Matrix:	Soil		Soil
Date Received:	12/18/98	12	/18/98
Units:	μg/kg		μg/kg
Date of Analysis:	12/23/98		/23/98
Analyst:	JDS	· -	JDS
EPA Method:	8260B	3	3260B
Dichlorodifluoromethane	^위 < 100	1,3-Dichloropropane	< 10
Chloromethane	< 100	Tetrachloroethene	< 10
Vinyl chloride	< 20	Dibromochloromethane	< 10
Bromomethane	< 10	1,2-Dibromoethane	< 10
Chloroethane	< 100	Chlorobenzene	< 10
		0.11010001120110	1.0
Trichlorofluoromethane	< 100	1,1,1,2-Tetrachloroethane	< 10
Diethyl ether	< 10	Ethylbenzene	< 10
Acetone	< 500	mp-Xylene	< 10
1,1-Dichloroethene	< 10	o-Xylene	< 10
Methylene chloride	< 10	Styrene	< 10
•			` .0
Carbon disulfide	< 10	Bromoform	< 10
Methyl-t-butyl ether(MTBE)	< 200	iso-Propylbenzene	< 10
trans-1,2-Dichloroethene	< 10	1,1,2,2-Tetrachloroethane	< 10
1,1-Dichloroethane	< 10	1,2,3-Trichloropropane	< 10
2-Butanone(MEK)	< 100	n-Propylbenzene	< 10
· · · · · · · · · · · · · · · · · · ·	1,00	11 1 10 py 15 0 11 2 0 11 0	\ 10
2,2-Dichloropropane	< 10	Bromobenzene	< 10
cis-1,2-Dichloroethene	< 10	1,3,5-Trimethylbenzene	< 10
Chloroform	< 10	2-Chlorotoluene	< 10
Bromochloromethane	< 10	4-Chlorotoluene	< 10
Tetrahydrofuran(THF)	< 100	tert-Butylbenzene	< 10
, , ,		ton Daty Bonzono	\ 10
1,1,1-Trichloroethane	< 10	1,2,4-Trimethylbenzene	< 10
1,1-Dichloropropene	< 10	sec-Butylbenzene	< 10
Carbon tetrachloride	< 10	p-isoPropyltoluene	< 10
1,2-Dichloroethane	< 10	1,3-Dichlorobenzene	< 10
Benzene	< 10	1,4-Dichlorobenzene	< 10
	1,0	1,4 Biomoroponzeno	\ 10
Trichloroethene	< 10	n-Butylbenzene	< 10
1,2-Dichloropropane	< 10	1,2-Dichlorobenzene	< 10
Bromodichloromethane	< 10	1,2-Dibromo-3-chloropropane	< 10
Dibromomethane	< 10	1,2,4-Trichlorobenzene	< 10
4-Methyl-2-pentanone(MIBK)		Hexachlorobutadiene	< 10
- Monyr 2 pontanone(MIDIC)	100	HEAGUIIOIOUUIAGIEHE	< 10
cis-1,3-Dichloropropene	< 10	Naphthalene	_ 1A
Toluene	< 10	1,2,3-Trichlorobenzene	< 10
trans-1,3-Dichloropropene	< 10 < 10	1,2,3-1110110100e112e11e	< 10
1,1,2-Trichloroethane			
2-Hexanone	< 10		
Z-116Xd110116	< 100		

Alla Inda

ALPHA ANALYTICAL LABORATORIES CERTIFICATE OF ANALYSIS

MA:M-MA-086 NH:200395-B/C CT:PH-0574 ME:MA086 RI:65

Laboratory Sample Number: L9810156-01

POLYCLAD 1

Date Received: 21-DEC-98 Date Reported: 31-DEC-98

Date Collected: 17-DEC-1998

Sample Matrix: SOIL Satisfactory

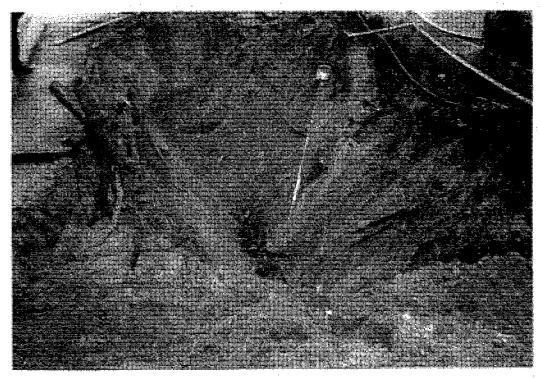
Field Prep: None

Number & Type of Containers:

Condition of Sample:

RE	SULT UNI	TTS RDL	REF	METHOD	DATES	ID
					PREP ANALYSI	S
92	. %	0.10	30	2540G	29-De	c SN
C/FID			10	₽202	20.5	≅ .atr
ND	mg/	'kg 54.	+4	1402	za-ne	g MK
ND	-	_				
			4	00000		
ND	າງα/	'kg 543.		8270C 8270C	28-De	ë IG IG
	92 C/FID ND ND	92. % C/FID ND mg/ ND mg/	92. % 0.10 C/FID ND mg/kg 54. ND mg/kg 54.	92. % 0.10 30 C/FID 12 ND mg/kg 54. ND mg/kg 54.	92. % 0.10 30 2540G C/FID 12 E202 ND mg/kg 54. ND mg/kg 54.	PREP ANALYSI 92. % 0.10 30 2540G 29-Dec C/FID 12 E202 29-Dec ND mg/kg 54. ND mg/kg 54. 1 8270C 28-Dec

ALPHA ANALYTICAL LABORATORIES QUALITY ASSURANCE BATCH DUPLICATE ANALYSIS


Laboratory Job Number: L9810156

Parameter	Value 1	Value 2	RPD	Units
Glycol	Organics by GC	/FID for sa	mple(s) (01
Ethylene glycol	ND	ND	NC	mg/kg
Propylene glycol	ND	ND	NC	mg/kg

ALPHA ANALYTICAL LABORATORIES QUALITY ASSURANCE BATCH BLANK ANALYSIS

Laboratory Job Number: L9810156

PARAMETER	RESULT	UNITS			<u> </u>			
		UNITS	RDL	REF	METHOD	DAT PREP	es Analysis	ID
Blank Slycol Organics by GC/FID Ethylene glycol Propylene glycol	Analysis ND ND	for sampl mg/kg mg/kg	e(s) 01 50. 50.		E202		29-Dec	MK

Photograph #1: Excavation base of UST #1 - a 6,000 gallon UST 12/12/98

Photograph #2: Close-up view of the 6,000 gallon UST in good condition LCA project #V13013

State of New Hampshire DEPARTMENT OF ENVIRONMENTAL SERVICES

6 Hazen Drive, P.O. Box 95, Concord, NH 03302-0095 (603) 271-2900 FAX (603) 271-2456

October 4, 1999

Mr. Donald Maurer Polyclad Laminates PO Box 6299 West Franklin, NH 03235

SUBJECT:

Franklin - Polyclad Laminates, Tannery Road: Tank Closure Report, July 15, 1999 by

Environmental Science & Engineering, Inc. (UST #0-110998)

Dear Mr. Maurer:

The New Hampshire Department of Environmental Services (DES) has reviewed the report for the June 8, 1999, tank closure by Environmental Science & Engineering for the 4,500 gallon and 6,000 gallon CS-350 and acetone and the 4,500 gallon PM-DMF underground storage tanks closed in place at the above referenced facility. Based upon the information contained in the report, DES has concluded that:

- 1. It does not appear that a discharge of contaminants that would ultimately impact surface water or groundwater of the State has occurred from these tanks. Therefore, DES will not require additional investigation or remedial measures related to this tank removal.
- 2. The owner(s) of this facility must meet the goals of the N.H. Administrative Rules Env-Wm-1403 "Groundwater Management and Groundwater Release Detection Permits", that is, groundwater at the site must continue to meet drinking water quality standards. The owner shall not undertake any activities which might result in Ambient Groundwater Quality Standards being exceeded at the site.

DES reserves the right, under N.H. Administrative Rules Env-Wm-1403 "Groundwater Management and Groundwater Release Detection Permits" and N.H. Administrative Rules Env-Ws 412, "Rules for Reporting and Remediation of Oil Discharges," to require additional hydrogeological investigations and/or remedial measures, if further information indicating the need for such work becomes known.

If you have any questions, please contact me at the Waste Management Division at 603-271-3644.

Sincerely,

Charles Berube

Oil Remediation and Compliance Bureau

CB/dmj

F:\GWUSERS\WMCPB\POLYCLA2.FRA

cc: Gary S. Lynn, P.E., Supervisor

Environmental Science & Engineering

file

TDD Access: Relay NH 1-800-735-2964

Closure Report Review

A.JUL 19, 1999 : Date Closure Report Received 0110998 Owner Information: DES ID: POLYCLAD LAMINATES POLYCLAD LAMINATES INC PO BOX 6299 FRANKLIN WEST FRAN NH 3235 alose in place Tank Closure Information: **HAZARDOUS SUBSTANCE 4500** gallon tank Date Closed: Jun 8, 1999 **HAZARDOUS SUBSTANCE 6000** gallon tank Date Closed: **HAZARDOUS SUBSTANCE 4500** gallon tank Date Closed: Jun 8, 1999 B. July 22, 1999 Date Submitted For Initial Review Closure Reviewer: Field Screening: Analytical Results: Release Indicated: N Contaminated Soils Stockpiled: Ń cu. yds. NFA / SIR / SCR / Soil Reviewer Date Submitted to UST Compliance Compliance Reviewer: Date: Compliance with Env-W m 1401: Non Compliance with Env-W m 1401 Date Fowarded to PM D. Soil/SIR/SCR/NFA Reviewer: 14**-**Sep-98

New Hampshire Department of Environmental Services (603) 271-3644 FAX (603) 271-2181

UST CLOSURE NOTIFICATION

1	Celephone Message Name Dean Crosby	- Class Hal	A.C.F.	Initial M M 42 Date: 3/3/9	9
	•	CIEGA Juso	·	, ,	6626
	Ciry			Fax # 22 4-6	
		1/26		rax#	
2.]	Facility Registration I				
1	Name Joly cad	Laminates	Tuc:	city Frankli	h
5	Street 45	Tannery St.		Telephone	
3. (Owner Name	/			
.]	Name		City	Telephone:	
4. ′	Tank Removal Informa	ation	*****L=Leaker Suspe	cted; R=Removal; \(F=	Filled in Place = Incide Blg
	L R E	L R (F)	L R E	L R \widetilde{F}	L R F
	Tank #	Tank #	Tank #	Tank #	Tank #
	Size 4.500	Product Haz.	Size <u>Q, 000</u> Product <u>Ha 2</u>	Size	Size
	Product	Product	Will tank be replaced	Product Will tank be replaced	Product
	underground? Yes No	underground? Yes No	underground? Yes No	NII	Will tank be replaced underground? Yes No
5	Consultant / Contracto	r: OST Ear	ironmental	_IFCI Certification:	yes
6.	Local Fire Dept. Notifi	ed <u>you</u>			
7. ;	InspectorMetho	de (tank and nining):		Date	
7.] 8.]	Inspector Field Screening Method	ds (tank and piping):		Date	
8.]	Field Screening Method	ds (tank and piping):		Date	
8.]	Field Screening Methor Sample Information	ds (tank and piping):	tank #		tool #
8.]	Field Screening Method	ds (tank and piping): tank # Soil Water	tank# Soil Water	Datetank#	tank#
8.]	Field Screening Methor Sample Information	ds (tank and piping):		tank#	tank # Soil Water
8. I 9. I	Field Screening Method Sample Information tank # Soil Water Taken By:	ds (tank and piping):		tank#	
8. I 9. I	Field Screening Method Sample Information tank # Soil Water	ds (tank and piping):		tank#	
8. I 9. I	Field Screening Method Sample Information tank # Soil Water Taken By: Tank Condition:	ds (tank and piping): tank # Soil Water	Soil Water	tank# Soil Water	Soil Water
9. 3 110.	Field Screening Method Sample Information tank # Soil Water Taken By: Tank Condition: tank # Indicate tank and samp	ds (tank and piping): tank # Soil Water tank # ple locations by sketcl	Soil Water tank # hing on back of this re	tank # Soil Water tank #	Soil Water
9. ; 110. ′	Field Screening Method Sample Information tank # Soil Water Taken By: Tank Condition: tank # Indicate tank and samp Include photographs o	tank # Soil Water tank # Dele locations by sketch of the excavation and the sketch of	tank # hing on back of this retank(s) condition if av	tank # Soil Water tank #	Soil Water
9. ; 110. ′	Field Screening Method Sample Information tank # Soil Water Taken By: Tank Condition: tank # Indicate tank and samp	tank # Soil Water tank # Dele locations by sketch of the excavation and the sketch of	tank # hing on back of this retank(s) condition if av	tank # Soil Water tank #	Soil Water
9. (10. 11. 11. 11. 11. 11. 11. 11. 11. 11.	Sample Information tank # Soil Water Taken By: Tank Condition: tank # Indicate tank and samp Include photographs of Estimated cubic yard Verification	tank # Soil Water tank # Die locations by sketcle of the excavation and the stock piled content is set to the stock piled content in the stock piled content is set to the stock piled content in the stock piled content is set to the stock piled content in the stock piled content is set to the stock piled content in t	bing on back of this retank(s) condition if avaninated soil:	tank # Soil Water tank # eport. valiable.	Soil Water tank # cubic yards
9. 3 10. 1 11. 12. 13. 1	Field Screening Method Sample Information tank # Soil Water Taken By: Tank Condition: tank # Indicate tank and samp Include photographs of Estimated cubic yard	tank # Soil Water tank # Soil Water tank # Soil of the excavation and the excavation and the excavation and the removed tank(s), includulated substance contamin	bing on back of this retank(s) condition if available aminated soil:	tank # Soil Water tank # eport. Valiable. area. I am knowledgable interest of the content of t	Soil Water tank # cubic yards
9. 11. 11. 12. 13. 14 . 1	Sample Information tank # Soil Water Taken By: Tank Condition: tank # Indicate tank and samp Include photographs of Estimated cubic yard Verification have inspected the site of the chniques to determine region tamination at the site. I have been site of the content of t	tank # Soil Water tank # Soil Water tank # Soil of the excavation and the excavation and the excavation and the removed tank(s), includulated substance contamin	bing on back of this retank(s) condition if available aminated soil:	tank # Soil Water tank # eport. Valiable. area. I am knowledgable interest of the content of t	Soil Water tank # cubic yards

WASTE MANAGEMENT DIVISION

Record of Telephone Conversation

Date of Conversation: 5-25-99	Time: a.m./p.m.	
Bureau Staff: John Rogen		
Other Party's Name: Lind; Higgins		
Affiliation/Company: QST Environ make		
Affiliation/Company: QSI Environ matel Site: Poly clad, Franklin 011099	18 Vacabli	
Discovered release during closure implace of 3 chemical		
•		
tanks: 2 - 4500gel virght export mins		
(- 7300 gd viv.	sh brominated aport mishs	
	/ 1 27 / 01 ***	
Styrene detected in I soil sample at 37 ppm (S-1= 14pp Tanks are located beneal the Suilding which who the tanks		
	1.5	
are planned to be closed in place.		
I told her to send dosure		
Cover letter should indicate that HWRB will restalt		
review the results given that release hourt petroleum.		
Additional work will read to done but it is		
not eligible for reimbursement		
that be additional soil &		
Building may control in Fil		
vieurel as cap, so g.	w. monitoring would be	
required over time.		
	ere clear. I said the	
HWRB will review the do sure report and respond		
In writing as to the next actions.		

WASTE MANAGEMENT DIVISION

Record of Telephone Conversation

Date of Conversation: <u>6-4-79</u>	Time: a.m./p.m.
	Title:
Other Party's Name: Lindi Higgins	
Affiliation/Company: Q 51	
Site: Polyclad Franklin -	UST Closure
SUMMARY OF CO	
She reported release of stre	ne to me during on
parlie telcon. They are closi	ng chanical tanks implace.
Soil sample braneth tank has	I shown styrene so she
had reported the release.	
Her are convinced that the	
also a release from the USTS	
polyester rocking on the tank.	
stored in the tacks and indi	astro rep said the
polyader costing contain sty.	
locked so in odresta.	
I told her she shouldconfect	Tom Between Brantier and
sh determine what he will no	
She was interested in trying to	pull their contin anti-fration
of a release.	

July 15, 1999

Mr. Thomas Beaulieu
Underground Storage Tank Division
State Of New Hampshire
Department of Environmental Services
6 Hazen Drive, P.O., Box 95
Concord, NH 03302-0095

RECEIVED

JUL 1 9 1999

DEPARTMENT OF ENVIRONMENTAL SERVICES

RE: Underground Storage Tank Closure Report, Polyclad Laminates, Inc., Franklin, New Hampshire (DES Facility Registration #0-110998)

Dear Mr. Beaulieu:

Enclosed please find the attached Underground Storage Tank (UST) Closure Report submitted by Environmental Science & Engineering, Inc. (ESE) formerly QST Environmental (QST) on behalf of our client Polyclad Laminates, Inc. Based on the field observations made by ESE personnel and the laboratory analytical results, no significant environmental impacts were identified associated with the three USTs closed in-place. ESE recommends that this USTs system be granted clean-closure.

If you have any questions or require additional information, please contact me at (603) 672-2511.

Sincerely,

ENVIRONMENTAL SCIENCE & ENGINEERING, INC.

Lindi S. Higgins, CPG Senior Project Scientist

enclosures

cc: Mr. Donald Maurer, Polyclad

Mr. David Lorch, Town of Franklin

1.0 Introduction

Environmental Science & Engineering, Inc. (ESE) was retained by Polyclad Laminates, Inc. (Polyclad) to direct the in-place closure operations for three underground storage tanks (USTs) at the Polyclad facility (DES facility Registration No. 0-110998 located in Franklin, New Hampshire as shown on the locus map provided as Figure 1. The USTs, situated beneath the main Polyclad plant building, were constructed of carbon steel with an external fiberglass coating, four-inch steel fill pipes, and 20-inch diameter manholes. The USTs were reportedly installed in 1980 (Appendix A, UST registration and purchase papers). This report has been prepared in accordance with New Hampshire Department of Environmental Services (NHDES) guidelines described in Env-Wm 1401.18.

The USTs had been used to store virgin epoxy resins and are described as follows:

- Tank 1 4,500 gallon capacity, stored CS 350 and acetone
- Tank 2 4,500 gallon capacity, stored PM-DMF
- Tank 3 6,000-gallon capacity, stored CS 350 and acetone

The NHDES Facility Identification Number is 0110998.

2.0 UST Closure Activities

2.1 Personnel and Permits

During May 10, 1999 through June 18, 1999, ESE directed the closure of three USTs. ESE subcontracted Clean Harbors Environmental Services, Inc. (CHES) of Bow, New Hampshire to perform the UST closure activities. The work was conducted in accordance with NFPA 30, NHDES Env-Wm 1401.18, OSHA regulations, and ESE's and CHES's own site-specific health and safety plans (HASPs). On-site personnel involved in the UST closure activities are identified below.

Polyclad Laminates, Inc. - Donald Maurer
ESE - Jeff Harshman, Project Scientist; Tony Calderon, Senior Staff Engineer
Clean Harbors Environmental Services - Mike Newhouse, Foreman, International Fire Code
Institute (IFCI) Certification for UST installation/decommissioning; Dan, Field Technician;
Scott, Field Technician

Prior to conducting the closure activities, CHES notified the Town of Franklin Fire Department and the NHDES. Mr. David Lorch, Manager of the Franklin Planning Department requested a copy of the UST closure report upon completion. Copies of the NHDES Underground Storage Facility Permit to Operate and the completed UST Closure Notification Form are provided in Appendix A. Photographic documentation of the UST closure activities is included in Appendix B.

2.2 UST Cleaning

On May 10, 1999, the floor plates and the underlying manway hatches to the USTs were opened by CHES. Approximately two feet of dirt was overlying the UST manway hatch of Tank #3, which was removed by hand and placed in a 55-gallon drum. A sample of the dirt will be analyzed for waste characterization purposes and disposed of in an appropriate manner by CHES.

The three USTs were cleaned on May 10 and 11, 1999 by CHES under a confined space entry permit. CHES personnel used level B personnel protection equipment (supplied air) during the UST cleaning activities. Throughout the tank cleaning and soil sampling activities, ambient air quality in the room and inside the USTs was monitored by ESE and/or CHES for protection of personnel in accordance with the site-specific HASPs. CHES UST monitoring equipment included a photoionization detector (PID) and a multigas meter which measured the lower explosive level (LEL), oxygen level, hydrogen sulfide level and CO level. Flexible air ducts were used to vent the tanks to the outside throughout all UST closure activities. The flexible air ducts discharge was set outside the Polyclad building at approximately 10 feet above the ground surface. The tanks were all measured for the presence of resin product. Tank 1 had approximately two inches of product, Tank 2 had approximately three inches of product, and Tank 3 had approximately four inches of product. The material in Tanks 1 and 3 were too viscous to be pumped; therefore this material was removed by hand shoveling into a bucket. The material in Tank 2 was pumped out using a vacuum-truck. The contents of the tanks were placed in a total of four 55-gallon drums. The contents of these drums will be characterized for disposal by CHES in an appropriate manner. Following removal of the product, the insides of the tanks were cleaned by CHES.

A visual inspection of the tank interiors by CHES personnel indicated that all three tanks appeared to be in fair condition with some pitting but no visible cracks or holes. Photographs documenting the UST cleaning activities are provided in Appendix B.

2.3 Initial Soil Sample Collection

On May 12, 1999, subsurface soil samples were collected from beneath each UST. Two soil samples were collected by CHES personnel: one beneath the manway and one beneath the fill-line. The soil sample designations and sampling locations are shown on Figure 2. The samples were collected by drilling two-inch diameter holes through the tank walls and obtaining samples of the underlying soil using a hand-held scoop. Prior to drilling through the tank to collect the sample, the tank wall was wiped with isopropyl alcohol and the drill bit was lubricated with vegetable oil. The drill was powered by an air compressor. The soil samples were collected from approximately six to eight inches below the UST wall. At the completion of sampling, the holes were sealed with cement plugs. The soil samples were dry and appeared as tan, fine-to medium sand with few cobbles. Groundwater was not

encountered during the sampling activities. According to Mr. Maurer, groundwater has not been encountered during other site activities, which has included excavation of soils to approximately 12 feet beneath the ground surface. ESE monitored the subsurface soils samples for organic vapors using a photoionization detector (PID) and submitted soil samples to Eastern Analytical laboratory of Concord, New Hampshire for analysis of volatile organic compounds (VOCs) by Method 8260B.

2.4 Initial Soil Analytical Results

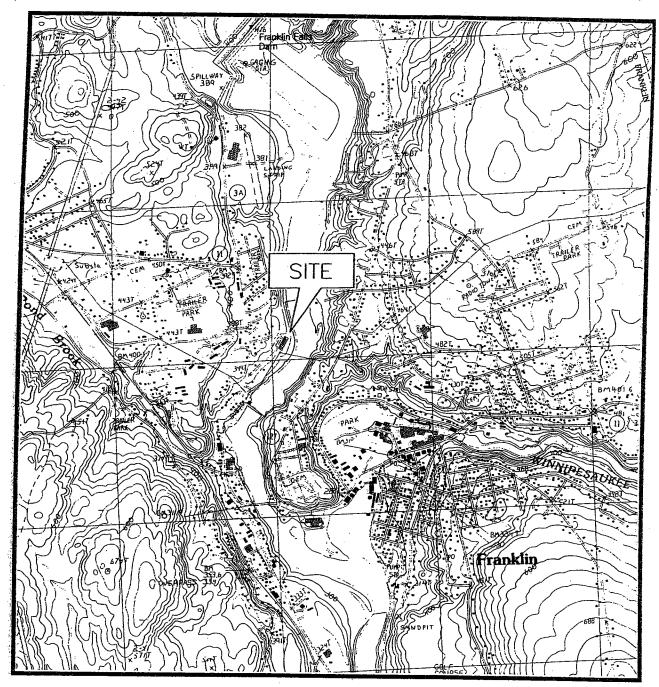
Field headspace readings from the soil samples ranged from 0 to 13 parts per million (ppm). Table I presents the field headspace results of the soil samples, and Table 2 presents the laboratory analytical results. The laboratory report was provided in Appendix C. The only exceedence of an NHDES Method I soil standard was the concentration of styrene detected in Sample "Tank 3-1", 37,000 micrograms per kilogram (ug/kg), which is above the standard of 14,000 ug/kg.

Pursuant to Mr. Maurer's request, ESE reported a release to Mr. Spruce Wheelock (UST Division) and Mr. John Regan (Waste Division) of NHDES on May 25, 1999, in accordance with NHDES regulations. During a phone conversation, Mr. Maurer indicated that styrene is not associated with the substances that are known to have been stored in Tank 3 nor any substance ever used on-site by Polyclad. ESE contacted Mr. Bob Lacovara, Director of the Composite Fabricators Association in Arlington Virginia, to determine if the fiberglass coating of the UST could be the source of the Styrene. Mr. Lacovara indicated that USTs are constructed of polyester or vinyl resins, both of which contain styrene. Mr. Lacovara indicated that during the polymerization process, a cross-linked density of 95 percent is obtained, indicating that 95 percent of all of the molecules are tied up during the process. Only one percent of the five percent of remaining molecules is styrene and this is tied up within the first year after polymerization. According to Mr. Lacovara, it would be virtually impossible for styrene to leach from the tank wall. However, after explaining the sampling process to Mr. Lacovara, he indicated that if fragments of the fiberglass coating were present in the soil sample (from the drilling process through the fiberglass-coated tank wall) and were than placed in methanol and analyzed in a laboratory, styrene would likely be detected. With this knowledge, ESE concluded that the styrene was from fiberglass-coating fines that were inadvertently collected during the soil sample collection process. Based on this information, ESE contacted Mr. John Regan and Mr. Tom Beaulieux (Head of the UST Division) on June 4 and 7, 1999, respectively to request that the tanks be granted clean closure. Both Mr. Regan and Mr. Beaulieux indicated that ESE's conclusion that the styrene source was the fiberglass-coated tank wall fines originating during the soil sampling process was reasonable; however, Mr. Beaulieux requested that a confirmatory soil sample be collected fromthe same sample location that had exceeded the styrene standards.

2.5 Subsequent Deeper Soil Sample Collection

To further evaluate the occurrence of styrene and to determine whether it was present at greater depths, on June 7, 1999, an additional soil sample was collected from underneath Tank #3 in the vicinity of Sample "Tank 3-1". The concrete plug from the initial sampling event was knocked out of the bottom of the UST and a soil sample was collected from a depth of 18 inches below the tank wall using a 1-inch diameter, stainless steel hand auger. The sample was designated "Tank 3-1B." The soil was screened in the field using a PID and a sample was jarred for laboratory analysis and submitted to Eastern Analytical for analysis of VOCs by Method 8260B.

2.6 Deeper Soil Sampling Analytical Results


No VOCs were detected in the Sample "Tank 3-1B". The field screening results (10 ppb) are included on Table 1 and the laboratory analytical results are included in Table 2. The laboratory report is included in Appendix C. Based on these results, VOCs, including styrene, do not appear to have leached into the soil underlying Tank 3.

2.7 In-Place Closure of UST

The USTs are located under the northwest corner of the main plant building, as shown on the site map provided as Figure 2. It would not be possible to remove the USTs without causing substantial destruction of the building. Therefore, CHES obtained permission from the NHDES to close the USTs in-place. The USTs were closed in place by filling them to capacity with an inert concrete slurry. On June 8, 1999, Cullen Concrete Pumping of Northfield, New Hampshire pumped inert slurry into the three USTs, filling them up to the manhole (Appendix B, Photograph 14). On June 18, 1999, CHES personnel filled the product lines and fill pipes with cement slurry and removed the fill heads. Polyethylene liner was placed in the manway openings over the USTs and clean fill was then placed in the space between the tops of the lined USTs and the floor.

3.0 Summary

Based on the field observations made by ESE personnel and the laboratory analytical results, no significant environmental impacts were identified associated with the three USTs closed in-place. The USTs have been filled with an inert concrete slurry. Furthermore, groundwater is not present in the vicinity of the USTs, the USTs are located beneath the building and are not subject to rainwater leaching through the soils, and the Polyclad building drinking water is received from a public water supply. ESE recommends that these USTs be granted clean-closure.

SOURCE: FRANKLIN, NEW HAMPSHIRE QUADRANGLE, USGS TOPOGRAPHIC MAP, 7.5 MINUTE SERIES, 1987.

1: 24000 0 1/2 1 SCALE IN MILES

410 Amherst Street Nashua, NH 03063 (603) 889-3737

POLYCLAD LAMINATES, INC. FRANKLIN, NEW HAMPSHIRE

FIGURE 1

SITE LOCUS MAP

DRAWING NAME: SITELOC.DWG FILE NUMBER: 719-7597

SCALE: AS SHOWN REVISION: 0 DRAWN BY: CBG DATE: 6-17-99

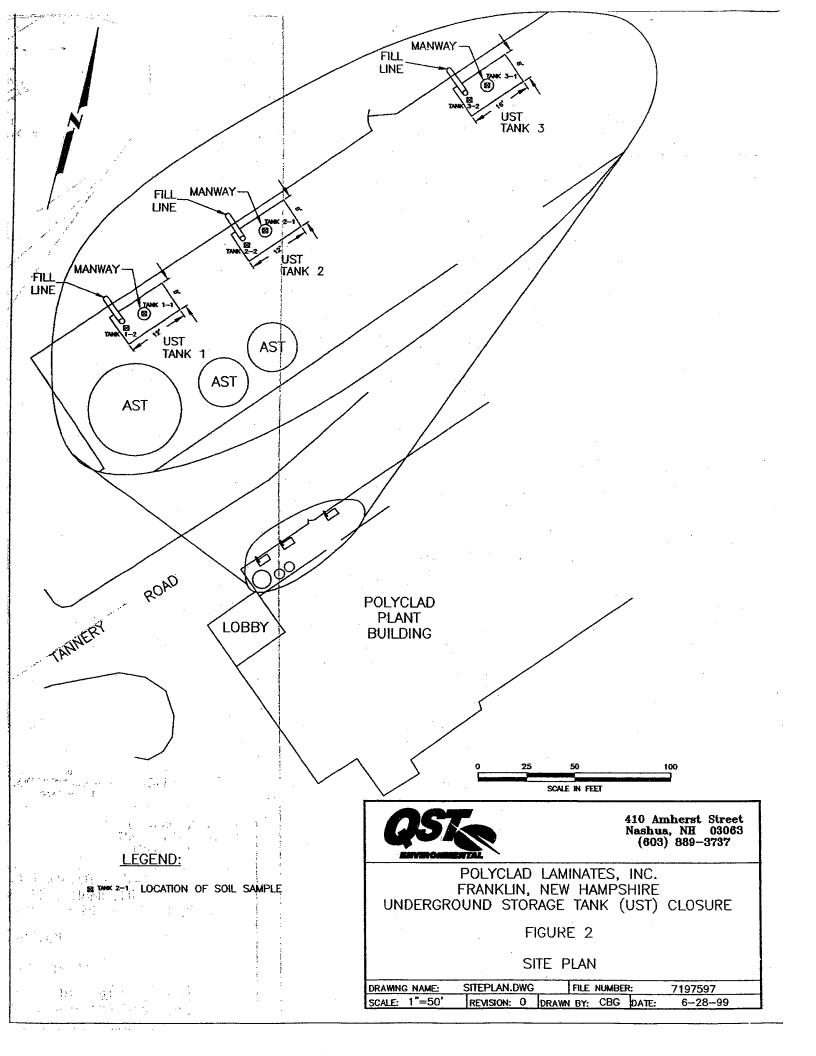


Table 1.

Results of Field Headspace Readings of Soil Samples Using Photoionization Detector
Polyclad Laminates, Inc., Franklin, NH
May to June 1999

Soil Sample ID	Date Sampled	Headspace Reading (ppm)
Tank 1-1	5/12/99	0
Tank 1-2	5/12/99	10
Tank 2-1	5/12/99	10
Tank 2-2	5/12/99	5
Tank 3-1	5/12/99	12
Tank 3-1B	6/7/99	10
Tank 3-2	5/12/99	13

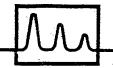
Table 2.

Results of Laboratory Analyses of Soil Samples for Volatile Organic Compounds
Polyclad Laminates, Inc., Franklin, NH
May to June 1999

	Sample ID Date Sampled NHDES Standard	Tank 1-1 5/12/99	Tank 1-2 5/12/99	Tank 2-1 5/12/99	Tank 2-2 5/12/99	Tank 3-1 5/12/99	Tank 3-1B 6/7/99	Tank 3-2 5/12/99	
2-Butanone(MEK)	2,000 -10000	300	<100	<100	<100	<500	<100	<100	
Ethylbenzene	140000	<10	<10	<10	10	280	<10	<10	
mp-Xylene	500000	<10	<10	<10	10	110	<10	<10	24
o-Xylene	500000	<10	<10	Page 10	<10	290	<10	<10	ABS.XLSlabvoc
Styrene	14000	370	180	430	550	37000	<10	90	
iso-Propylbenzene	123000	<10	<10	<10	<10	120	<10	<10	
n-Propylbenzene	-NA	<10	<10	<10	<10	140	<10	<10	
1,3,5-Trimethylbenzene	-NA	<10	<10	<10	<10	70	<10	<10	
1,2,4-Trimethylbenzene	NA	<10	<10	<10	<10	130	<10	<10	

Notes:

Concentrations in micrograms per kilogram (ug/kg), equivalent to parts per billion (ppb).


All samples analyzed for full suite of VOCs associated with EPA Method 8260B.

Compounds not listed above were not detected above method detection limit in any of the samples.

Xylene standard is for mixed isomers and represents the most stringent limit, for Category S-1.

NA - No standard available

Town Date of Closure 1/104, 10-11, 99	Maint) #2-4
New Hampshire Department of Environmental Services	(603) 271-3644 FAX (603) 271-2181
UST CLOSURE NOT	IFICATION
Telephone Message	Initial MANY
Manks bean Crosby - Clean Hurbers	Initial 1/3/99
Spie 20 Dunklee Road	Telephone: 224-6626
BOWNH 03304	Fex# 224-6448
2. Facility Registration Number: 0-110995	
Model Polyclad barringtes, Inc.	city Frankling
6097 931 45 Tanney St.	Telephone (603) 934 - 5642
3. Owner Name	·
OZNAMO 310 MIC 20 Cuy Franklin	Telephone: 603 - 934 - 5642
	sted: R=Removal: (E=Filled in Place - Invide 1619.)
Tank # J Tank # J	L R F L R F
Size F 500 Size G 000	Tank #
Produce Haz. Resin Product Haz. Solvery Product Haz Resin	
will tank be replaced Will tank be replaced Will tank be replaced will tank be replaced underground? Yes No underground? Yes No	Will tank be replaced Will tank be replaced underground? Yes No underground? Yes No
Consultant/Contractor, QSI Environmental	IFCI Certification: YES 1089618-26
5. Local Fire Dept. Notified	
And the second s	
I Inspector Deff Harshman OST Environmental S. Field Screening Methods (tank and piping): PID (PPm)	Date 5/12/91 6/7/99
5. Field Scienting Methods (tank and pipmg).	
O. Connella Tarina	
9. Sample Information	tank # 2-2 tank # 3
Soil OP Water Soil 10 PW	Soil 57 Promet Soil 12 Promet
Tokan By: Jeff Harshman Soil 13 ppm	Soil 10 ppm
10 Tank Condition:	tank# (cank#
fair fair	
11. Indicate tank and sample locations by sketching on back of this reliable photographs of the excavation and tank(s) condition if available cubic yards of stock piled contaminated soil: (so)	eport. floor and tank manuary)
12. include photographs of the excavation and tank(s) condition if av 13. Estimated cubic yards of stock piled contaminated soil: (sol	between //2 cubic varies
A DESTRUCTION OF THE PROPERTY	
14. Verification 13 ks + Ilea in place Thave inspected the site of the removed tank(s), including the entire excavation is	
techniques to determine regulated substance contamination in soils and groundw confamination at the site. I have also inspected the excavated tank(s) and found n	vater. There is no evidence of soil or groundwater

eastern analytical

professional laboratory service.

Lindi Higgins

QST Environmental

410 Amherst St.

Nashua, NH 03063

Subject: Laboratory Report

Eastern Analytical, Inc. ID:

16783 QST

Client Identification:

Polyclad 7197597

Date Received:

5/12/99

Dear Ms Higgins:

Enclosed please find the laboratory report for the above identified project. All analyses were subjected to rigorous quality control measures to assure data accuracy. Unless otherwise stated, all holding times, preservation techniques, container types, and sample conditions adhered to EPA Protocol.

The following standard abbreviations and conventions apply throughout all Eastern Analytical, Inc. reports:

< = "less than" followed by the detection limit

TNR = Testing Not Requested

ND = None Detected, no established detection limit

RL = Reporting Limits

If you have any questions regarding the results contained within, please feel free to directly contact me, the department supervisor, or the analytical chemist who performed the testing in question. Unless otherwise requested, we will dispose of the sample(s) 30 days from the sample receipt date.

We appreciate this opportunity to be of service and look forward to your continued patronage.

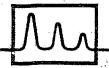
Sincerely,

Susan C. Uhler, Lab Director

5/24/99

Eastern Analytical, Inc. 25 Chenell Davie, Congo. J. Nil. 3364

The section of the se


783

LABORATORY REPORT

Eastern Analytical, Inc. ID#:

16783

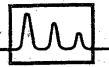
Polyclad 7 Glient: QST Environmental Client Designation: Polyclad 7197597 TANK3-2 TANK1-2 TANK2-1 TANK2-2 TANK3-1 300(2.2)Sample 10:1:TANK1-1 Sample Sample Sample Sample Sample Sample ampieAnalytical Type: h mylo soil soilMatrix: soil soil soil soil soil 1,43 3/12/99 Date Sampled: 5/12/99 5/12/99 5/12/99 5/12/99 5/12/99 5/12/99 54233 5/12/99 5/12/99 5/12/99 5/12/99 5/12/99 1/12/99 Date Received: 5/12/99 3712/09 µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg ug/kg Units: µg/kg ugiko 5/18/99 1/18/99 Date of Analysis: 5/17/99 5/17/99 5/18/99 5/18/99 5/19/99 511/34 JDS **JDS JDS JDS JDS JDS** IDS Analyst: IDS JUS 8260B 8260B 8260B 8260B 8260B 8260B 8260B Method3260B 82809 1 1 1 1 Dilution Factor: 1 1 < 500 < 100 < 100 < 100 < 100 Dichlorodiflygromethane 100 < 100 < 100 < 100 < 100 < 500 < 100 < 100 Chloromethane < 100 < 100 < 100 < 20 < 20 < 20 < 20 < 100 < 20 Vinyl chloride < 20 < 20 < 50 < 10 < 10 < 10 < 10 < 10 < 10 Bromomethane < 10< 100 < 500 < 100 < 100 < 100 Chloroethane < 100 < 100 < 100 < 500 < 100 < 100 < 100 < 100 Trichloroflygomethane 100 < 100 < 100 < 10 <.10 < 1.0 < 50 < 10 Diethyl etbern < 10 < 10 < 10 < 500 < 500 < 2000 < 500 < 500 < 500 Acetone 2000 < 500 < 500 < 50 < 10 < 10 < 10 < 10 1,1-Dichlorogthene < 10 < 10 < 10< 50 < 50 < 50 < 50 < 50 < 50 < 50 Methylene chloride < 50 < 50 < 10 < 10 Carbon disulfide < 10 < 10 < 10 < 10 < 10 < 100 < 100 < 200 < 100 < 100 < 100 < 100 Methyl-t-butyl ether (MTBE) < 10 ₹10 < 10 < 40 < 50 < 10 4 10 trans-1,2-Dichloroethene 10 < 10 < 50 < 10 < 101,1-Dichloroethane < 10 < 10 < 10 < 10 < 10 < 50 < 10 < 10 < 10 < 10 2,2-Dichloropropane c. 10 < 10 < 10 < 50 < 10 < 10 < 10 < 10 cis-1,2-Dichloroethene < 10 < 500 < 100 < 100 < 100 < 100 2-Butanone (MEK) 300 < 100 < 100 < 50 < 10 < 10 < 10 < 10 < 10 < 10 Bromochloromethane 🕝 👸 < 500 < 100 < 100 < 100 < 100 < 100 Tetrahydrofyran(THF) < 3140 < 100 < 10 < 10 < 10 < 10 < 50 < 10 c 10 Chloroform 50 - (1) < 10 < 10 < 10 < 50 < 10 < 10 1,1,1-Trichleroethane < 10 - 14 < 10 < 10 < 50 < 10 < 10 Carbon tetrachloride < 10 < 10 < 1() < 10 < 10 < 50 < 10 101,1-Dichloropropene < 10 < 10 - 10 < 10 < 10 < 10 < 50 < 10 < 10 30 Benzene < 50</p> · 10 < 10 < 10 < 10 < 50 < 10 < 10 1111,2-Dichloroethane . (4) < 10 < 10 < 50 < 10 Trichloroethene < 10 < 10 140 < 50 < 10 < 10 < 10 . 1,2-Dichloropropane < 10 < 10 < 50 < 10 < 10 < 10 < 10 < 10 , ... Dibromomethane 11. < 10 < 10 < 10 < 50 < 10 3 113 Bromodichloromethane < 10 < 500 < 100 1994-Methyl-2-pentanone(MIBK) < 100 < 100 < 100 < 100 < 10 < 50 < 10 incis-1,3-Dichleropropene < 10 < 10 < 10 < 50 < 10 Toluene < 10 < 10 < 10 < 10 < 50 < 10 trans-1,3-Dichloropropene < 10 < 10 < 10 < 10 < 10 < 50 < 10 < 10 < 10 < 10 1,1,2-Trichloroethane < 500 < 100 < 100 < 100 < 100 < 100 2.3.2-Hexanone)B < 50 < 10 < 10 Tetrachloroethene < 10 < 10 < 10 < 50 < 10 < 10 < 10 < 10 < 10 11,3-Dichloropropane < 50 < 10 < 10 < 10 < 10 < 10 Dibromochloromethane < 50 < 10 < 10 < 10 1,2-Dibromoethane < 10 < 10 < 10 < 50 < 10 < 10 < 10 < 10 Chlorobenzene

LABORATORY REPORT

Eastern Analytical, Inc. ID#:

16783

Client: QST Environmental


Client Designation: Polyclad 7197597

· · · · · · · · · · · · · · · · · · ·						
Sample ID:	TANK1-1	TANK1-2	TANK2-1	TANK2-2	TANK3-1	TANK3-2
Analytical Type:	Sample	Sample	Sample	Sample	Sample	Sample
Matrix:	soil	soil	soil	soil	soil	soil
Date Sampled:	5/12/99	5/12/99	5/12/99	5/12/99	5/12/99	5/12/99
Date Received:	5/12/99	5/12/99	5/12/99	5/12/99	5/12/99 5/12/99	5/12/99 5/12/99
Units:	μg/kg	μg/kg	μg/kg	•		
Date of Analysis:	5/17/99	5/17/99	=	µg/kg	µg/kg	µg/kg
·			5/18/99	5/18/99	5/19/99	5/18/99
Analyst:	JDS	JDS	JDS	JDS	JDS	JDS
Method:	8260B	8260B	8260B	8260B	8260B	8260B
Dilution Factor:	1	1	1	1	.1	1
1,1,1,2-Tetrachloroethane	. 40					
Ethylbenzene	< 10	< 10	< 10	< 10	< 50	< 10
mp-Xylene	< 10 < 10	< 10	< 10	10	280	< 10
o-Xylene	< 10	< 10	< 10	10	110	· < 10
Styrene	370	< 10 180	< 10	< 10	290	< 10
Bromoform	< 10	< 10	430 < 10	550	37000	90
iso-Propylbenzene	< 10	< 10	< 10	< 10	< 50	< 10
Bromobenzene	< 10	< 10	< 10	< 10 < 10	120 < 50	< 10
1,1,2,2-Tetrachloroethane	< 10	< 10	< 10	< 10	< 50 < 50	< 10
1,2,3-Trichloropropane	< 10	< 10	< 10	< 10	< 50	< 10 < 10
n-Propylbenzene	< 10	< 10	< 10	< 10	140	< 10
2-Chlorotoluene	< 10	< 10	< 10	< 10	< 50	< 10
4-Chlorotoluene	< 10	< 10	< 10	< 10	< 50	< 10
1,3,5-Trimethylbenzene	< 10	< 10	< 10	< 10	70	< 10
tert-Butylbenzene	< 10	< 10	< 10	< 10	< 50	< 10
1,2,4-Trimethylbenzene	< 10	< 10	< 10	< 10	130	< 10
sec-Butylbenzene	< 10	< 10	< 10	< 10	< 50	< 10
1,3-Dichlorobenzene	. < 10	< 10	< 10	< 10	< 50	< 10
p-isopropyltoluene	< 10	< 10	< 10 _.	< 10	< 50	< 10
1,4-Dichlorobenzene 1,2-Dichlorobenzene	< 10	< 10	< 10	< 10	< 50	< 10
n-Butylbenzene	< 10	< 10	< 10	< 10	< 50	< 10
1,2-Dibromo-3-chloropropane	< 10 < 10	< 10	< 10	< 10	< 50	< 10
1,2,4-Trichlorobenzene		< 10	< 10	< 10	< 50	< 10
Hexachlorobutadiene	< 10 < 10	< 10	< 10	< 10	< 50	< 10
Naphthalene	< 10	< 10 < 10	< 10.	< 10	< 50	< 10
1,2,3-Trichlorobenzene	< 10	< 10 < 10	< 10 < 10	< 10	< 50	< 10
	- 10	~ 10	.~ 10	< 10	< 50	< 10

JK based on re-soughing

${ m J}{ m J}$		ern analy		nc		J CIN	nell	DIM	7 00	JIICOI	a, 10:	n 03.	301/	FA)	(80:	3) 22	8-45	5 (<u>//</u>	1-400 E-Mai	1287 1fro	052 nt_off	sno ne co@e	ids pre allabs	com.	vai)		7					erronolij.
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Estate Office	03063					C	}	A	11/	\		F	-C	U	JS		Ö	D		R				R			yes Yes	o Di	No	•
Page_	of	I TO THE PART					,			a takawai u	Arthurson II ar					ES							0.83	amfe air	olu v			-	بر بسنگندن بر		ar engales.	أأسين تضلق علموالحد
ITEM # for lab use only	SAMPLE I.D.	SAMPLING DATE /-TIME	MATRIX A-Air. S-Soll GW-Ground W. SW-Surface W. DW-Drinking W. WW-Waste W.	G-Grab, C-Comp	18 82608 C) 524.2 C) 82608 plus 10 TICS	D 62508-TCL (8240 list)	☐ 80278 ☐ 601/602	☐ 80218-Halos (8010 list) ☐ 601	☐ 80218-BTEX (8020 list) ☐ 602	C) MA VPH C) ME GRO	CINA EPH CIME DRO	TPH 8100 M ·	O 8270 CI 625 CI ABN: CI A O BN CI PAH	☐ 9061/8082 ☐ 608 ☐ PCBs ☐ Pesticides	Dissoived Metals (list below)	Total Metals (list below)	TCLP Metals (list below)	Sard Sarol Stro	DFD DSO DNOTONOS	Opt Osper Con. O Boo	OTAN OCERNANCOBLAN	O TKN O NHE DT. PROC.	CI COD CI TOC CI Priemole	O Olt & Greace ID TPH.	CON ID Formatolatyde	OT. Goli O E. Coli O E Coli	5	Too	ived Seed	7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5	# Of Containers	OO NOTES 1° %
7	TANKI-1		S	G	~				•	l			ĺ.,					Hei	que	180	·¥			Onto		7.32		Messa	१५ ७ ४	Çÿ.	, 	
٦,	TANKI-2	5.12.99	S	G	V	123	iriga	ű.	4 6:1.2	Me ;	Läo.	rites	Pil	N : 1	roje:	l ina	iage.									 					\overrightarrow{H}	
3	TANKA-1	5.12.99 1120	5	G	V																									\dashv	•	
М	TANKZ-2	5.12.99 1135	5	G	4						<u> </u>																				/	
5	TANK3-1	5.12.99 1200	5	G	1									<u> </u>													 			\dashv	$\frac{4}{7}$	
V	TANK3-2		S	6	~																				-	-		-		-+	',	
																												-				<u></u>
																									_						-	
																										 						·····
																										 					-+	
PRES	ERVATIVE : H-HCI ; N-H	INOs; S-H2SO4; Na-NaOH											(_		<u> </u>		 	<u> </u>		\dashv		
PROJI	CT MANAGER : 4	indi Higgins			NOTE	:S : (i	.e. S j	pecial	Dete	ction	Limi	ts, Bi	lling l	nfo. if	differ	ent)		RE	SUL	TS N	EEDI	D B	Y		 _		<u></u>	<u> </u>				**********
COMP	ANY: QST EX	nironmental herst St, Suite											٠					/G	(ent	er pre	ferre	date):	e-appro				,	<i>FOF</i> dher	LAB	USE EPA I	ONLY Protocol
ADDR	ESS: 410 Am	herst St. Suite	, 100																							Option		ַ נ] Yes		O (see	attached)
CITY :	Nashua	state <u>~H</u> zip	03063	1) A	□в		C	. .	🗵 Ha	ard C	opy	าธ : ◯) Fa	, là	Yes	۵	No	
PHON	E:(603) 8	89-3737 EXT	·									•						0	ote#				, IE	lectro	onic :	;	Die					
FAX:).#				•					SK .				
E-MAI	L;								,		:							Sa	mple	/(\$) :_	J	eff	24 K	·He	413	hma	17					•
	ect name : <i>Pol</i>	,																<u> </u>		U	U/A	<u> /d</u>	ac	u	m		- 5	5.17	2.9	9	12	300
	ECT # <u>71975</u>										;							l rig	unqu	181100	roy			Dat	le	Tim	1e	17	elved	<i>y</i> by		\
	•	ME TYT OTHER									1							Re	linqu	ished	by		 -	Dat	le	Tirr	ne	Rev	eivec		114	199130
U Si	te historically contr	aminated									1							Re	linau	ichod	by			Dat							4 <u>.</u>	14

| Modulio Meducul St

eastern analytical

professional laboratory services

Lindi Higgins
QST Environmental
410 Amherst St.
Nashua, NH 03063

Subject: Laboratory Report

Eastern Analytical, Inc. ID:

17128 QST

Client Identification:

Polyclad-UST Closure 7197597.0200

Date Received:

6/7/99

Dear Ms Higgins:

Enclosed please find the laboratory report for the above identified project. All analyses were subjected to rigorous quality control measures to assure data accuracy. Unless otherwise stated, all holding times, preservation techniques, container types, and sample conditions adhered to EPA Protocol.

The following standard abbreviations and conventions apply throughout all Eastern Analytical, Inc. reports:

< = "less than" followed by the detection limit TNR = Testing Not Requested ND = None Detected, no established detection limit RL = Reporting Limits

If you have any questions regarding the results contained within, please feel free to directly contact me, the department supervisor, or the analytical chemist who performed the testing in question. Unless otherwise requested, we will dispose of the sample(s) 30 days from the sample receipt date.

We appreciate this opportunity to be of service and look forward to your continued patronage.

Sincerely,

Lastern Analytical, Inc.

Susan C. Uhler, Lab Director

(14/99 Date

111

LABORATORY REPORT

Eastern Analytical, Inc. ID#:

17128

Polyclad-UiClieptos QST/Environmental

Client Designation: Polyclad-UST Closure 7197597.0200

Completion in the second secon	T1-0-4D
Sample ID:	Tank 3-1B
Analytical Type:	Sample
- •	the state of the s
Matrix:	soil
Date Sampled:	6/7/99
Date Received:	6/7/99
Units:	μg/kg
Date of Analysis:	6/8/99
Analyst:	JDS
Method:	8260B
	1.1
Dilution Factor:	The state of the s
	The state of the s
Dichlorodifluoromethane	< 100
Chloromethane	< 100
Vinyl chloride	< 20
Bromomethane	< 10
Chloroethane	< 100
Trichlorofluoromethane	< 100
Diethyl ether	< 10
Acetone	< 500 and the superior with the formal measurement and the superior and th
1,1-Dichloroethene	< 10
Methylene chloride	< 50
Carbon disulfide Methyl-t-butyl ether(MTBE)	< 50 < 100
trans-1,2-Dichloroethene	< 10.
1,1-Dichloroethane	
2,2-Dichloropropane	< 10 < 10
cis-1,2-Dichloroethene	<10
2-Butanone(MEK)	< 100
Bromochloromethane	< 10
Tetrahydrofuran(THF)	< 100
Chloroform	< 10
1,1,1-Trichloroethane	< 10
Carbon tetrachloride -	< 10
1,1-Dichloropropene	< 10
Benzene	<10
1,2-Dichloroethane	<10
Trichloroethene	< 10
1,2-Dichloropropane	< 10
Dibromomethane Bromodichloromethane	<10
4-Methyl-2-pentanone(MIBK)	< 10 < 100
cis-1,3-Dichloropropene	< 100 < 10
Toluene	< 10
trans-1,3-Dichloropropene	< 10
1,1,2-Trichloroethane	< 10
2-Hexanone	< 100
Tetrachloroethene	< 10
1,3-Dichloropropane	< 10
Dibromochloromethane	< 10
1,2-Dibromoethane	< 10
Chlorobenzene	< 10

\mathcal{M}

Hexachlorobutadiene

1,2,3-Trichlorobenzene

Naphthalene

LABORATORY REPORT

Eastern Analytical, Inc. ID#:

< 10 < 10

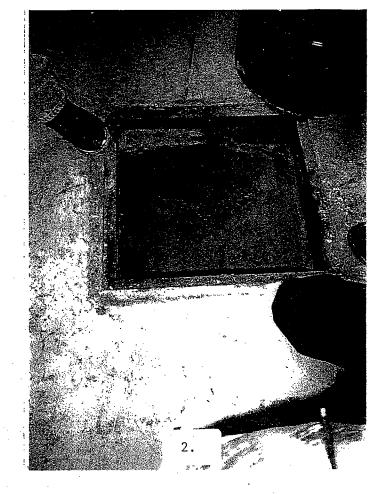
< 10

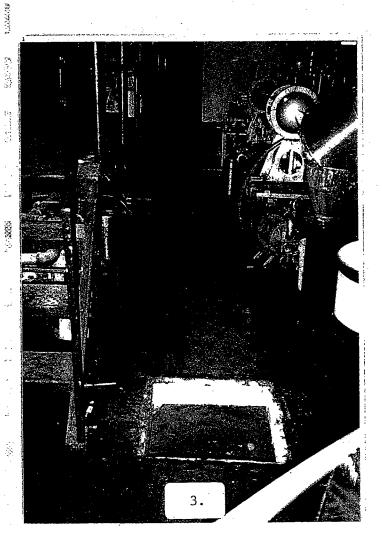
17128

Client Designation: Polyclad-UST Closure 7197597.0200

Client: QST Environs	mental
Sample ID:	Tank 3-1B
Analytical Type:	Sample
Matrix:	soil
Date Sampled:	0///99
Date Received:	6/7/99
Date of Analysis:	6/8/99
Analyst:	JDS
Method:	8260B
Diffution i actor.	and the second second and the second
1,1,1,2-Tetrachloroethane	< 10
Ethylbenzene	
mp-Xylene	< 10 < 10
Styrene .	≤ 10
Bromoform	< 10
iso-Propylbenzene	10
Iso-Propylbenzene Bromobenzene 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	< 10
1,1,2,2-Tetrachloroethane	< 10
-,,-	
n-Propylbenzene	< 10 < 10
4-Chlorotoluene	≤ 10
1,3,5-Trimethylbenzene tert-Butylbenzene	· IV
tert-Butylbenzene	< 10
1,2;4-Trimethylbenzene sec-Butylbenzene	< 10
sec-butylbenzene 1,3-Dichlorobenzene	
p-isopropyltoluene	< 10
1,4-Dichlorobenzene	< 10
1,4-Dichlorobenzene	< 10
n-Butylbenzene	< 10
1,2-Dibromo-3-chloropropane	< 10
1,2,4-Trichlorobenzene	< 10

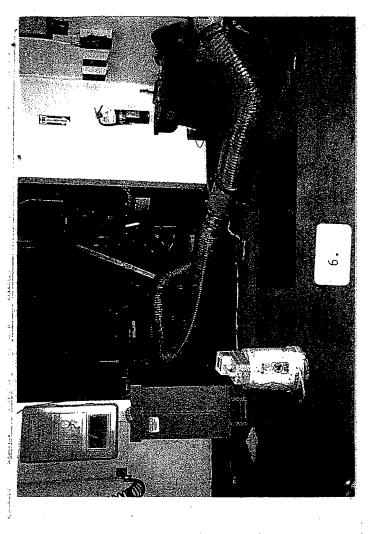
410 Amherst Street, Suite 1047128 Nashua, NH 03063-1282 Phone (603) 889-3737 Fax (603) 880-6111

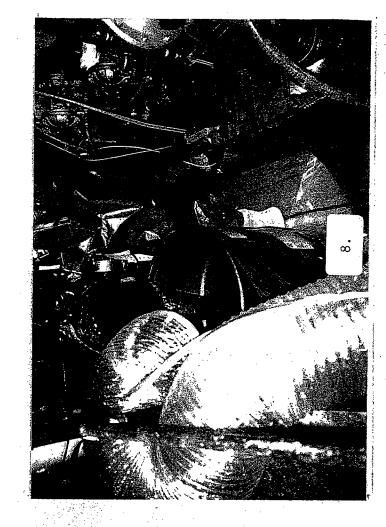

QST 410 Amherst Street, Suite 100 Nashua, NH 03063-1282 Phone (603) 889-3737 Fax (603) 880-6111

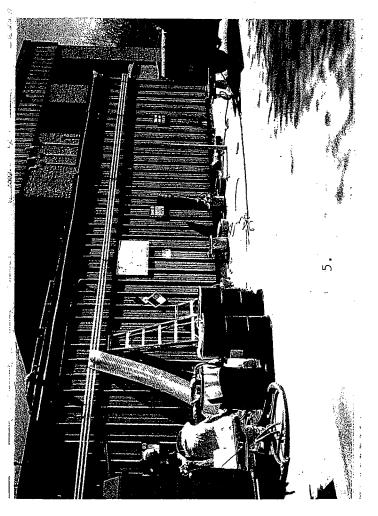

NO TO					-						Chai	n of	Cus	stc	ody I	Rec	ord	•	٠.					
,		Pr	ojec	Į Ni	ımb	er /	P	rojec	t Nan	ne						le c	3	T	Π	T^{-}	T	T	T^{-}	Π
4		7	197	59	7.0	120	0	Pe	<u> 3140</u>	lad	- US	T C	osu	re	•	- E			' <i>I</i>	1. 1		l_{-i}		1
1		Sa	mpi	ers	ļ -	тĺЦ	کے ما	ship	00 W							lysis.	90					/	. [
		1	<u> </u>	atory		į –		- 1		 						Analysis/Bottles	X	0						- [
a,	3	La	opra	awsy /	Ģ	4 6	ter	n/l	tra	lyti	cal					$\parallel \parallel$	۱/۲	Ž)						
		La	b Re	port	to,	Li	nd	$\frac{1}{i H}$	lina.	hc.	QS7					1/ 5) ;	اڌ						1.5
		Sai	nple	Nu	mbe	х /	<u> </u>	1		Date	Time	Depth	Filtere	d/ ved	Total Bottles	1 2	TC. 5 , 8260B	100 / NOC						Matrix
ر زوج ا	conscon	(President	A STATE WAR	K	ar kirinen	CHESTOS (SEE S	HZFO##*	(n. to sa naper to	-	+	1155		chil	_	1	×	×							5
V			47) <u> </u>	<u></u>	1.0	-trementin	warmed tripy range	100	1	11,00			+	<u> </u>		<u> </u>	+-				 	 	
-4	nd nymer	\vdash			-			CO NACOTOR	#					\dashv								-		$\vdash\vdash$
191					1					1				\dashv							<u> </u>			
-																								
1				C				AND CONTRACTOR		-							÷							
-	e							enter-Communication																
-	~~~			COMPANIES CON	i					-							7.							
-	v14700	-27-A-174			1	-		ma referensia						\dagger										
-	enan-sed			o-00-1370.		-		- The same of the same of						+			1.00) 	و را مدد واسم	. No				
The second				r-andres -				energine.						4			age ri	SUMA!					<u> </u>	
חושבות שינות			wordenin		derdok une	Pari Pari	-							_			120118	ykirin German	eriore Service ent					
1	-127775					-		WATERCONST (A)																
danning	· 3 . • 3**q5	C. 3		Andrews			The same of	***************************************												-				
-	~	- 10.		Mariovier *		-		emended to																
-		20.44 (44.34	v 70000	THE STREET		arran for a c	-21-2000	No. Gely eller et l'	I WELL ENG					+										
-		VEL : POPUL	W21000		En [1111 013001 2		-	or patricular are	p					+										
-				ANIE I. SIĘ PIĘT		İ	4				•			\dashv										
-	~							e siderati				j												
ļ		Rei			. 1.	1 · ·-	·-·· §	. amore i	de mar record		<u> </u>		h 40) .	tof	_ 1	4-	7	ıρ	V0.0	, ,			
			*	$\chi_{\ell}(\zeta)$	3	ţ.					Repo	+1	Oel	^	ין טיי	<i>ح</i> 1	•	()		V O (- (-	
											÷													
		Lab	orato	ory T	urnar	ound	l Tin	ne: 💢	Nor	mal [24 h	r. 🗀	48 hr.		72 h	r.	Oti	ner						
		Rel	inqi	iishe	d B	y:	4 - 5 - 1811 a P		W.	ſ	Date 6.7	1.99	1	Rec	eived I	Зу:		Date (יורוי	<u>·</u>		SEAL	☐ BRO	
and a second	·	10	K	M	K-(Nav	reli	Ma	V	T	ime 12	39		///	Ell	4		Time	124	0			□ NA	
		Kel	i K qı	iishe	d B	y:	8 8 00		OKE .	∮	Date]I	Rec	eived I	% :	ļ	Date			؛ اــــــــــــــــــــــــــــــــــــ	SEAL	☐ BRO	
: :				F 14-16/2 52 4	****	1 No.	e e g			1	ime							Time					□ NA	
		Distr	ibutio	n: Wi	hite-F	ield F	ile; Y	ellow-I	abrato	ry; Pinl	c Accompa	nies Shipi	ment-Re	turn	to Contra	ctor					raş	ge	of .	

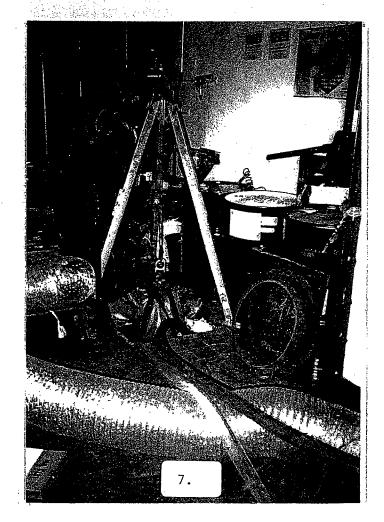
PHOTOGRAPHIC DOCUMENTATION

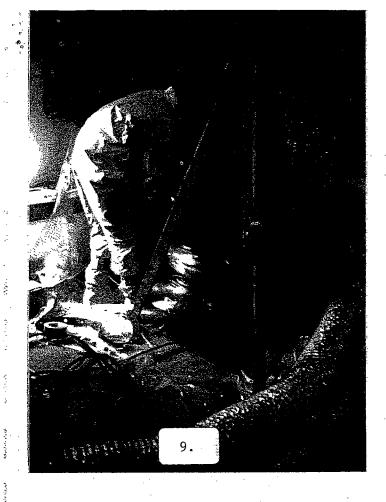
- 1. Fill material is removed from between the UST surface and the floor surface at Tank 3. Fill material is placed in a 55-gallon drum.
- 2. UST manhole is accessed though manway in floor.
- 3. UST manways are located in floor between ASTs and northwest building wall (see Figure 2).
- 4. Tank 1 is vented to the outdoors during UST closure activities.
- 5. UST fill pipes were located outside on the western end of the north building wall.
- 6. Tank 2 is vented during UST cleaning activities.
- 7. CHES representative dressed in Level B Personal Protective Equipment enters Tank 2 to clean tank.
- 8. Resin that can not be pumped from the tank is removed by hand and placed in 55-gallon drums.
- 9. Plastic liner is placed on the floor around the tank manhole during UST cleaning activities.
- 10. Resin removed from the tank is placed in 55-gallon drums.
- 11. CHES representative cleans the inside of the tank.
- 12. Resin that can not be pumped is removed by hand using a bucket.
- 13. An concrete inert slurry is pumped into the tanks after completing tank cleaning activities.

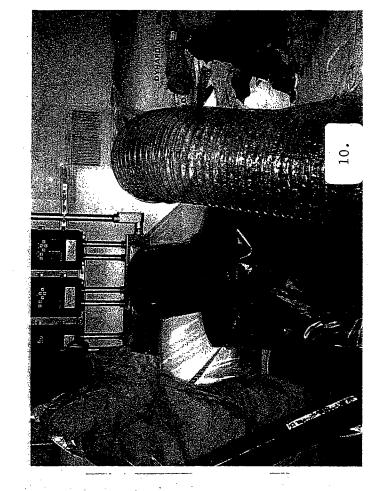


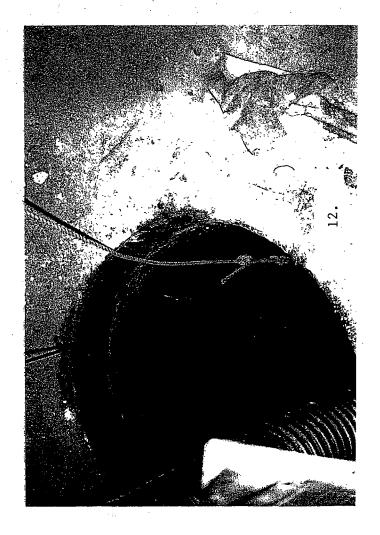


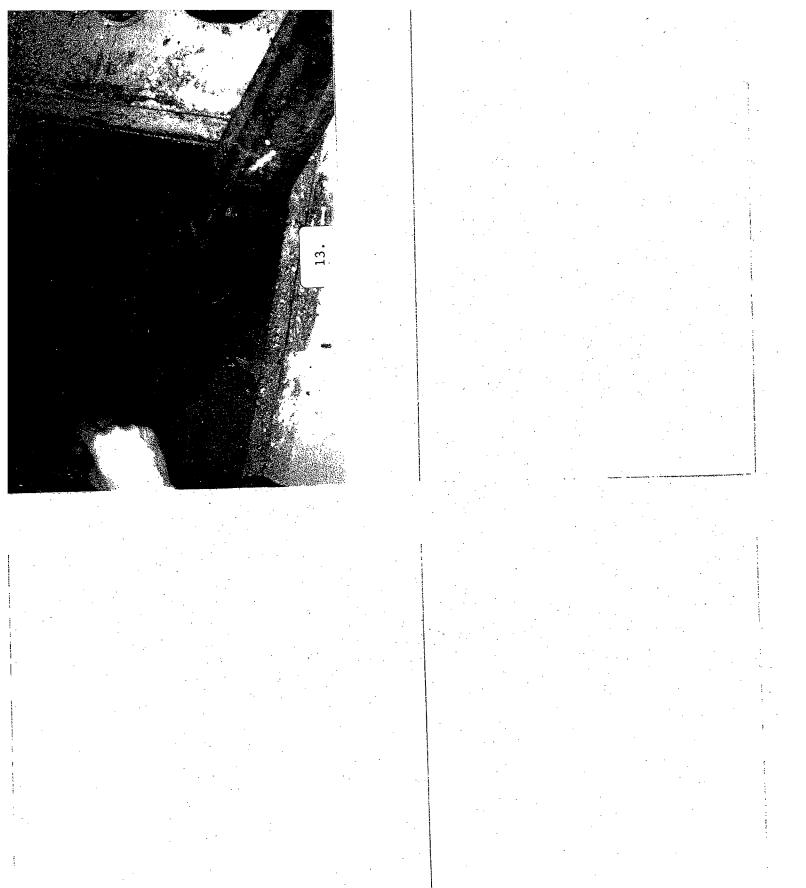





A E S S B L & D B S A A







TANK CLOSURE REPORT

		**	- i	<u> </u>
Telephone Message	1 11		Initial MMYC,	j .
Name Steve McCa	May - Alan Cox	<u>.</u> , , , , , , , , , , , , , , , , , , ,	Date: 10/30/	92
Street 290 West			Telephone: 508-	853-2900
city/Norcester	VIA 01606	_ /	Fax #	
2. Facility Registration	Number: 0-/	10998		
		(.	Street 45	Tannery St.
Name Poly Clad	Laminates	Inc.	city Franklin	Tannery St.
3. Owner Name			;	
Name _ Ame a	2(3)	City		
Street		State	Zip	Telephone
4. Tank Removal Inform	ation 100	*** Indicate suspect	ed leakers. ***	•
Tank #	lank#	Tank #	Tank #	Tank #
Size 4,000	Size 12,000 PEA	Size	Size	Size
Product Viesel	Product #2 Fio.	Product	Product	Product
will tank be replaced? Yes No	will tank be replaced? Yes No	will tank be replaced?	will tank be replaced? Yes No	will tank be replaced? Yes No
5. Consultant Alan	Corp.			143 110
6. Local Fire Dept. Notifi	ed			
7. Inspector MM72	,		Date 1//10/07	
):	Date	·····
8. Field Screening Metho	ods (tank and piping): ,ust#1, ,	I = I	
8. Field Screening Metho	ods (tank and piping	sill and 4 pp	I = I	
8. Field Screening Method	ods (tank and piping) In/C bo Hone Screening	Prill and 4 pp opposite fill er	n ul oppnu	
8. Field Screening Method $ \frac{1}{100} \text{ M} = \frac{1}{100} $ 9. Sample Information	ods (tank and piping) In Cootton Screening	opposite fill er	n ul oppnu	
8. Field Screening Method HNU = +0 (ust #1) Field 9. Sample Information	ods (tank and piping) In/C bo Hone Screening	opposite fill en ust #1 4 pp opposite fill en unknown-di	m oppnod not observe	ノ C tank #
8. Field Screening Method HAM = + (ust #1) Field 9. Sample Information tank # soil Water	tank # 7.	pust#1 4 pp opposite fill en 1 n known - di tank#	m al oppno d Not ous evi tank #	<i>√</i>
8. Field Screening Method ## A U = +0 (ust #1) Field 9. Sample Information tank # Soil Water Taken By: Steve A	tank # 7.	opposite fill en ust #1 4 pp opposite fill en unknown-di	m al oppno d Not ous evi tank #	ノ C tank #
9. Sample Information tank # Soil Water Taken By: Steve A 10. Tank Condition:	tank # 7.	pust#1 4 pp opposite fill en 1 n known - di tank#	m al oppno d Not ous evi tank #	ノ C tank #
9. Sample Information tank # soil Water Taken By:	tank # 2 tank # 2 tank # 2 tank # 2	tank#	m al oppno d Not ous evi tank #	ノ C tank #
9. Sample Information tank # soil Water Taken By: Fire I	tank # 2 Scool tank # 2 Scool tank # 2 Scool tank # 2 Scool tank # 2 Scool tank # 2 Scool	pust#1 4 pp opposite fill ev 11 Known-di tank# Soil Water The Clarentace tank#	m ul oppnu d Not oosen tank # Soil Water tank #	tank # Soil Water
9. Sample Information tank # soil Water Taken By:	tank # 2 Scool tank # 2 Scool tank # 2 Scool tank # 2 Scool tank # 2 Scool tank # 2 Scool	pust#1 4 pp opposite fill ev 11 Known-di tank# Soil Water The Clarentace tank#	m ul oppnu d Not oosen tank # Soil Water tank #	tank # Soil Water
9. Sample Information tank # soil Water Taken By: Fire I	tank # 2 Soil Water tank # 2 Soil Water tank # 2 Soil Water tank # 2 Sool The Scool tank # 2 Sool The Scool tank # 2 Sool The Scool tank # 2 Sool The State apple locations by sket	tank # tank # tank # tank # tank # tank # tank #	tank # tank # tank # tank #	tank # Soil Water
9. Sample Information tank # soil Water Taken By: Fire Interest	tank # 2 Soil Water tank # 2 Soil Water tank # 2 Soil Water tank # 2 Sool The Scool tank # 2 Sool The Scool tank # 2 Sool The Scool tank # 2 Sool The State apple locations by sket	tank # tank # tank # tank # tank # tank # tank #	tank # tank # tank # tank #	tank # Soil Water
9. Sample Information tank # soil Water Taken By:	tank # 2 Soil Water tank # 2 Soil Water tank # 2 Soil Water tank # 2 Sool The Scool tank # 2 Sool The Scool tank # 2 Sool The Scool tank # 2 Sool The State apple locations by sket	tank # tank # tank # tank # tank # tank # tank #	tank # tank # tank # tank #	tank # Soil Water
9. Sample Information tank # soil Water Taken By: 10. Tank Condition: tank # 9 0 0 11 Indicate tank and sam 12. Include photographs	tank # 2 Soil Water tank # 2 Soil Water tank # 2 Soil Water tank # 2 Soil Water tank # 2 Soil Water tank # 2 Soil Water tank # 2 Soil Water to Carthy - Sco	tank # tank # tank # tank # tank # tank # tank # tank # tank #	tank # soil Water tank # sis report. if avaliable.	tank # Soil Water
9. Sample Information tank # soil Water Taken By: 10. Tank Condition: tank # 9 0 0 11 Indicate tank and sam 12. Include photographs 13. Verification I have inspected the site of observation techniques to	tank # 2 Soil Water tank # 2 Soil Water tank # 2 Soil Water tank # 2 Soil Water tank # 2 Soil Water for the excavation are of the removed tank(s), indetermine regulated sub-	tank # tank # tank # tank # tank # tank # tank # tank # tank # tank # tank # tank # tank # tank # tank #	tank # soil Water tank # tis report. if avaliable.	tank # Soil Water tank #
9. Sample Information tank # soil Water Taken By: 10. Tank Condition: tank # 9 0 0 11 Indicate tank and sam 12. Include photographs 13. Verification I have inspected the site of observation techniques to	tank # 2 Soil Water tank # 2 Soil Water tank # 2 Soil Water tank # 2 Soil Water tank # 2 Soil Water for the excavation are of the removed tank(s), indetermine regulated sub-	tank # tank # tank # tank # tank # tank # tank # tank # tank # tank # tank # tank # tank # tank # tank #	tank # soil Water tank # tis report. if avaliable.	tank # Soil Water tank #
9. Sample Information tank # soil Water Taken By: 10. Tank Condition: tank # 9 0 0 11 Indicate tank and sam 12. Include photographs 13. Verification I have inspected the site of observation techniques to	tank # 2 Soil Water tank # 2 Soil Water tank # 2 Soil Water tank # 2 Soil Water tank # 2 Soil Water for the excavation are of the removed tank(s), indetermine regulated sub-	tank # tank # tank # tank # tank # tank # tank # tank # tank # tank # tank # tank # tank # tank # tank #	tank # soil Water tank # tis report. if avaliable.	tank # Soil Water tank #
9. Sample Information tank # soil Water Taken By: Free A 10. I ank Condition: tank # good 11. Include photographs 13. Verification I have inspected the site of observation techniques to joil or groundwater contains	tank # 2 soil Water Mc Carther-Sco tank # 2 ple locations by ske s of the excavation ar of the removed tank(s), indetermine regulated submination at the site. I have	tank # tank # tank # tank # tank # tank # tank # tank # tank # tank # tank # tank # tank # tank # tank #	tank # soil Water tank # tis report. if avaliable.	tank # Soil Water tank # tank # ledgable in field r. There is no evidence of leakage.

. - - W. M. With and value and as a man mile locations by skew angles, here if the report Koutl 3 8 O(AK WA 🛼 (13 8 m talk b. Tube: ्राष्ट्रीय Althe Capi. 'S Whitephas (45) 242 (property DCK (Product A Removal information TOTAL TO THE THE THE THE Tampana per anna per

Francisco Carlo

THE PROPERTY OF THE PROPERTY O

PECHILI

NOV 2 1 1991

DEPARTMENT OF ENVIRONMENTAL SERVICES

GLOBAL TANK SERVICES, INC. 4 Turgeon Lane PO Box 678 Somersworth, NH 03878 1-800-262-0106*603-692-7917

November 20, 1991

ATTN: Steve McCarthy Alan Corp. of New England 290 West Boylston Street Worcester, MA 01606 01/0998 19 45 Tanney St

RE: Underground Tank Testing Results

Polyclad Laminates, Inc.

Franklin, NH

Dear Steve,

Global Tank Services, Inc. performed Petro-Tite Leak Detection tank tests on the underground storage tanks at Polyclad Laminates, Inc. in Franklin, NH. The tests were conducted by a certified technician in conformance with the National Fire Protection Association Pamphlet 329. The results of the tests performed on the tank system are as follows:

Date of Test	Tank Size	Product	Result	Leak Rate
11/1/91	12,000 gal	#2 oil	passed	043Gph
11/1/91	4,000 gal	diesel	passed	021Gph

A copy of this letter and reports have been sent to the NH Water Supply and Pollution Control Commission. If you have any questions or need assistance please do not hesitate to contact me. I have also included a second copy for you to forward to Polyclad Laminates.

Sincerely,

GLOBAL TANK SERVICES, INC.

Diane LaCourse Business Manager

APPENDIX H

Subject Property Photographs

Site Photographs

Index

Photo 1	Polyclad Laminate Building – Tax Map Lot 116 - 171
Photo 2	Paved Employee Parking Lot – Tax Map Lot 097 - 105
Photo 3	Unpaved Employee Parking Lot – Tax Map Lot 116 -175
Photo 4	Scrap material to be removed
Photo 5	Raw Material 55- gallon Drum Storage
Photo 6	Empty Drum Storage
Photo 7	Process Coater (Treater) Oven
Photo 8	Incinerator for Process Coater
Photo 9	Underground Storage Tank (3 compartment)
Photo 10	Chemical Loading Dock

Photo 1 Polyclad Laminate Building – Tax Map Lot 116 -171

Photo 2 Paved Employee Parking Lot – Tax Map Lot 097 -105

Photo 3 Unpaved Employee Parking Lot – Tax Map Lot 116 -175

Photo 4 Scrap material to be removed

Photo 5 Raw Material 55- gallon Drum Storage

Photo 6 Empty Drum Storage

Photo 7 Process Coater (Treater) Oven

Photo 8 Incinerator for Process Coater

Photo 9 Underground Storage Tank (3 compartment)

Photo 10 Chemical Loading Dock

APPENDIX I

Chemical Inventory List

	- I I I I I I I I I I I I I I I I I I I	Description	Manufacturer	Distributor	Franklin		
Category	Product Name	Description			A		<u> </u>
		Fumed Silica	Cabot Corp.	Chemtech Specialties			_
	Cab-O-Sil M5	Precipitated Silica	PPG Industry	Chemtech Specialties	A		-
1	Hi-Sil T-152	Precipitateu Silada	US Silica		A		
	Min-U-Sil 5		GE Silicones		A .		
Additive	Coat-O-Sil 2400		Luzenac	D.N. Lukens Inc.	A	<u></u>	۱-
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Mistron CB	Talc	Clariant		A		├ —
	OP930		Tatsumori Ltd.	Tatsumori USA	A		į
	Fuselex E-2		Tatsunter Ltd.				888
			2 Comparation	Degussa	A	A	
	2-Mi	2-Methyl Imidazole	Degussa Corporation	Miller Stephenson	A	Α	<u> </u>
	BDMA	Benzyldimethylamine	Zeeland Chemical	Degussa	A	A	
	DICY	Dicyandiamide	Degussa AG	DB Becker	A		T.
	Ethacure 100		Albemarle Corp.	Chemtech Specialties	A		T
	Imicure EMI-24		Air Products & Chemicals	Harwick Standard	A	 	
Curing Agent	Imicure EMI-24		Fеrro Согр.		A	 	1-
	Therm-Chek 705		Fello Colp.	Meisei and Company		 	┪┈
		DDS	Huntsman	4	, a	1	!
	Aradur 976-1	(Diaminodiphenyl sulfone)	Hujushan		(2000) (1000) (1000) (1000) (1000) (1000)		888
	7432	(Diaminoupriery) socions)				******	SS 2000
		8PA _	Resolution	N. E.Resins and Pigments	A		. 1 88
Flame Retardant	Bisphenol A-157	BPA				<u> </u>	38
Temporate and the second		The section	Atotech USA	1	A	A	3 230
Inhibitor	BF3	Boron Triflouride complex	, , , , , , , , , , , , , , , , , , , ,				***
Intilibres				1	A		
	7511 DOC 1141	Benzoyl Peroxide	Catalysi Systems	Meisei and Company	A		╌
Peroxide	75% BPO, wet		Beggeog	1	A		
Peloxide	DY8P	2,5-Dimethyl 2,5-dihexyne-3	Degussa				88
			D Charried		N	N	
			Dow Chemical	Univar	N	N	
			Sunoco		A	A	L
	Acetone	1	Ineos-Phenol	Harcros	A	A	
	Acetonic	1	Sasol	Ashland	-		\top
	1	1	Ineos-Phenol	Univar	N N	N	
			DuPont	Otilivai	- A		\neg
	I DMF	Dimethylformamide	BASE	Harcros	A		7
Solvent	DMF	January, 199	Taminco		A	A	\neg
SOLOU			Shell Chemical	Uniwar	A	A	1
	MEK	Methyl Ethyl Ketone	Allchem Industries	 	A	A	
		 	Dow Chemical	Univar	- ^	A	-1
	PM	Propylene glycol methyl ether	Lyondell		A	A	-+
		<u> </u>	Dow Chemical	Univar		- A	╌┼
	PnB	Propylene glycol n-butyl ether	Sunoco	Univar	A		2000
	Toluene						186 588

1 = Manufacturer is distributo	H
Author:	

S. Benedict	

Global Resin Approved Vendor List

			USA				EUROP	 =	ASIA			
				USA	Elk	 -			Deliga	l Huizhou	Taiwan	Kuching
Category	Resin Type	Supplier	Franklin	Millbury	Grove	<u> </u>	A	Germany	Dallan	A	A	
ategory						A						
	DER 538-A80	Dow	<u> </u>		Ē	<u> </u>	A	A	A	A	A	
<u> </u>	DER 539-A80	Dow	A	A	A		A	<u> </u>	<u> </u>	 	A	<u> </u>
Γ_	DER 593-A75	Dow	A		A	<u> </u>	<u> </u>		 	A	} - :`-	
	DER 540 (Insitu)	Dow	 	Ì		Τ	<u> </u>	A	 	 	 	
<u> </u>	XZ 92439.02			 		T		<u> </u>	↓		 	
	XQ 82932.01	Dow	┿┈┈	† -		T	T	! 	 	L A E	 	
—	XO 82932.00	Dow		+		 	T	<u>!</u>	<u> </u>			
	DER 383	Dow	+	 		 	i	<u> </u>		!A	A	
ļ	XZ 82932	Dow	A	+ A	A	1	T	<u> </u>	A_	A	 ^	+
General -	Epon 1124-A80	Hexion	^-	 -		A	A	A		<u> </u>		
Ероху	Epikote 1143	Hexion		_			A	Γ		<u> </u>	<u> </u>	 -
Resins	Epikote 1144-A80	Hexion	A		N]	_		.+	
	RSM 2421-A80	Hexion				 	- ! -		<u>A</u>	A		
-	XTW 8051 A80	Huntsman						1	A	Α_	 -	
<u> </u>	XTW 28380	Huntsman	_	-}		A	i A	Ī				
⊢	LZ 8001	Huntsman	_ -			+		T_A_				+
<u> </u>	LZ 8081	Huntsman				 			A_	A_	A_	
<u></u> ⊢	LZ8008-A80	Huntsman		_ 		A		i				 -
}-	LT 8049	Huntsman						Τ	A	A	_Ļ	
<u></u> ⊢	LTW 28300	Huntsman				+	A		<u> </u>	<u> </u>		 -
<u> -</u> -	Peran 6600E-A73	PA Resins		_ _	Ā	A	I A	\ A	A	E	_!A	
	Epon 1031-A70	Hexion	A	A				A	\top			
-	Epikote 55	Hexion				A	A	<u> </u>	A		A	
	4399-A70	Huntsman						- 	A	A	A	
i - le .	GZ 488-N40	Huntsman					- A					
Specialty	GZ 7488-N50	Huntsman				A				_[! 	¦
Ероху	MY 0500	Huntsman					- 	A			A	
Resins	Eposid VP 868	Duroplast-Chemie	A	Ļ				_ 			A	
ļ-	TNE190-A70	CCP				- A				T	<u> </u>	<u> </u>
ļ.	PKHH	Union Carbide		<u> </u>		A						

Global Resin Approved Vendor List

						EUROPE			ASIA				
		Complier	Franklin	USA Millibury	Elk	France	Sweden	Germany	Dalian	Huizhou	<u></u>	Kuching	
Category	Resin Type	Supplier			Grove				Α	Α	Α	<u> </u>	
	CS-350	Hexion	A	Α		 				E		ļ	
 -	VE 4931	Bakelite AG	↓	 		┼──	 		T	Ē	<u> </u>	 	
-	VE 8121	Bakelite AG		 		 			Ţ <u></u>	E	ļ <u> </u>	! -	
- -	EPS 580	Bakelite AG	 	┼──		┼──				E_	 	 	
	XU 19074	Dow				 			T	E	<u> </u>	¦	
reblended	LSA 2102	Asahi Kasei	 -	┼		┼──	<u></u>	<u> </u>	Τ	E		ļ	
Posici	RSM 3740	Hexion		<u> </u>	Δ	┼──	 	!	Ţ	A_	A	<u> </u>	
Solutions	RSM 3662	Hexion	À	N N	A	┼──	 	† "	A	<u> </u>	A		
Solutions	RSM 3614-A80	Hexion	A	<u> </u>		 -	+	Ī		E	-		
	XTW 28389-IN75 TW	Huntsman		 			+	 	T	A			
	LTW 28389	Huntsman	_	-		┿			A	A	A	<u> </u>	
	LTW 28052-A80	Huntsman					 -		T A	<u> </u>	A		
	XTW 8490-A80	Huntsman				A		+	Α	A	<u></u>	<u> </u>	
	BT 2110	Mitsubishi				+-~					<u> </u>	<u> </u>	
ВТ	Kerimid 701A-N70	Huntsman	A_					 -		<u> </u>	 -	- 	
-	Kerimid 701-1B	Huntsman	A							T		_!	
Polyimide -	Kerimid 701C	Huntsman	A	_ļ		┼		<u></u>			<u> </u>		
-	Kerimid 8292-NPM60	Huntsman	A			╼╇╼╼╍							
	Polystyrene Styron 685P	Dow	A				 						
Ì	APPE POLYMER LM	Asahi Kasei	A				_+						
	APPE POLYMER HM	Asahi Kasei	A				 -		_			<u> </u>	
LD-621/	S2122 Part K	Asahi Kasei	A			_}-		_ _		T			
LD621 LV	Triallyl Isocyanurate (TAIC)	Mitsubishi	A	 -								_∔	
ļ	Saytex 8010	Albemarle Corp.	A				 _					<u> </u>	
1	EXPO 0011-111	GE	A			┷┼┷╼			_				
	33490	Durez	A		A	`	_+	A		A			
	Durite SD357B 50	Borden					- 	<u> </u>	A	A	A		
Novolac	PHL 6635 IZ (B65)	Bakelite AG	A	A		` 	+	_		<u> </u>			
Resins	HARZ 6000IZ 04	Bakelite AG					 			. E			
	GP 775D70	Georgia Pacific			F	`- 			_				
	GF 775070 CS-361	Hexion	A								- ! - 		
ĺ	DER 542 T-30	Dow	A										
GETEK	XU EPN 1148 T-75	Huntsman	A					_ -	-† $-$. <u>.</u>	
	Noryll 640-111 (PPO 0.40 IV)	GE Polymerland	A	<u> </u>									

APPENDIX J

Environmental Permits

The State of New Hampshire

Department of Environmental Services

Michael P. Nolin Commissioner

September 24, 2004

Ryan J. Emerson Engineer; Health, Safety and Environment Polyclad Laminates, Inc. 40 Industrial Park Drive Franklin, New Hampshire 03235

Re: State Permit to Operate FP-S-0243

Two (2) Process Coaters & Dryers and One Boiler

45 Tannery St., Franklin, New Hampshire

Facility Identification #3301300031, Application #FY03-0194

Dear Mr. Emerson:

The New Hampshire Department of Environmental Services hereby issues the enclosed permit in accordance with the New Hampshire Code of Administrative Rules Env-A 100 et seq., New Hampshire Rules Governing the Control of Air Pollution. Air permits previously issued for the same devices are hereby canceled and may be disposed of at your discretion.

Enclosed please find a questionnaire distributed by our Public Information and Permitting Unit. We are constantly trying to improve our permit processing and your feedback is greatly appreciated. If you have any questions, please contact Barbara Dorfschmidt of the Air Resources Division, Stationary Source Management Bureau at (603) 271-6796 or via e-mail at bdorfschmidt@des.state.nh.us

Sincerely,

Robert R. Scott

Notest N Sul

Director

Air Resources Division

rrs/vlp

Enclosures: FP-S-0243, Engineering Summary By certified mail # 7099 3400 0003 6160 9003 cc: Ida McDonnell, USEPA, Region I

Tim Drew (PIP) w/o Enclosure
Jeff Harrington, Earth Tech

City of Franklin by certified mail # 7099 3400 0003 6160 8976

STATE OF NEW HAMPSHIRE Department of Environmental Services Air Resources Division

State Permit to Operate

Facility ID No: 3301300031
Permit No: FP-S-0243

Permit No: FP-S-0243
County: Merrimack

Date Issued: September 24, 2004

This certifies that:

Polyclad Laminates, Inc.

have been granted a State Permit to Operate for:

Two Process Coaters & Dryers and One Boiler 45 Tannery Street, Franklin, NH

which includes devices that emit air pollutants into the ambient air as set forth in permit application filed with the New Hampshire Department of Environmental Services, Air Resources Division (Division) on March 31, 2003 and July 14, 2003, in accordance with RSA 125-C of the New Hampshire Laws. Request for permit renewal is due to the Division at least 90 days prior to expiration of this permit and must be accompanied by the appropriate permit application forms. This permit is valid upon issuance and expires September 30, 2009.

This permit is valid provided that each device is operated in accordance with all the legally enforceable conditions specified within this permit.

- I. The Owner or Operator shall be subject to all applicable state and federal air pollution control regulations, including (but not limited to):
 - A. The New Hampshire Code of Administrative Rules Env-A 100 et seq., New Hampshire Rules Governing the Control of Air Pollution; and
 - B. The Code of Federal Regulations (CFR), 40 CFR Part 60, Subpart Dc, Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units.
- II. All equipment, facilities and systems installed and used to achieve compliance with the terms and conditions of this permit shall at all times be maintained in good working order and be operated as efficiently as possible to minimize air pollutant emissions.

SEE ATTACHED SHEETS FOR ADDITIONAL PERMIT CONDITIONS

The Owner or Operator of the devices covered by this permit shall submit an application for a permit amendment to the Division at least 90 days prior to the implementation of any proposed change (unless authorized by this permit) to the physical structure or operation of the devices covered by this permit which increases the amount of a specific air pollutant currently emitted by such devices or which results in the emission of any regulated air pollutant currently not emitted by such devices. The change shall not take place until a new permit application is submitted and acted upon by the Director pursuant to Env-600.

This permit (or a copy) should be appropriately displayed near the devices for which it is issued.

Director

Air Resources Division

Notest 1 Scott

FP-S-0243 Polyclad Laminates, Inc.

Two Process Coaters & Dryers and One Boiler

IV. Emission Limitations (continued)

D. Hourly and annual emissions from individual devices shall be limited as provided in Table 2:

		iile2; liojaCinperigia?			
Device -	<u>(0</u> 0)	PNO.	PMin	\$0;	.vocs
Deiler	dy Emission 0.98	Limitations (lb/hr) 0.09	0.01	0.06
Boiler Coater and Dryers #1 and #2, combined	N/A	N/A	N/A	N/A	6.73
The little of the second secon	mallEmission	Bimiletjons:	(ijōXy)		
Boiler	4.29	5.12	0.39	0.03	0.28
Coaters and Dryers #1 and #2, combined	N/A	N/A	N/A	N/A	29.59

- E. Facility-wide emissions of HAPs shall be limited to less than 10 tpy for any individual HAP and 25 tpy for all HAPs combined.
- F. Env-A 1400: Facility-wide emissions of any RTAP shall not cause an exceedance of its associated 24-hour or annual Ambient Air Limit (AAL) as set forth in Env-A 1450, *Table Containing the List Naming All Regulated Toxic Air Pollutants*. At the time of permit issuance, the RTAPs in Attachment A were reviewed and determined to be in compliance.

V. VOC Reasonable Available Control Technology (RACT) Requirements

Env-A 1204.10, Applicability Criteria and Compliance Standards for Coating of Paper, Fabric, Film and Foil Substrates: The Owner or Operator shall comply with the control requirements described below: The coaters and dryers shall be equipped with add-on control equipment in accordance with Condition VI and comply with a solids-based emission rate limit calculated using the procedure of Env-A 1204.04(d), Determination of Emissions, and the following equation:

$$S = \frac{E_c}{1 - \left(\frac{E_c}{d_A}\right)}$$

where:

S = The VOC emission rate limit in terms of lb/gal of coating solids;

 d_A = The actual mass density of VOC in the applied surface coating formulation in terms of lb/gal; and E_c = The emission rate limit prescribed for the applicable coating category as calculated on a coatings basis, in terms of lb VOC/gal of coating, as applied to the substrate. For those processes applying a coating to any woven or non-woven, fibrous or non-fibrous substrate, E_c shall be equal to 2.9 lb VOC/gal of coating, as applied to the substrate.

The emission limitations for the Boiler are set based on United States Environmental Protection Agency (USEPA) AP-42 (5th Edition 1/95, updated 7/98), Section 1.4, *Natural Gas Combustion*. Compliance with emission limitations found in this section is to be verified using fuel utilization records and the appropriate emission factors.

The Facility has the potential to emit VOCs and a Hazardous Air Pollutant (HAP, as defined in Section 112 of the 1990 Clean Air Act Amendments), dimethyl formamide, at levels greater than the major source thresholds for these pollutants of 50 and 10 tpy, repectively. The annual emission limits in Conditions IV.D and E are less than these thresholds and establish the Facility as a synthetic minor source of air pollution for VOCs and HAPs. The Facility does not have the potential to emit the criteria pollutants, CO, NOx, PM₁₀, and SO₂ at levels greater than the major source thresholds for these pollutants. Therefore, the Facility is a true minor source for CO, NOx, PM₁₀, and SO₂.

FP-S-0243

Polyclad Laminates, Inc.

Two Process Coaters & Dryers and One Boiler

IX. Recordkeeping Requirements (continued)

- D. Env-A 903.03, General Recordkeeping Requirements for Combustion Devices: The Owner or Operator shall maintain the following records, on a monthly basis, of fuel characteristics and utilization for the fuel used in the Boiler:
 - 1. Type (e.g., natural gas) and amount of fuel burned; and
 - 2. Sulfur content of any gaseous fuel burned in terms of grains sulfur per scf fuel, or percent sulfur by weight, calculated as hydrogen sulfide at standard temperature and pressure.
- E. Env-A 904, *VOC Emission Statements Recordkeeping Requirements:* The Owner or Operator shall record the following information:
 - 1. Identification of each VOC-emitting process or device;
 - 2. The operating schedule during the *high ozone season* (June 1 through August 31) for each VOC-emitting processes or devices identified in Condition IX.D.1, above, including:
 - a. Hours of operation per calendar month; and
 - b. Days of operation per calendar month.
 - 3. The following VOC emission data from all VOC-emitting processes or devices identified in Condition IX.D.1, above, including:
 - a. Actual VOC emissions for:
 - i. The calendar year, in tons; and
 - ii. A typical high ozone season day during the calendar year, in pounds per day; and
 - b. The emission factors and the origin of the emission factors used to calculate the VOC emissions.
 - 4. Env-A 904.03, VOC Recordkeeping for Surface Coating and Printing Operations: The Owner or Operator shall maintain the following records on each coating operation identified in Condition IX.D.1:
 - a. Coating and ink formulation and analytical data, as follows:
 - i. Supplier;
 - ii. Name, color and type;
 - iii. Identification number;
 - iv. Density described as lb/gal;
 - v. Total volatile content described as weight percent;
 - vi. Water content described as weight percent;
 - vii. Exempt solvent content described as weight percent;
 - viii. VOC content described as volume percent;
 - ix. Solids content described as volume percent;
 - x. Diluent name and identification number;
 - xi. Diluent solvent density described in lb/gal;
 - xii. Diluent VOC content described as weight percent;
 - xiii. Diluent exempt solvent content described as weight percent;
 - xiv. Volume of diluent VOC described as gal; and
 - xv. Diluent solvent ratio described as gal diluent solvent per gal of coating.
 - b. The number of gallons of each coating and ink, including solvents and diluents, utilized during a typical ozone season day; and

FP-S-0243 Polyclad Laminates, Inc.

Two Process Coaters & Dryers and One Boiler

X. Reporting Requirements

- A. Env-A 907.01, General Reporting Requirements:
 - 1. The Owner or Operator shall submit an annual emissions report to the Division on or before April 15th of the following year. For example, the annual emissions report for calendar year 2004 shall be submitted on or before April 15, 2005.
 - 2. The annual emissions report shall include the following information:
 - a. Actual calendar year emissions for the coaters and dryers of VOCs (speciated by individual VOC), HAPs (speciated by individual HAP) and RTAPs (speciated by individual RTAP);
 - b. Actual calendar year emissions for the Boiler of NO_x, CO, PM₁₀, SO₂, TSP, and VOCs;
 - c. The methods used in calculating such emissions in accordance with Env-A 704.02, Determination of Actual Emissions for use in Calculating Emission-Based Fees; and
 - d. All information in accordance with Condition IX.C and IX.D.
- B. Env-A 908, *VOC Emission Statements Reporting Requirements*: The Owner or Operator shall submit to the Division in accordance with the schedule set forth in Condition X.A.1, the following information:
 - 1. Facility information, including:
 - a. Source name;
 - b. Standard Industrial Classification (SIC) code;
 - c. Physical address; and
 - d. Mailing address.
 - 2. The information required in Condition IX.E; and
 - 3. Break down the VOC emissions reported pursuant to Condition X.A.2.a by month.
- C. 40 CFR Part 60, Subpart Dc: The Owner or Operator shall submit, to the Division and to USEPA Region 1, the Subpart Dc reports described below. The address for USEPA Region 1 is:

Chief, Air Technical Unit U.S. Environmental Protection Agency – Region 1

> One Congress Street Suite 1100 Mail Code SEA Boston, MA 02203-2211

<u>Fuel Certification Reports</u>: The Owner or Operator shall submit an annual fuel certification report, postmarked no later than 30 days after the end of the reporting period, that includes the following information:

- 1. The calendar dates covered in the reporting period;
- 2. The types of fuels combusted during the reporting period; and
- 3. A certified statement signed by the Owner or Operator of the Facility that the data submitted represents all of the fuel combusted during the reporting period.

FP-S-0243 Polyclad Laminates, Inc. Two Process Coaters & Dryers and One Boiler

ATTACHMENT A List of RTAPs and Emission Rates Evaluated

RTAP	CAS'#	经验证的保证的保证的证明的	Compliance Determination Method
Acetone	67-64-1	70.7	Modeling
Dimethyl Formamide	68-12-2	27.0	Modeling
Propylene Glycol Monomethyl Ether	107-98-2	63.0	Modeling

Notes:

- 1. This list does not set limits on the type or amount of RTAPs emitted. This list serves to identify the RTAPs and associated facility-wide emission rates that were evaluated by DES at the time the permit was issued, and that were determined to be in compliance with Env-A 1400.
- 2. Emission rates shown represent controlled emissions for RTAPs where controls are required pursuant to Condition III.C.
- 3. Annual emissions were evaluated based on continuous operation of the Facility (8760 hrs/yr).
- 4. Actual emissions of these RTAPs, and any RTAPs subsequently emitted that are not on this list, shall be included in the annual emissions report required in Condition X.A.
- 5. CAS = Chemical Abstracts Service.

U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA) NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) STORM WATER NOTICE OF INTENT CENTER

NHR05A515

Dear Operator:

02/14/2001

The EPA has processed your Notice of Intent (NOI) application for the facility noted below. This facility is authorized to discharge storm water associated with multi-sector activity under the terms and conditions imposed by the EPA's NPDES Storm Water Multi-Sector Permit. The facility permit number is listed above and the active date of permit coverage is 1/25/2001.

EPA's multi-sector permit requires certain pollution prevention and control measures, possible monitoring and reporting, and annual inspections. Among the conditions and requirements of this permit, you must prepare and implement a pollution prevention plan (PPP) that is tailored to your industrial site. You may also be required to submit monitoring data for your facility's storm water discharges. As a facility authorized to discharge under this storm water multi-sector permit, all terms and conditions must be complied with to maintain coverage and avoid possible penalties.

FACILITY:
POLYCLAD LAMINATES INC
45 TANNERY ST
FRANKLIN, NH
03235-1170

OPERATOR:

POLYCLAD LAMINATES INC 40 INDUSTRIAL PARK DR FRANKLIN, NH 03235-2507

To obtain a copy of the EPA's storm water multi-sector permit terms and conditions to which you are now held accountable, please call the EPA Office of Water Resource Center at (202) 260-7786. If you have general questions concerning the storm water program, please call the EPA Region 01 contact: Thelma Muphy, (617) 918-1615.

State of New Hampshire Department of Environmental Services

Waste Management Division

GGGGGGGGGGGGGGGGGGGGGGGGGGGG

UNDERGROUND STORAGE FACILITY

PERMIT TO OPERATE

Facility Identification Number

0110998

This certifies that

POLYCLAD LAMINATES INC

(This permit is assued to the above owner and is not transferable.)

in accordance with New Hampshire Revised Stannes Annotated Chapter 146 C and N.H. Code of Administrative Rules ENV WM 130107, is issued this permit to operate the underground storage facility located at

POLYCLAD LAMINATES INC, FRANKLIN

May 1, 2002 Date Issued

Apr 30, 2007 Expires _

Site No.: 199902062

Supervisor, Oil Compliance & Initial Response Section

THIS PERMIT TO OPERATE DOES NOT SUPERCEDE ANY LOCAL ORDINANCE OR REGULATION. STATE STANDARDS ARE MINIMAL REQUIREMENTS AND MUST BE MET STATEWIDE.

This permit is issued pursuant to RSA Chapter 146-C and N.H. Code of Administrative Rules Env-Wm 1401 for an underground storage facility. The facility is subject to all material and procedural requirements of N.H. Code of Administrative Rules Env-Wm 1401 (see below for specifics). This permit is issued based on information supplied by the owner and no liability shall be incurred by the N.H.D.E.S. or the State of New Hampshire.

This permit may be revoked for failure to comply with the requirements of N.H. Code of Administrative Rules Env-Wm 1401 and the owner may be subject to the penalties specified by RSA Chapter 146-C.

This permit shall be posted in a highly visible location, under cover, and protected from the weather and direct sunlight.

The owner, when selling this facility, shall notify the buyer of the facility's status of compliance with the requirements of N.H. Code of Administrative Rules Env-Wm 1401.08.

The new owner of this facility shall file an amended registration with the Department within 10 days fo transfer of ownership.

NO GUARANTEE IS INTENDED OR IMPLIED BY REASON OF ANY ADVICE GIVEN BY THE DEPARTMENT OR ANY OF ITS STAFF.

N.H. DEPARTMENT OF ENVIRONMENTAL SERVICES P.O. BOX 95, 6 HAZEN DRIVE, CONCORD, N.H. 03301 271-3644 Underground Storage Tank

APPENDIX K

Project Team Profiles

Ruma Neogy

Ms. Neogy has more than 8 years of experience specializing in environmental compliance management and Phase I site assessments. Her technical expertise includes air permitting, air compliance audits, air pollution control regulations, wastewater treatment regulations, NPDES permitting, due diligence environmental site assessments, soil and groundwater remediation, wastewater treatment regulations, pollution prevention regulations, anaerobic treatment of landfill leachates, chemical analysis and treatability testing. She has extensive experience in working with a diverse range of industries such as manufacturing, electroplating, wood coating, pharmaceutical and major health care facilities. She hold a BS in Civil Engineering from Bangladesh University of Engineering & Technology and an MS in Environmental Engineering from the University of Cincinnati.

Daniel Pierce, P.E.

Mr. Pierce has more than 20 years of diversified experience in environmental, health & safety compliance for industrial facilities. His experience is wide ranging and includes planning, implementation, and management of due diligence assessments.

Mr. Pierce has performed environmental liability and compliance audits and property transfer and acquisition/divestiture assessments for a variety of high technology manufacturing facilities, semiconductor fabrication plants, electronic assembly facilities and hazardous waste treatment, storage, recycling and transportation facilities, as well as commercial and undeveloped properties.

Mr. Pierce holds a Bachelor of Science Degree in Environmental Engineering and a Bachelor of Arts Degree in Chemistry from Syracuse University, Syracuse, New York. Mr. Pierce is a registered Professional Engineer in Massachusetts.

Linda Opperman

Ms. Opperman is an Environmental Assessment Specialist and Geological Engineer for Delta Environmental Consultants, Inc. with 10 years of experience. She specializes in due diligence environmental assessments and remedial investigations.

Ms. Opperman has managed and conducted Phase I and II Environmental Assessments for a variety of residential, commercial, and industrial properties across the country. During completion of these assessments, she was responsible for the coordination of staff and contractor activities and the determination and tracking of project budgets. She has designed and implemented subsurface contamination assessments that included the determination of contaminant source areas and evaluation of ground water chemistry. Ms. Opperman has also performed third-party reviews of environmental assessments, updating reports when necessary to meet client specifications. In addition, she has compiled monitoring and reporting requirements for air and water permits to facilitate in-house and regulatory compliance for several facilities, and has conducted limited asbestos screenings.

Ms. Opperman holds a Bachelor of Science Degree in Geological Engineering from Michigan Technological University in Houghton, Michigan.

PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT

Cookson Electronics - Polyclad Laminates 45 Tannery Street Franklin, New Hampshire

Delta Project No. 8A0704268P

Prepared for:

Cookson Electronics, Inc.
One Cookson Place
Providence, Rhode Island 02903

Prepared by:

Delta Consultants 185 Jordan Road Troy, NY 12180 (518) 203-0050

10 April 2008

TABLE OF CONTENTS

1.0 INTRODUC	CTION	1				
	cription					
	Site Investigation Activities					
	STIGATION ACTIVITIES					
	I Due Diligenceorical Information Resources					
	orical Information Summary Results					
	ce Investigative Activities					
	ind Penetrating Radar Surveys					
2.2.2 Test	Pit Excavation	13				
	Boring Installation					
	Indwater Monitoring Wells					
2.2.4.1	Monitoring Well Drilling and Soil Sampling	18				
	Monitoring Well Installation and Development					
2.2.4.3 Monitoring Well Sampling						
2.2.5 Sample Analyses and Handling Procedures						
	rvey					
3.0 OBSERVA	TIONS AND RESULTS	21				
3.1 Site Geo	logy and Hydrogeology	21				
	eening Results					
	Il Results					
	IndwaterONS					
	of Potential Environmental Concern					
	or contact Environmental Concom					
	rater					
	NDATIONS					
6.0 REMARKS		30				
	TADLES					
Table 2-1	TABLES Groundwater Monitoring Well Construction Details					
	•					
Table 2-2	Summary of Sample Analytical Parameters					
Table 3-1	Summary of Groundwater Elevations - June and November 2007					
Table 3-2	Summary of Analytical Results - Soil					
Table 3-3	Summary of Analytical Results - Groundwater					
	<u>FIGURES</u>					
Figure 1-1	Site Location Map					
Figure 1-2	1-2 Property Boundary Map					
Figure 1-3	Site Layout Map					
Figure 2-1	1 Features of Potential Environmental Concern					
Figure 2-2	gure 2-2 Ground Penetrating Radar Survey Grid Location Map - May 2007					

Page ii

Figure 2-3	Ground Penetrating Radar Survey Grid Location Map - June 2007
Figure 2-4	Test Pit Excavation and Soil Boring Location Map
Figure 2-5	Groundwater Monitoring Well Location Map
Figure 3-1	Site Wide Water Table Contour Map - June 2007
Figure 3-2	Site Wide Water Table Contour Map - November 2007
Figure 3-3	Soil Analytical Results - VOC TICs
Figure 3-4	Groundwater Analytical Results - VOCs and VOC TICs
Sheet 1	Final ALTA Survey Map

APPENDICES

Appendix A	Miscellaneous Supplemental Historic Documentation
Appendix B	Test Pit Logs
Appendix C	Soil Boring Logs
Appendix D	Laboratory Analytical Reports - Soil
Appendix E	Laboratory Analytical Reports - Groundwater

PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT

COOKSON ELECTRONICS - POLYCLAD LAMINATES 45 TANNERY STREET, FRANKLIN, NEW HAMPSHIRE DELTA PROJECT NO. 8A0704268P

1.0 INTRODUCTION

Delta Consultants (Delta) has prepared the following report describing Phase II Environmental Site Assessment (Phase II ESA) activities completed at the Cookson Electronics - Polyclad Laminates (Cookson) facility located at 45 Tannery Street in Franklin, Merrimack County, New Hampshire, as depicted on Figure 1-1. These investigation activities were conducted between May and November 2007 in general accordance with Delta's proposed scope of work, dated April 24, 2007 as well as specific Cookson-approved portions of Delta's Change Order No. 1, dated 8 August 2007. The following report provides a brief description of the property followed by a summary of previous activities performed onsite, a description of the procedures and results for the Phase II ESA activities conducted throughout 2007 and Delta's conclusions and recommendations based on these results.

1.1 Site Description

The property owned by Cookson consists of three non-contiguous parcels at the northeastern end of Tannery Street in the northwestern portion of Franklin, New Hampshire. These three parcels are described below and are depicted on Figure 1-2.

- Parcel 1 (Tax Map 001-097, Lot 105): A long, narrow, one-acre property along the northwestern side
 of Tannery Street. The central portion of this property consisted of a paved parking lot and the
 northeastern and southwestern portions of this property were wooded.
- Parcel 2 (Tax Map 001-116, Lot 171): An irregularly shaped 1.97-acre property at the northeastern
 end of Tannery Street. The former manufacturing building was located on this property along with
 paved roadways, parking areas and exterior materials storage areas. The manufacturing building
 was primarily a one-story, slab on grade structure comprising approximately 61,250 square feet of
 office, warehouse and manufacturing space. At the time of the Phase II ESA, onsite operations had
 ceased and the building was essentially vacant.
- Parcel 3 (Tax Map 001-096, Lot 402): An irregularly shaped 2.12-acre property approximately 400 feet north of Parcel 2. This property consisted of an open area formerly used as a sand and gravel pit as well as undeveloped wooded land.

In summary, Cookson property holdings consisted of three non-contiguous parcels totaling approximately 5.1 acres in area (hereinafter referred to as the "Cookson Property"). These three parcels are connected

via a 75-foot wide easement granted by the City of Franklin (Figure 1-2). In addition, there are a number of other easements and/or lease arrangements with the City of Franklin, including various parking areas, roadways, the former drum storage building, an exterior materials storage area and an underground storage tank loading/unloading area, all of which are associated with Parcel 2. The Cookson Property was situated in an area comprised of undeveloped wooded land along with various residential, commercial and light industrial properties. More specifically, property to the east consisted of undeveloped wooded land along a steep downslope to the Pemigewasset River. Property to the west was also wooded along a steep upslope to various residential and commercial properties along both sides of North Main Street (New Hampshire Route 3A). Property to the north consisted of undeveloped wooded land along an old railroad bed and property to the south consisted of wooded land followed by a recreational boat launch and some light industrial properties along Tannery Street.

According to available information, specific portions of the Cookson Property were used from approximately 1979 through 2006 to manufacture multi-layer circuit boards using fiberglass cloth dipped in epoxy resins. Prior to 1979, these portions of the property were reportedly used for leather tannery operations from at least the 1950s through the mid to late 1970s. The circuit board manufacturing and leather tannery operations were reportedly confined to Parcels 1 and 2 and, as such, Delta's site investigation activities were concentrated on these two parcels. For the purposes of this Phase II ESA report, Parcels 1 and 2 are hereinafter collectively referred to as the "Site", as depicted on Figure 1-3. No intrusive investigation activities were performed on Parcel 3 during the course of Delta's Phase II ESA.

1.2 Previous Site Investigation Activities

Previous investigation activities included a Phase I Environmental Assessment (EA) and Limited Compliance Review performed by Delta in August 2005. This Phase I EA was reportedly performed in accordance with American Society for Testing and Materials (ASTM) E 1527-00 Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process, and the Limited Compliance Review was conducted to determine general facility compliance with federal, state, or local environmental and health and safety requirements. Delta's findings pursuant to this investigation were presented in Delta's Phase I Environmental Assessment and Limited Compliance Review report, dated 19 August 2005. According to this report, Delta identified a number of recognized environmental conditions (RECs) and historic recognized environmental conditions (HRECs) as summarized below.

Recognized Environmental Conditions (RECs)

• The facility has had seven registered underground storage tanks (USTs), all of which were located on Parcel 2. Four of the USTs (UST-1 through UST-4) were reportedly either removed or

closed in place in accordance with New Hampshire Department of Environmental Services (NHDES) requirements and had received closure letters from the NHDES. Two of the USTs (UST-5 and UST-6) were either removed or closed in place; however, there were conflicting reports as to the actual fate of these tanks. In addition, there was no record of soil sampling/analysis for the closure of these two tanks and no closure letters from the NHDES were available. The remaining tank (UST-7) was reportedly active at the time of the Phase I EA.

- A 1964 Sanborn map indicated the presence of a 4,000-gallon oil UST along the northwestern side of the manufacturing building in the general vicinity of UST-5 and UST-6. No further information was available and facility personnel interviewed during Delta's Phase I EA were not aware of this UST.
- Empty drums were stored on wood pallets in a storage building on the northeastern side of the manufacturing building. This building reportedly had a dirt floor with no secondary containment.

<u>Historical Recognized Environmental Conditions (HRECs)</u>

 Historical information indicates the property was initially occupied by Kingston Leather Inc., and later by Lois Versa Leather, Inc., from at least 1953 to 1979. Based on the historical information, operations at the facility included leather manufacturing and possibly tanning operations, which may have impacted the soil and/or groundwater quality.

In addition to the above-mentioned RECs and HRECs, Delta also identified one de minimis condition associated with the property. This de minimis condition pertained to the potential presence of asbestos containing materials and/or lead based paint based on the reported age of the manufacturing building on Parcel 2. An actual evaluation of the presence or absence of these materials was considered beyond the scope of both Delta's Phase I EA and this Phase II ESA. With respect to the Limited Compliance Review, Delta concluded that the facility appeared to be in compliance with major environmental, health and safety regulatory areas.

Based on the findings and conclusions of the Phase I EA as summarized above, Delta presented the following recommendations.

- A subsurface investigation should be conducted in the vicinity of UST-5 and UST-6 to assess the
 potential for impacts to soil or groundwater quality associated with these tanks and any related
 piping or pump islands. Delta further recommended that confirmation should also be obtained as
 to whether these tanks were closed in place or removed and whether these actions were
 performed in accordance with NHDES requirements.
- A subsurface investigation should be conducted northeast of UST-5 and UST-6 in the vicinity of the UST identified on the 1964 Sanborn map to assess the actual presence of this UST and potential for impacts to soil or groundwater quality in this area.

- A subsurface investigation at the northeastern end of the manufacturing building should be conducted to assess the potential for impacts to soil quality associated with former drum storage practices.
- An evaluation of historical practices related to leather manufacturing operations at the property should be conducted to assess the potential for adverse environmental impacts to the soil and/or groundwater.

2.0 SITE INVESTIGATION ACTIVITIES

In April 2007, Delta was retained by Cookson to complete a Phase II ESA at the Site pursuant to the findings and conclusions of Delta's August 2005 Phase I EA. The scope of work for this Phase II ESA was developed during an onsite meeting on 23 January 2007 as well as subsequent discussions and correspondence between Delta and Cookson personnel. The Phase II ESA activities consisted of a number of tasks including additional historical due diligence, ground penetrating radar surveys, soil and groundwater investigative activities and completion of an American Land Title Association (ALTA) survey for the Cookson Property. The following sections provide a detailed description of the procedures and results of the investigation activities followed by Delta's conclusions and recommendations based on the results of the Phase II ESA.

2.1 Historical Due Diligence

According to historical information available at the time of Delta's Phase I EA, the Site was reportedly used for leather tannery operations from at least the early 1950s through the 1970s. Due to potential concerns over waste streams typically associated with the tanning operations as well as the potential for historic on-site disposal of waste materials, Delta recommended additional historical due diligence activities as part of the Phase II ESA. The purpose of the additional due diligence activities was to attempt to identify specific locations of prior on-site tanning operations (i.e., building locations, etc.) as well as evaluate any on-site filling operations that may have occurred. The following paragraphs discuss the various historical resources reviewed during Delta's Phase II ESA activities followed by a detailed property history based on available information. The information presented below was also used to refine intrusive sampling locations to better characterize the nature and extent of potential impacts on soil and groundwater quality beneath the Site, as discussed in Section 2.2.

2.1.1 Historical Information Resources

In accordance with Delta's Phase II ESA scope of work, various historical information resources were reviewed in an attempt to better understand historic property use, specifically related to former tannery

operations onsite. The various information resources reviewed during the course of Delta's Phase II ESA are listed below.

- A review of available historic information at the City of Franklin Public Library;
- A review of available historical topographic maps;
- A review of available historic aerial photographs;
- A review of available Sanborn Fire Insurance Maps;
- A detailed analysis of available tax map records:
- Interviews and/or records review with available City of Franklin personnel (i.e., tax assessor, building department, zoning personnel, etc.);
- An onsite meeting with the City of Franklin historian; and
- On-line searches for other sources of information.

Information obtained from the above-mentioned resources was used to supplement information obtained during Delta's Phase I EA. Pertinent historic information for the Cookson Property is presented below.

Historic Area Map (City of Franklin Public Library)

Town of Franklin Area Map - 1892: This map shows that the Site was undeveloped land as was much of the surrounding property. Property to the north appeared to be undeveloped land along both sides of the Boston & Maine railroad tracks, which ran alongside the three parcels that comprise the Cookson Property. Property to the south was also undeveloped land followed by the Pemigewasset River and additional undeveloped land. Property to the east was undeveloped land followed by the Pemigewasset River and further east was a mix of residential and commercial property on the eastern side of the river. The Boston & Maine railroad tracks were present to the west followed by undeveloped land. Further west was sparse residential property along North Main Street. No further pertinent information was provided on this map.

Historic Topographic Maps

Historic topographic maps depicting the Site and surrounding area were available at the City of Franklin Public Library or were included in Delta's Phase I EA. These maps covered the years 1931, 1987 and 2000. The following is a summary of the pertinent information associated with these historic maps.

- 1931: Penacock, New Hampshire 15-Minute Series Topographic Map: This map shows no significant changes to the Site or immediately surrounding properties as presented in the 1892 map discussed above.
- 1987: Franklin, New Hampshire 7.5-Minute Series Topographic Map: This map shows that the
 Site was partially developed. Tannery Street was present along with the manufacturing building
 at the northeastern end of the street. The railroad tracks along the western side of the Site were
 no longer present; however, there was additional residential, commercial and light industrial
 development present along Tannery Street to the southwest and North Main Street to the west as

well as along the eastern side of the river. No other significant changes to the Site or immediately surrounding properties were noted.

• 2000: Franklin, New Hampshire 7.5-Minute Series Topographic Map: This map shows no significant changes to the Site or the immediately surrounding properties.

Historic Aerial Photographs

Historic aerial photographs depicting the Site and surrounding area were available at the Merrimack County Natural Resources Conservation Service (NRCS) and Farm Service Agency (FSA) as well as at the City of Franklin Tax Assessors Office and online (Google Earth). These photographs covered the years 1946, 1953, 1974, 1979 (Tax Map), 1981, 1986, 1993 and post 2000 (Google Earth). The following is a summary of the pertinent information associated with these historic photographs.

- 1946: This map shows that the Site appears to be an undeveloped field with a few trees and/or wooded areas as was much of the surrounding property. The railroad tracks appear to have been removed; however, the railroad bed was still present. Some minor clearing was present along the railroad bed immediately north of the Site followed by undeveloped land. Property immediately east, south and west of the Site appeared to be undeveloped and property further to the southwest and west appeared to be a mix of residential, commercial and/or light industrial development.
- 1953: This photograph shows that the Site has been partially developed. Tannery Street and the original portion of the manufacturing building were present; however, no other onsite features were noted. No significant changes to the immediately surrounding properties were noted.
- 1974: This photograph shows that there appears to have been some expansion to the manufacturing building along with some clearing to the south and southwest of the building. Some clearing was also visible in the vicinity of Parcel 3 north of the Site and some additional residential, commercial and/or light industrial development was noted along North Main Street and Tannery Street to the west and southwest of the Site, respectively. No other significant changes were noted.
- 1979 (Tax Maps for Parcels 1 and 2): These photographs show that the manufacturing building was present on Parcel 2 along with some cleared areas surrounding the building and some undeveloped land northeast of the building. Parcel 1 appears to remain as undeveloped land with a few trees. No significant changes to the immediately surrounding properties were noted.
- 1981: This photograph shows no significant changes to the Site or immediately surrounding properties.
- 1986: This photograph shows that a large addition has been constructed on the northeastern end of
 the manufacturing building. No other significant changes to the Site were noted and, with the
 exception of additional clearing likely associated with sand and gravel extraction operations at
 Parcel 3 to the north, no significant changes to the surrounding properties were observed.
- 1993: This photograph shows that a paved parking lot has been constructed on the central portion of Parcel 1 and another parking lot was present immediately southwest of the manufacturing building. In addition, the exterior storage area along the northeastern end of the building was present including the former drum storage building. No other significant changes to the Site or immediately surrounding properties were noted.

 Post 2000 (Google Earth): This photograph shows no significant changes to the Site or immediately surrounding properties.

Sanborn Fire Insurance Maps

Sanborn Fire Insurance Maps depicting the Site and surrounding area were available at the City of Franklin Public Library or were included in Delta's Phase I EA. These maps covered the years 1929 and 1964. The following is a summary of the pertinent information associated with these maps.

- 1929: This map appears to show that the original portion of the manufacturing building was present and occupied by Kingston Leather Co., Inc. The building construction was noted as having a concrete floor with wood post and beam construction consistent with observations made within this portion of the manufacturing building during the Phase II ESA. This map also shows that the building was heated using fuel oil stored in a 4,000-gallon oil tank located at the northeastern end of the building. No further pertinent information was presented on this map.
- 1964: This map depicts the building as being occupied by Lois Versa Leather, Inc. A number of
 additions appear to be present along all four sides of the building. The 4,000-gallon oil tank noted
 in the 1929 Sanborn map was no longer present; however, a 4,000-gallon oil tank was depicted
 along the northwestern side of the building. Construction materials for the main portion of this
 building were consistent with the materials identified in the 1929 map as well as with observations
 made during Delta's Phase II ESA. No further pertinent information was presented on this map.

Local Government Records Review and Interviews

Various local government departments were contacted and available records were reviewed during Delta's Phase I EA and well as during the course of this Phase II ESA to better understand historic property use at the Site and assess whether past operations may have impacted soil and/or groundwater quality. Specific departments contacted and records reviewed included the City of Franklin Tax Assessor, Building Department and Zoning Administrator. In addition, an onsite meeting and subsequent discussions were conducted with the City of Franklin Historian. Pertinent information obtained from the records reviews and interviews is presented below.

During Delta's Phase I EA, the property reviewed included Parcels 1 and 2, as discussed in Section 1.1, along with an additional parcel (Tax Map 001-116, Lot 175) that, according to Tax Assessor records at the time of the Phase I EA, was owned by Cookson. This additional parcel was described as a 3.3-acre property that essentially surrounded Parcel 2. Based on information generated during Delta's Phase II ESA, it appears that the Tax Assessor records were incorrect and that this property is actually owned by the City of Franklin. According to Tax Assessor records reviewed during the course of the Phase II ESA, Cookson entered into a lease arrangement with the City of Franklin for an employee parking lot on the flat gravel area immediately northeast of Parcel 2. This gravel parking lot was situated on a 3.3-acre property

owned by the City of Franklin identified as Tax Map 001-96, Lot 404. As part of the lease arrangement, Cookson reportedly agreed to pay the real estate tax on this parcel (it is unclear if this meant the entire property or just the leased portion of the parcel). For this reason, a separate tax map identification was created (Tax Map 001-116, Lot 175) and the property card filed at the Tax Assessors office incorrectly identified Cookson as the owner of this parcel. Ultimately, it appears that the property reviewed during the course of the Phase I EA did not accurately represent Cookson's property holdings due to inaccurate Tax Assessor records and Parcel 3 (Section 1.1) was not reviewed as part of Delta's Phase I EA. At the time of Delta's Phase II ESA, the error had reportedly been discovered and the Tax Assessor maps were revised such that Tax Map 001-116, Lot 175 no longer appears on the tax maps.

Based on information available at the time of Delta's Phase II ESA, the Cookson Property consisted of three non-contiguous parcels (Section 1.1) connected via a 75-foot wide easement granted by the City of Franklin. In addition, there are also a series of lease arrangements with the City for various other uses associated with Parcel 2 (i.e., access around the building, various employee parking areas, former drum storage and exterior materials storage area, active UST loading/unloading structure, etc.). According to available deeds, the Cookson Property and the associated easements/lease arrangements were most recently conveyed via Warranty Deed from Polyclad Laminates (predecessor to Cookson) to Magenta Holdings in 2006. The following provides a brief history of the ownership of Cookson Property dating back to 1979.

- Parcels 1 and 2 were associated with the former leather tannery operations that reportedly operated until approximately 1979 when these operations ceased.
- In approximately 1980, these two parcels were purchased by Framalfi Associates and onsite operations were reportedly converted to laminate manufacturing (Oak Laminates).
- In 1988, Polyclad Laminates purchased Oak Laminates and took ownership of Parcels 1 and 2.
- In late 1989, Polyclad purchased Parcel 3 and, sometime between 1988 and 1989, the easement connecting the three parcels was established.
- In mid-2006, Parcels 1, 2 and 3, along with the easement connecting these parcels, were conveyed from Polyclad Laminates to Magenta Holdings.

In addition to the above, available historic property use information for Parcels 1, 2 and 3 was also reviewed during the course of Delta's Phase II ESA. This historic information was based on a review of available historic documentation including topographic maps, Sanborn maps, aerial photographs, Tax Assessor records and interviews with various individuals familiar with the Cookson Property. The following paragraphs present a summary of the historic property use for each parcel.

- Parcel 1: This parcel appears to have been an undeveloped field or wooded lot from the late 1800s through the late 1980s to early 1990s. This parcel was reportedly associated with former leather tannery operations conducted on Parcel 2; however, historic aerial photographs from 1946 through 1986 show this property as an undeveloped lot with no buildings, structures or other features present on this property. The paved parking lot observed during Delta's Phase I EA and Phase II ESA site visits first appeared in the 1993 photograph suggesting that this lot was constructed in the late 1980s to early 1990s.
- Parcel 2: There appears to be some conflicting information as to the actual point in time when this parcel was initially developed. As previously stated, a 1929 Sanborn map appears to show that the original portion of the manufacturing building was present and occupied by Kingston Leather Co., Inc. The noted building construction materials identified on this map were consistent with the construction materials identified on the 1964 Sanborn map as well as with observations made within the manufacturing building during the Phase II ESA site visit. In addition, Tax Assessor records indicate that a building constructed in 1930 was present on this parcel. The 1964 Sanborn map, available historic aerial photographs from 1953 through post 2000 and building department records suggest that this building was present throughout this time and that the building underwent a series of expansions and/or renovations over time. The most notable conflicting information; however, is that the building identified in these maps and photographs did not appear to be present in the 1946 aerial photograph. Further, according to the City Historian, the original leather tannery operations conducted on this parcel commenced in the late 1940s to early 1950s. He was not aware of, and had no record of, any development on this parcel prior to the late 1940s and he believed that the 1929 Sanborn map was incorrect. Ultimately, it seems clear that this parcel was used for leather tannery operations from the late 1940s to early 1950s through the late 1970s and for laminate manufacturing operations from approximately 1980 through 2005. Property use for this parcel prior to the early 1940s remains somewhat uncertain; however, some evidence exists to suggest that the leather tannery operations may have commenced in the 1920s or earlier.
- Parcel 3: This parcel appears to have been an undeveloped field or wooded lot from the late 1800s through the early 1970s. According to available information, this parcel was used as a sand and gravel borrow pit for a number of years; however, that exact dates of these operations were not known. Based on the available historic aerial photographs, some clearing on this parcel was noted in 1974 and gravel operations appear to have been ongoing in the 1981 and 1986 aerial photographs. As indicated above, this parcel was purchased by Polyclad in 1989 and the 1993 and post 2000 photographs show this parcel as an open lot with some wooded areas; however, it is not clear whether the sand and gravel operations were ongoing. No buildings, structures or other features were noted on this property.

2.1.2 Historical Information Summary Results

As discussed in Section 1.2, the findings of Delta's Phase I EA resulted in the identification of a number of RECs and HRECs. Information generated during Delta's Phase II ESA supplemental historical due diligence activities confirmed that these previously identified RECs and HRECs continue to represent a potential environmental concern with respect to the Site. Based on the additional due diligence activities as well as observations made during the onsite project scoping meeting conducted in January 2007, a number of additional features of potential environmental concerns were identified. A summary of the

features of potential environmental concern identified during Delta's Phase I EA as well as the Phase II ESA activities is presented below and these features are depicted on Figure 2-1.

- A total of nine existing or former USTs were identified onsite all of which were located on Parcel
 2;
- Potential adverse impacts to soil associated with the former drum storage operations in the northeastern portion of Parcel 2;
- Potential adverse impacts to soil and/or groundwater associated with former leather tannery operations conducted on the Site;
- Two concrete lined former press pits with some petroleum staining within the manufacturing building; and
- A suspected vent pipe along the exterior wall on the southeastern side of the building.

A review of the available historic maps, topographic maps, aerial photographs, Sanborn maps, interviews and records review completed as part of Delta's Phase II ESA due diligence activities did not result in the identification of any other features of potential environmental concern. No other buildings, structures, suspected or potential onsite disposal areas associated with the former leather tannery operations were noted.

2.2 Subsurface Investigative Activities

As stated above, Delta's Phase I EA and the additional due diligence activities conducted as part of this Phase II ESA identified a number of features of potential environmental concern on the Site, primarily associated with Parcel 2 (Figure 2-1). To address these potential concerns, Delta completed a series of subsurface investigative activities to evaluate whether any specific features of concern have locally impacted subsurface soil and/or groundwater quality as well as to evaluate site wide soil and groundwater quality. The subsurface activities included ground penetrating radar (GPR) surveys as well as the excavation of a series of test pits and the installation of a number of soil borings and groundwater monitoring wells. Numerous soil and groundwater samples were collected during the course of these activities for various laboratory analyses, as discussed below.

Prior to conducting any of the subsurface investigative activities, a licensed surveyor (Paul M. Darbyshire Associates) was retained to establish the property boundaries for both Parcels 1 and 2. These surveying activities were completed to insure that all intrusive sampling locations were installed on property owned by Cookson and not on any adjacent leased parcels and/or easements owned by others. Following completion of these surveying activities, some of the proposed intrusive sampling locations were modified

such that all test pits, soil borings and groundwater monitoring wells were installed on Cookson-owned property. The following paragraphs discuss the procedures for the various subsurface investigative activities performed during this Phase II ESA.

2.2.1 Ground Penetrating Radar Surveys

Prior to conducting the various intrusive activities, GPR surveys and/or other subsurface detection equipment was used to scan the selected test pit, soil boring, groundwater monitoring well locations for the potential presence of underground utilities as well as search selected areas for the presence (or lack thereof) of suspected USTs. Two separate GPR survey events were completed at the Site during the course of these Phase II ESA activities. The first event was completed on 22 and 23 May 2007 and the second event was completed on 20 June 2007. The specific GPR survey tasks completed and the associated results for each event are described in the paragraphs below.

May 2007: The GPR survey conducted during the May 2007 event included clearing utilities at six test pit, 14 soil boring and four groundwater monitoring well locations. For each test pit, a minimum 20 foot square area was surveyed and for each soil boring and groundwater monitoring well a minimum ten foot square area was surveyed to identify any subsurface utilities. In each instance, the GPR and/or alternate subsurface detection equipment accurately located subsurface features such that no utilities or other features were damaged during the intrusive investigation activities.

In addition to these surveys, four larger GPR grid areas were surveyed to identify subsurface utilities as well as search the selected areas for the presence of suspected USTs. The approximate locations of these four grid areas are depicted as Grid 1 through Grid 4 on Figure 2-2 and the location, purpose and results for these four GPR grid areas is presented below.

- Grid 1: This grid was located in the southwestern portion of the manufacturing building in the
 vicinity of three USTs reportedly closed in place (Figure 2-1 UST-2 through UST-4). The
 purpose of this grid was to more accurately define the location of these USTs such that intrusive
 activities could be completed in this area. The GPR survey conducted at this area indicated that
 the three USTS were present under the building and limits of these three tanks were accurately
 defined.
- Grid 2: This grid was located along the northwestern side of the manufacturing building in the
 vicinity of three USTs, one of which was reportedly removed, the second was reportedly closed in
 place and the third was identified on the 1964 Sanborn map (Figure 2-1 UST-5, UST-6 and
 UST-8, respectively). The purpose of this grid was to define the limits of the USTs, if present,
 such that intrusive activities could be completed. The GPR survey conducted in this area
 identified disturbed soil in the vicinity of UST-5 suggesting that this tank had been removed as

reported. This survey also accurately defined the limits of UST-6 reported as closed in place and no evidence of UST-8 was noted.

- Grid 3: This grid was located along the southeastern side of the manufacturing building in the vicinity of an apparent vent pipe along the side of the building (Figure 2-1). The purpose of this grid was to assess the presence of a potential UST associated with this vent pipe as well as clear subsurface utilities such that intrusive activities could be completed. The GPR survey conducted in this area accurately identified subsurface utilities; however, no evidence of a potential UST associated with this vent pipe was noted outside the building. Following completion of the GPR survey in this area, an attempt was made to further locate the source of the potential vent pipe by imparting an electric signal to the pipe and trying to trace the signal in the subsurface. The results of these activities showed that the pipe appeared to stop approximately two feet below ground surface alongside the building.
- Grid 4: This grid was located along the northeastern portion of the manufacturing building to clear subsurface utilities such that intrusive activities could be completed. The GPR survey accurately located the various utilities and also identified a previously unknown subsurface concrete feature. This feature was approximately six feet square and was believed to be associated with a former onsite septic system (Figure 2-2).

June 2007: The GPR survey conducted during the June 2007 event included three larger grid areas to further define subsurface features as well as search the selected areas for the presence of suspected USTs. The approximate locations of these three grid areas are depicted as Grid 5 through Grid 7 on Figure 2-3 and the location, purpose and results for these three GPR grid areas is presented below.

- Grid 5: This grid was located in the southwestern portion of the manufacturing building in approximately the same area as Grid 1. In early June 2007, a soil boring was installed in a former chemical mixing room in this portion of the building as discussed in Section 2.2.3 below. A number of supply or return pipes were observed within this room; however, the exact source or destination of these pipes was not known. A solvent odor resembling acetone was noted in one of the pipes and total volatile organic compound (VOC) reading measured using a photoionization detector (PID) was greater than 10,000 parts per million (ppm). Little to no odors were noted on the remaining pipes; however, PID readings ranging from 20 to 460 parts per million (ppm) were recorded. Based on these observations, an attempt was made to trace the source of these pipes using GPR and/or other pipe locating equipment. The results of this survey showed that each of the pipes could be traced back toward the adjacent closed in place USTs (Figure 2-1 UST-2 through UST-4); however, interference caused by the presence of these USTs prevented the accurate location of the source and/or destination of these pipes.
- Grid 6: In early June 2007, a backhoe was used to excavate along the southeastern side of the building in the vicinity of the vent pipe to further evaluate the source and/or destination of this pipe. During these activities, a solvent odor was noted emanating from the pipe, PID readings ranging up to 800 ppm were noted and the pipe appeared to continue back under the building. Subsurface pipe locating equipment was used to trace this pipe to an apparent end point under the building then a GPR survey was performed within the building. The GPR survey conducted in this area identified an abandoned UST under this portion of the building (Figure 2-3 UST-10). This tank was estimated to be approximately 1,000-gallons in capacity; however, the contents, purpose and integrity of this tank could not be determined.

Grid 7: This grid was located within the northeastern end of the manufacturing building in the
vicinity of a suspected UST identified on the 1929 Sanborn map (Figure 2-1 - UST-9). The
purpose of this grid was to define the limits of this UST, if present, such that intrusive activities
could be completed. The GPR survey conducted in this area showed no evidence of this
potential UST.

2.2.2 Test Pit Excavation

A total of six test pits, labeled TP-1 through TP-6, were excavated at the Site during the course of Delta's Phase II ESA activities. Two of these test pits were excavated on Parcel 1 and four were excavated on Parcel 2, as depicted on Figure 2-4. The primary intent of these test pits was to assist in the overall characterization and extent of any fill materials that may be present at the Site. In addition, two of the test pits on Parcel 2 (TP-3 and TP-4) were used, in conjunction with specific GPR survey grids, to determine if suspected USTs were present.

All test pit excavation activities were performed by Enpro Services, under the supervision of Delta's onsite geologist. During the excavation activities, materials encountered in each test pit were logged and representative samples of the soil column were collected from each test pit for VOC screening purposes using a PID. At the conclusion of each test pit, one worst-case soil sample was collected for laboratory analysis based on the nature of the soils encountered, presence of fill materials and observations during the excavation process (i.e., odors, staining, PID results, etc.). For safety purposes, the backhoe was used to retrieve soil samples from the desired depth interval within a given excavation. The soil samples were then transferred directly from the backhoe shovel into the laboratory supplied sample containers. Sample analyses and handling procedures are further discussed in Section 2.2.5.

In general, materials encountered during the excavation activities consisted of light to medium brown grading to orange brown to almost white sand with varying amounts of silt, gravel, cobbles and occasional boulders. Groundwater and/or bedrock were not encountered during the excavation activities. A more detailed description of the findings for each test is presented in the table below and soil descriptions, visual observations, odors, PID readings and other pertinent details for each boring are included on the test pit logs included in Appendix B.

Test Pit ID	Total Depth (ft)	Sample Interval (ft)	Pertinent Observations
TP-1	13	10-12	Fill materials including concrete rubble and scrap metal were observed to three feet below ground surface followed by native soil. No odors, staining or PID readings were noted.
TP-2	12	10-12	No fill materials were encountered and no odors, staining or PID readings were noted.
TP-3	12	8-10	Fill materials including rubber and fabric pieces were observed to

			approximately eight feet below ground surface followed by organic materials (i.e., roots) at nine feet suggesting a former ground surface at this depth. No odors, staining or PID readings were noted and no USTs were encountered.
TP-4	13	10-12	Reworked soil was encountered to ten feet below grade suggesting that a UST had been removed from this location. Native soil was present below ten feet and no fill materials, odors, staining or PID readings were noted and no USTs were encountered.
TP-5	12	3-4	Fill soil with some hides and/or leather pieces were present to approximately four feet below ground surface followed by additional fill soil with no debris to the final depth of the test pit. No odors, staining or PID readings were noted.
TP-6	10	6-8	Fill materials including rubber and fabric pieces were observed to approximately eight feet below ground surface followed by organic materials (i.e., roots) at nine feet suggesting a former ground surface at this depth. No odors, staining or PID readings were noted.

Upon completion, each test pit was backfilled using the excavated material. To the extent possible, this material was compacted by periodically using the backhoe shovel during backfilling followed by driving over the excavation upon completion of backfilling. Backfilling was considered complete when a given test pit was filled and compacted such that the location was returned to a safe and navigable condition. No special handling, onsite stockpiling or offsite disposal of excavated soil was performed during these activities.

2.2.3 Soil Boring Installation

A total of 14 soil borings, labeled GSB-1 through GSB-14, were installed at the Site as part of Delta's Phase II ESA activities. All of these soil borings were installed on Parcel 2, as depicted on Figure 2-4. Final drilling locations were field determined based on access considerations, property boundary survey results (completed to insure the borings were installed on Cookson-owned property), GPR survey results and utility clearance and field observations. The primary intent of the borings was to evaluate subsurface soil quality in the immediate vicinity of specific features of potential concern identified during Delta's Phase I EA and subsequent Phase II ESA activities as further described below.

- GSB-1 and GSB-2: These borings were installed along the northeastern end of the manufacturing building in the vicinity of the former drum storage areas in this portion of the Site.
- GSB-3 and GSB-4: These borings were installed within the warehouse area at the northeastern end of the manufacturing building in the vicinity of a former interior hazardous materials storage area and the potential UST depicted on the 1929 Sanborn map, respectively.
- GSB-5 and GSB-6: These borings were installed in the concrete loading/unloading area adjacent to the existing UST near the southwestern corner of the manufacturing building.

- GSB-7 through GSB-9: These borings were installed in the southwestern corner of the manufacturing building in the vicinity of the three closed in place USTs in this area (Figure 2-1 -UST-2 through UST-4).
- GSB-10 and GSB-11: These borings were installed within the central portion of the manufacturing building adjacent to the concrete lined former press pits in this portion of the building.
- GSB-12 and GSB-13: These borings were installed along the northwestern exterior side of the manufacturing building in the vicinity of the UST depicted in the 1964 Sanborn map (Figure 2-1 -UST-8) as well as a closed in place UST in this area (Figure 2-1 - UST-6).
- GSB-14: This boring was installed in the northeastern corner of the Site in the vicinity of the suspected former septic system discovered during completion of the GPR surveys.

All of the soil borings were installed using direct push drilling and sampling techniques. Where appropriate, prior to drilling at each location, a coring device and a diamond coring bit were used to core through concrete to access the subsurface soil. A track-mounted Geoprobe drill rig and a five foot long macro-core sampling device were used to collect continuous soil samples to the maximum depth of each boring. Upon extraction, each soil core was examined by Delta's onsite geologist and representative portions of the recovered soil cores were placed in Ziploc bags, allowed to equilibrate for a period of approximately 15 minutes and the resulting headspace in the bag was field screened for the potential presence of VOCs using a PID. Soil descriptions, visual observations, odors, PID readings and other pertinent details for each boring are included on the soil boring logs included in Appendix C.

One soil sample was selected for laboratory analysis from each of the 14 soil borings. Selection of the soil sample interval for laboratory analysis was generally based on field screening results and field observations (odors or staining, etc.). In addition, the nature of the potential concern being evaluated was also considered in the selection of the soil samples (e.g., where a UST was being evaluated, the sample was collected from immediately below the estimated bottom elevation of the UST unless other observations such as PID readings, odors, or staining suggested a more appropriate sample interval). All soil samples were collected by transferring soil directly into laboratory supplied sample containers. Sample analyses and handling procedures are further discussed in Section 2.2.5.

These soil borings were installed to depths ranging from 12 to 24 feet below ground surface. Subsurface materials encountered consisted primarily of brown to orange brown to nearly white sand with varying amounts of silt and gravel. Groundwater and/or bedrock were not encountered during the boring installation activities. A more detailed description of the purpose of each boring, the total depth, soil sample interval and other pertinent observations are presented in the table below.

Boring ID	Total Depth (ft)	Sample Interval (ft)	Pertinent Observations
GSB-1	20	18-20	No suspect fill materials, odors, staining or PID readings were noted.
GSB-2	24	16-18	No suspect fill materials, odors, staining or PID readings were noted.
GSB-3	15	10-12	No suspect fill materials, odors, staining were noted; however, PID readings ranging from 0.7 to 2.3 ppm were noted on samples from approximately three to 12 feet below ground surface.
GSB-4	15	8-10	No suspect fill materials, odors, staining were noted; however, PID readings ranging from 0.3 to 1.8 ppm were noted on samples from approximately three to eight feet below ground surface.
GSB-5	15	12-14	No suspect fill materials, odors, staining or PID readings were noted.
GSB-6	15	10-12	No suspect fill materials, odors, staining or PID readings were noted.
GSB-7	15	10-12	No suspect fill materials, odors, staining were noted; however, PID readings ranging from 0.5 to 2.3 ppm were noted on samples from approximately two to 12 feet below ground surface.
GSB-8	15	12-14	No suspect fill materials, odors, staining were noted; however, PID readings ranging from 2.3 to 16 ppm were noted on samples throughout the soil column.
GSB-9	12	7-9	No suspect fill materials or staining were observed; however, unknown solvent like odors were noted and PID readings ranging from 10 to 245 ppm were noted on samples throughout the soil column.
GSB-10	15	10-12	No suspect fill materials, odors, staining were noted; however, PID readings ranging from 2.3 to 5.9 ppm were noted on samples from approximately three to 15 feet below ground surface.
GSB-11	15	12-14	No suspect fill materials, odors, staining were noted; however, PID readings ranging from 2.7 to 5.1 ppm were noted on samples from approximately three to 15 feet below ground surface.
GSB-12	15	12-14	No suspect fill materials, odors, staining were noted; however, PID readings ranging from 0.2 to 1.2 ppm were noted on samples throughout the soil column.
GSB-13	15	10-12	No suspect fill materials, odors, staining were noted; however, PID readings ranging from 3.1 to 6.1 ppm were noted on samples throughout the soil column.
GSB-14	20	14-16	No suspect fill materials, odors, staining were noted; however, PID readings ranging from 2.8 to 6.6 ppm were noted on samples from approximately three to 20 feet below ground surface.

Upon completion, the soil borings were backfilled with the clean fill (i.e., silica sand, bentonite chips, etc.) and an asphalt or concrete patch was installed as necessary. All drilling cuttings were containerized for subsequent disposal as discussed in Section 2.2.6.

In addition to the borings discussed above, an attempt was made to core through the concrete on the bottom of each of the former press pits to further evaluate soil quality beneath these features. The concrete in both pits was found to be more than one-foot thick such that coring through the concrete was unsuccessful. No soil samples were collected and the attempted core holes were backfilled with cement slurry.

2.2.4 Groundwater Monitoring Wells

A total of seven groundwater monitoring wells, labeled MW-1 through MW-7, were installed at the Site as part of Delta's Phase II ESA activities. Monitoring wells MW-1 through MW-4 were installed in June 2007 as part of the initial intrusive Phase II ESA activities. Monitoring wells MW-5 through MW-7 were installed in September and October 2007 to further evaluate findings associated with the installation of MW-2 as further described below. All of the monitoring wells were installed on Parcel 2, as depicted on Figure 2-5. Final drilling locations were field determined based on access considerations, property boundary survey results (completed to insure the borings were installed on Cookson-owned property), GPR survey results and utility clearance and field observations. The primary intent of these wells was to evaluate overall groundwater flow direction and quality beneath the Site. In addition, some of the wells were installed to evaluate subsurface soil and groundwater quality in the immediate vicinity of specific features of potential concern identified during Delta's Phase I EA and subsequent Phase II ESA activities as further described below.

- MW-1 (June 2007): This well was installed in the northern corner of Parcel 2 in an attempt to establish upgradient groundwater quality.
- MW-2 (June 2007): This well was installed in the northeastern portion of Parcel 2 downgradient
 of the building and features of potential concern including various drum and hazardous materials
 storage areas, the former press pits and the potential UST depicted on the 1929 Sanborn map.
- MW-3 (June 2007): This well was installed in the southeastern portion of Parcel 2 downgradient
 of the building and features of potential concern including various USTs (Figure 2-1 UST-1
 through UST-8), the former press pits and adjacent to the vent pipe along the building. This well
 is also downgradient of the previously unknown UST identified under the building discovered
 during the June 2007 GPR survey activities (Figure 2-3 UST-10).
- MW-4 (June 2007): This well was installed adjacent to the southwestern corner of the manufacturing building downgradient of a number of USTs in this area (Figure 2-1 - UST-1 through UST-4 and UST-7).
- MW-5 (September 2007): During the installation of MW-2, suspected gasoline constituents were encountered near the water table at this location. Based on these observations, MW-5 was

installed along the northwestern side of the manufacturing in the vicinity of a former gasoline UST (Figure 2-1 - UST-5) to evaluate this former UST as a potential source area of these constituents.

• MW-6 and MW-7 (October 2007): During the installation of MW-5, no evidence of any potential source area associated with the gasoline constituents encountered in MW-2 was observed. As such, monitoring wells MW-6 and MW-7 were installed within the warehouse area at the northeastern end of the manufacturing building. These locations were approximately halfway between MW-2 and MW-5 and were installed to further evaluate the potential source of the petroleum constituents observed in MW-2. In addition, these wells also served to further evaluate subsurface soil and groundwater quality in the vicinity of various areas of potential concern including the interior hazardous materials storage area, the former press pits and the UST identified on the 1929 Sanborn map.

2.2.4.1 Monitoring Well Drilling and Soil Sampling

The groundwater monitoring wells installed during the Phase II ESA investigative activities were drilled using a truck-mounted (MW-1 through MW-5) or track-mounted (MW-6 and MW-7) drill rig and the hollow stem auger drilling technique. Continuous soil samples were collected in advance of drilling using either two-foot long split spoon samplers or five-foot long modified macro-core samplers to 22 feet below ground surface. Following that depth, soil samples were collected at five-foot intervals to the maximum depth of each well. Upon extraction, each soil sample was examined and representative portions of each sample were placed in plastic ziploc bags for field screening purposes as previously described in Section 2.2.3. Soil descriptions, visual observations, odors, PID readings and other pertinent details for each boring are included on the soil boring logs included in Appendix C.

Upon completion of the field screening activities, soil samples for laboratory analysis were selected from monitoring wells MW-1 through MW-4 based on field observations, PID readings and/or other considerations as described in Section 2.2.3. Sample analyses and handling procedures are further discussed in Section 2.2.5. Soil samples for laboratory analysis were not collected from wells MW-5 through MW-7 since no odors, staining, PID readings or other evidence of potential impacts to the soil were encountered during drilling activities.

2.2.4.2 Monitoring Well Installation and Development

The groundwater monitoring wells installed during the Phase II ESA activities were constructed using a two-inch diameter, ten-foot long manufactured PVC well screen and an appropriate length of schedule 40 PVC riser. Upon reaching the desired depth, these materials were lowered through the auger to the final depth of each well. Conventional well construction techniques were then used, including placement of a clean silica sand pack around the well screen as the augers were withdrawn. This sand pack extended to approximately two to three feet above the top of the well screen, followed by a minimum two-foot thick

bentonite seal. The remaining annulus was either grouted or backfilled with bentonite and each well was completed with a locking expansion cap and protective flush-mount curb box. Table 2-1 present a

summary of the groundwater monitoring well construction details.

Following installation, each well was developed using dedicated, disposable polyethylene bailers to

remove groundwater and accumulated sediment from the wells thereby improving the hydraulic

connection between the wells and the subsurface. Development was considered complete when a

minimum of ten well volumes had been removed and/or the groundwater was relatively clear and free of

sediment. All well development water was containerized for subsequent characterization and disposal as

further described in Section 2.2.6.

2.2.4.3 Monitoring Well Sampling

Following completion of installation and development activities at a given location, the wells were allowed

to equilibrate for a minimum period of one week prior to groundwater sample collection. All groundwater

sample collection activities were completed using low flow techniques. Wells MW-1 through MW-4 were

sampled in June 2007, MW-5 was sampled in September 2007 and MW-6 and MW-7 were sampled in

October 2007.

Prior to sample collection, the depth to water and total depth was measured in each well to calculate the

standing volume of water within the well. Purging was considered complete when the groundwater was

relatively clear and a minimum of three well volumes had been removed from a given well. Upon

completion of purging, each well was sampled by transferring groundwater directly into laboratory

supplied sample containers via dedicated, disposable polyethylene tubing. Samples collected for metals

analyses were field filtered using disposable in-line filters at the time of sample collection. Sample

analyses and handling procedures are further discussed in Section 2.2.5.

2.2.5 Sample Analyses and Handling Procedures

In summary, a total of 25 soil samples and seven groundwater samples were collected during Delta's Phase

II ESA activities. Following collection, all soil and groundwater samples were placed on ice in a field cooler

pending transportation to the selected laboratory. Upon completion of sampling activities, all samples were

shipped, under proper chain of custody documentation, to Severn Trent Laboratories in Buffalo, New York,

for analysis.

Analytical parameters for the various samples collected during these Phase II ESA activities included VOCs and VOC tentatively identified compounds (TICs) via EPA Method 8260, semi-volatile volatile organic compounds (SVOCs) and dimethyl formamide (DMF) via EPA Method 8270, polychlorinated biphenyls (PCBs) via EPA Method 8082 and/or priority pollutant metals as described in the approved scope of work and/or based on subsequent discussions with Cookson. With the exception of four soil samples, all of the soil and groundwater samples collected during these activities were analyzed for the above listed parameters. The soil samples collected from borings GSB-1 and GSB-2 were analyzed for VOCs and VOC TICs only and the soil samples collected from borings GSB-10 and GSB-11 were analyzed for VOCs, VOC TICs and SVOCs only. A summary of the soil and groundwater samples collected during these activities is presented in Table 2-2 along with the specific analytical parameters for which each sample was analyzed.

Laboratory quality assurance/quality control (QA/QC) samples including duplicate samples, field blanks, matrix spike/matrix spike duplicates (MS/MSDs) were not collected during any of the soil or groundwater sampling events and no third party data validation was performed. However, trip blanks were provided and analyzed for VOCs in conjunction with all groundwater sample collection events and shipment procedures.

2.2.6 Soil and Groundwater Containment/Disposal

During the course of the Phase II ESA investigative activities, soil cuttings generated during the various soil boring and groundwater monitoring well installation activities as well as groundwater generated during monitoring well development and purging activities, were contained in 55-gallon drums for subsequent characterization and disposal. Based on the analytical results for the various soil and groundwater samples collected during these investigative activities and subsequent discussions with NHDES personnel, off-site disposal of these materials was not required. As discussed in Section 3.3, no target compounds were detected above applicable NHDES standards in any of the soil or groundwater samples and, as such, the containerized soil and groundwater was disposed of onsite. More specifically, the soil was disposed of near test pit TP-5 and the groundwater was slowly poured out on soil and allowed to infiltrate such that the water could not run off-site or migrate into any of the catch basins associated with the storm water collection system.

2.3 ALTA Survey

As part of these Phase II ESA activities, Delta retained Paul M. Darbyshire Associates (Darbyshire) to complete an ALTA survey for the Cookson Property. These activities were completed concurrently with other Phase II ESA activities commencing with establishing the property boundaries for Parcels 1 and 2 to

insure intrusive investigative activities were installed on Cookson-owned property. In October 2007, Delta retained Darbyshire to return to the Site to survey monitoring wells MW-5 through MW-7 such that these

wells could be included on the base map. The final ALTA survey map is presented as Sheet 1.

As part of the surveying activities, the ground surface and top of casing elevations for all of the groundwater monitoring wells installed at the Site were also surveyed. This elevation information was used in conjunction with static water level measurements taken during groundwater sampling events to

evaluate groundwater flow direction beneath the Site as further discussed in Section 3.1.

In addition to the onsite activities, Darbyshire researched various deeds, tax maps and other records, as required during an ALTA survey, for the various parcels that comprise the Cookson Property. Pertinent property ownership and/or historic property use information obtained by Darbyshire was reviewed by Delta as part of the additional historical due diligence activities and is presented in Section 2.1.

3.0 OBSERVATIONS AND RESULTS

3.1 Site Geology and Hydrogeology

According to Delta's Phase I EA, the soils beneath the Cookson Property were mapped primarily as the Occum fine sandy loam. This soil type was reportedly typified by deep, well-drained soils with moderately coarse textures. During the Phase II ESA activities, soils encountered onsite generally consisted of fine to coarse grained sand with varying amounts of silt and gravel as well as occasional cobbles and boulders to approximately 30 to 40 feet below ground surface. These soils were primarily light to medium brown near the ground surface and graded to orange brown, gray-brown and/or nearly white between five to 20 feet below ground surface then back to brown to gray brown between 20 and approximately 40 feet below ground surface. Fill materials including concrete rubble, scrap metal, hides, rubber pieces and/or leather pieces were encountered at some of the test pit locations. These materials were generally encountered in the top several feet of the soil column as indicated in the test pit logs (Appendix B).

Bedrock was not encountered during the Phase II ESA activities to a depth of approximately 40 below ground surface. According to Delta's Phase I EA, bedrock beneath the Cookson Property consisted of Silurian-aged metamorphic rocks reportedly consisting of aluminous schist, quartzite, calcsilicate granofels and bimodal metavolcanic rocks.

Groundwater was encountered in the unconsolidated deposits (i.e., overburden) on the Site at approximately 28 to 30 feet below ground surface. Depth to groundwater measurements were collected

from four groundwater monitoring wells (MW-1 through MW-4) on 21 June 2007 and from seven monitoring wells (MW-1 through MW-7) on 8 November 2007. These measurements are presented in Table 3-1 and ranged from approximately 27.5 to 29 feet below ground surface in June and from approximately 31.1 to 35.5 feet below ground surface in November. It is important to note that in November 2007, the depth to water measurements for wells measured during both events (MW-1 through MW-4) were approximately five to seven feet deeper than the measurements taken in June 2007.

As stated in Section 2.3, a comprehensive survey of the Site was completed as part of Delta's Phase II ESA activities and included establishing top of well casing elevations at all seven onsite monitoring wells. These elevations were used in conjunction with the depth to groundwater measurements to calculate the water table elevations for both the June and November 2007 sampling events. These elevations are summarized on Table 3-1 and were used to develop groundwater elevation contour maps to evaluate groundwater flow direction in both June and November 2007. Figures 3-1 and 3-2 depict site wide groundwater flow direction for the June and November 2007 sampling events, respectively. As indicated in these figures, site wide groundwater flow direction is generally to the east and southeast toward the Pemigewasset River.

A comparison of these two figures shows that, while the groundwater flow direction appears to be consistent between the two events, a substantial change in the water table elevation and hydraulic gradient is evident. As indicated in Figure 3-1, the water table elevations across the Site in June 2007 are mapped using a 0.25-foot contour interval and show a drop of a little over one foot from well MW-4 to wells MW-2 and MW-3 along the downgradient side of the Site. In Figure 3-2, the water table elevations in November 2007 are mapped using a one-foot contour interval and show a drop of over three feet from well MW-4 to wells MW-3, MW-6 and MW-7 (MW-2 was dry in November such that the water table elevation for this well could not be determined). As indicated in these figures, a substantial drop in water table elevation as well as an increase in the contour interval (steeper hydraulic gradient) has occurred between June and November. Based on the proximity to the Pemigewasset River, soil type encountered and steep slope from the river to the Site and further to the west, the drop in water table elevation and corresponding steeper hydraulic gradient are likely related to seasonal fluctuations in the water table beneath the Site.

3.2 Field Screening Results

As previously stated, all soil samples collected during Delta's Phase II ESA activities were field screened using a PID for the potential presence of VOCs. Results of the field screening were recorded on the test pit and soil boring logs in Appendices B and C, respectively. A summary of the field screening

measurements for the soil samples collected from the various test pits, borings and monitoring wells is presented below.

- TP-1 through TP-6 (Site-wide): 0 ppm;
- GSB-1 and GSB-2 (Former exterior drum storage area): 0 ppm;
- GSB-3 and GSB-4 (Former hazardous materials storage and possible UST): 0 to 2.3 ppm;
- GSB-5 and GSB-6 (Active UST): 0 ppm;
- GSB-7 through GSB-9 (Three closed in place USTs): 0.5 to 245 ppm;
- GSB-10 and GSB-11 (Former press pits): 0 to 5.9 ppm;
- GSB-12 and GSB-13 (Closed in place UST and possible additional UST): 0.2 to 6.1 ppm
- GSB-14 (Onsite septic system): 0 to 6.6 ppm;
- MW-1 (Upgradient Well): 0 ppm;
- MW-2 (Downgradient of press pits, storage areas and possible UST): 0 to 1651 ppm;
- MW-3 (Downgradient of various USTs): 0.5 to 6.5 ppm;
- MW-4 (Downgradient of various USTs): 0 to 9.5 ppm;
- MW-5 (Downgradient of former gasoline UST): 0 ppm;
- MW-6 (Downgradient of press pits, storage areas and possible UST): 0 ppm; and
- MW-7 (Downgradient of storage areas and possible UST): 0 ppm.

As indicated above, soil samples exhibiting elevated PID readings were limited to four locations including borings GSB-7 through GSB-9 and monitoring well MW-2. Soil borings GSB-7 through GSB-9 were located in the southwestern corner of the building in the vicinity of three closed in place USTs and the former blending room. No odors or staining were noted on soil samples from GSB-7 or GSB-8 installed adjacent to the USTs; however, an unknown solvent-type odor was noted on soil samples in GSB-9 installed within the blending room. Monitoring well MW-2 was located in the northeastern portion of the Site downgradient of the building. The only elevated PID reading noted at this location (1651 ppm) was limited to the 30 to 32 foot sample, which also exhibited petroleum odors and staining. All other soil samples from MW-2 as well as all soil samples from the remaining test pits, soil borings and wells installed during Delta's Phase II ESA activities were less than 10 ppm. In order to further evaluate the elevated PID readings, soil samples from depth intervals exhibiting the highest PID readings at each of the four locations were selected for laboratory analysis.

3.3 Analytical Results

A total of 25 soil samples and seven groundwater samples were collected for various laboratory analyses

during Delta's Phase II ESA activities (Table 2-2). The following paragraphs summarize the number of

samples collected and associated analytical results. The laboratory analytical reports for all soil and

groundwater samples collected during these activities are presented in Appendices D and E, respectively.

3.3.1 Soil

VOCs and VOC TICs

All 25 soil samples collected during Delta's Phase II ESA activities were submitted for VOC analysis. The

analytical results for these samples are summarized on Table 3-2. As indicated in the table, one or more

VOCs were detected in each of the 25 samples; however, none of the reported concentrations exceeded

the New Hampshire Department of Environmental Services (NHDES) Remediation Standards for these

compounds in soil.

Based on field observations at a number of the locations (i.e., odors, staining, elevated PID readings,

etc.), historic operations conducted onsite and the relatively low concentrations of target compounds

identified during the VOC analysis, all 25 samples were also analyzed for VOC TICs. The analytical

results for VOC TICs are depicted on Figure 3-3. As indicated in the figure, in 21 of the 25 samples VOC

TICs were reported as either not detected or hexane, a likely laboratory artifact, was the only reported

VOC TIC. Of the four remaining samples, only sample MW-2 (30-32') shows somewhat elevated

concentrations (24,000 to 69,000 parts per billion (ppb)) of ten VOC TICs. The majority of these VOC

TICs could not be conclusively identified and there were no NHDES Remediation Standards available for

comparison purposes. According to laboratory personnel, based on the retention time, the VOC TICs

detected in this sample appeared to most closely resemble degraded gasoline; however, this could not be

confirmed.

SVOCs & DMF

Of the 25 soil samples collected during Delta's Phase II ESA activities, 23 were submitted for SVOC and

DMF analysis. The analytical results for these samples are summarized on Table 3-2. As indicated in the

table, one or more SVOCs were detected in 21 of the 23 samples; however, none of the reported

Phase II Environmental Site Assessment Report

Cookson Electronics - Polyclad Laminates

Delta Project No. 8A0704268P

10 April 2008

Page 25

concentrations exceeded the NHDES Remediation Standards for these compounds in soil. DMF was not

detected in any of these samples.

PCBs

Of the 25 soil samples collected during Delta's Phase II ESA activities, 21 were submitted for PCB analysis.

The analytical results for these samples are summarized on Table 3-2. As indicated in the table, PCBs

were detected in only three of the 21 samples; however, none of the reported concentrations exceeded the

NHDES Remediation Standards for these compounds in soil.

Metals

Priority pollutant metals analysis was conducted on 21 of the 25 soil samples submitted during these

Phase II ESA activities. The analytical results for these samples are summarized on Table 3-2. As

indicated in the table, a number of metals were detected in each of the 21 samples; however, none of the

reported concentrations exceeded the NHDES Remediation Standards for metals in soil.

3.3.2 Groundwater

VOCs and VOC TICs

All seven groundwater samples collected during Delta's Phase II ESA activities were submitted for VOC

analysis. The analytical results for these samples are summarized on Table 3-3 and are depicted on

Figure 3-4. As indicated in the table, one or more VOCs were detected in five of the seven samples;

however, none of the reported concentrations exceeded the NHDES Ambient Groundwater Quality

Standards (AGQS) for these compounds in groundwater.

For the same reasons described for the soil samples, all seven groundwater samples were also analyzed

for VOC TICs. The analytical results for VOC TICs are depicted on Figure 3-4. As indicated in the figure,

one or more VOC TICs were reported in three of the seven samples; however, none of the concentrations

are considered to be elevated and there were no NHDES AGQS available for comparison purposes.

SVOCs & DMF

All seven groundwater samples collected during Delta's Phase II ESA activities were submitted for SVOC

and DMF analysis. The analytical results for these samples are summarized on Table 3-2. As indicated in

the table, one or more SVOCs were detected in all seven samples; however, none of the reported

concentrations exceeded the NHDES AGQS for these compounds in groundwater. DMF was not detected

in any of these samples.

PCBs

PCB analysis was conducted on all seven groundwater samples submitted during these Phase II ESA

activities. The analytical results for these samples showed that PCBs were not detected in any of the

groundwater samples.

Metals

Priority pollutant metals analysis was conducted on all seven groundwater samples submitted during these

Phase II ESA activities. The analytical results for these samples showed that metals were not detected in

any of the groundwater samples.

4.0 CONCLUSIONS

Delta completed a Phase II ESA at the Site including additional historical due diligence tasks as well as

GPR surveys, soil and groundwater investigative activities and completion of an ALTA survey for the

Cookson Property. The purpose of this Phase II ESA was to further evaluate specific RECs and/or

HRECs identified during a previous Phase I EA completed by Delta in 2005 as well as features of

potential concern identified during a site meeting in January 2007. In addition, GPR survey grids and

intrusive investigations were completed to evaluate whether these concerns and/or historic site operations

had impacted subsurface soil and/or groundwater quality. The following paragraphs present Delta's

conclusions based on the findings of the various tasks completed during the course of this Phase II ESA.

4.1 Features of Potential Environmental Concern

A number of RECs, HRECs and other features of potential environmental concern were identified during

Delta's Phase I EA as well as during an onsite meeting conducted in January 2007. These items are

presented below along with Delta's conclusions pertaining to these items. Specific conclusions regarding

these concerns based on the analytical results for various soil and groundwater samples collected during

the intrusive activities are presented in Sections 4.2 and 4.3, respectively.

Former/Existing USTs: According to available information, as many as ten former and/or existing USTs were identified onsite as discussed below. Information pertaining to these USTs is presented below.

- UST-1: This tank was identified during Delta's Phase I EA and was reported as removed from the Site and replaced by UST-7 (Figure 2-1). No further pertinent information for UST-1 was available during Delta's Phase II ESA. Delta concludes that UST-1 was removed from the Site and was properly closed in accordance with NHDES requirements.
- UST-2, UST-3 and UST-4: These tanks were reported as closed in place during Delta's Phase I EA; however, the reported location of these tanks was inaccurate. According to the GPR survey, these tanks were situated end to end and were still present under the southwestern corner of the building (Figure 2-1). Delta concludes that these USTs remain onsite and were properly closed in place in accordance with NHDES requirements.
- UST-5: During Delta's Phase I EA, this tank was reported as closed in place or removed from the
 Site but the actual fate of this tank could not be confirmed at that time. According to the GPR
 survey in this area, no UST was present at this location; however, re-worked soil was identified
 suggesting that the tank had been removed. These findings were subsequently confirmed during
 test pit excavation activities, which showed re-worked soil and no UST. Delta concludes that this
 UST has been removed; however, it appears that this tank was not properly closed in accordance
 with NHDES requirements.
- UST-6: During Delta's Phase I EA, this tank was reported as closed in place or removed from the Site but the actual fate of this tank could not be confirmed at that time. According to the GPR survey in this area, a large UST was present at this location suggesting that this tank was still present onsite (Figure 2-1). Delta concludes that this UST remains onsite; however, it appears that this tank was not properly closed in accordance with NHDES requirements.
- UST-7: As indicated above, this tank was reportedly installed as a replacement for UST-1. At the
 time of the Phase II ESA, this UST was still present onsite; however, the tank had reportedly
 been cleaned out and was inactive. Delta concludes that this UST remains onsite and that the
 presence of this tank appears to be in compliance with current NHDES requirements.
- UST-8: This UST was identified along the northwestern side of the manufacturing building on a 1964 Sanborn map reviewed during Delta's Phase I EA. No further pertinent information was available during Delta's Phase I EA or Phase II ESA activities. According to the GPR survey and subsequent soil borings installed in this area (GSB-12 and GSB-13), no UST was present at this location. Delta concludes that this tank was no longer present onsite; however, the actual former presence of this tank could not be confirmed.
- UST-9: This UST was identified along the northeastern side of the original building (i.e., under the warehouse area of the existing manufacturing building) on a 1929 Sanborn map reviewed during Delta's Phase II ESA activities. According to the GPR survey as well as subsequent soil borings/groundwater monitoring wells installed in this area (GSB-4, MW-6 and MW-7), no UST was present at this location. Delta concludes that this tank was no longer present onsite; however, the actual former presence of this tank could not be confirmed.
- UST-10: This potential presence of this UST was initially identified during the January 2007 onsite meeting when a suspected vent pipe was noted along the southeastern side of the manufacturing building. According to the subsurface pipe location efforts and GPR survey results, no UST was identified outside the building adjacent to the vent pipe as originally thought; however, an abandoned UST approximately 1,000-gallons in capacity was identified beneath the building (Figure 2-3). No further information pertaining to this UST was available. Delta concludes that the vent pipe along the southeastern side of the building was connected to a

Page 28

previously unknown UST under this portion of the building. The exact purpose, contents and integrity of this UST are currently unknown.

Former Drum/Hazardous Material Storage Operations: According to available information, empty drums

were stored on wood pallets in a storage building on the northeastern side of the manufacturing building.

This building reportedly had a dirt floor with no secondary containment. In addition, hazardous materials

were also reportedly stored in the warehouse area at the northeastern end of the building. Based on the

findings and observations for soil borings (GSB-3 and GSB-4) and/or groundwater monitoring wells (MW-

6 and MW-7) installed in these areas, Delta concludes that the former drum and/or hazardous materials

storage areas do not appear to have impacted onsite soil or groundwater quality.

Historic Site Operations: Historical information generated during both the Phase I EA and Phase II ESA

indicated that the property was initially used for leather tannery operations from as early as the 1920s

through the late 1970s. Based on a review of available historic information as well as the findings and

observations for the various investigative activities (i.e., GPR surveys, test pits, soil borings and

groundwater monitoring wells) conducted onsite, Delta concludes that no substantial historic onsite

filling/disposal operations occurred onsite. Further, observations made during test pit excavation and soil

boring/monitoring well installation indicated that historic operations do not appear to have impacted onsite

soil or groundwater quality.

Former Press Pits: Two concrete lined former press pits were located in the manufacturing building and

petroleum staining was noted on the concrete within each pit. A closer inspection of the pits conducted

during the Phase II ESA activities showed no obvious cracks or holes and attempts to core through the

concrete on the bottom of each pit showed that the concrete was more than one foot thick. Based on

these findings as well as observations for soil borings (GSB-10 and GSB-11) and/or one groundwater

monitoring well (MW-6) installed in this area, Delta concludes that the former press pits do not appear to

have impacted onsite soil or groundwater quality.

4.2 Soil

Overall, soil quality beneath the Site has been unaffected by the above-mentioned features of potential

environmental concern or historic site operations. In general, observations and field screening results

during test pit excavation and soil boring/groundwater monitoring well drilling activities showed no

significant impacts to subsurface soil quality. Analytical results for the soil samples collected during

Delta's Phase II ESA activities showed the presence of some VOCs, VOC TICs, SVOCs, PCBs and/or

metals; however, none of the reported concentrations exceeded applicable NHDES Remediation Standards. In addition, it is important to note that the majority of the reported organic compound concentrations were either at or below their respective reporting limits or were also detected in the corresponding blank sample and, as such, are considered estimated. The only exceptions to this were two localized areas as further described below.

- Blending room (southwestern corner of the building): During the installation of boring GSB-9, an unknown solvent-type odor and PID readings up to 245 ppm were noted on soil samples from this location. Boring GSB-9 was installed in a former blending room and in the vicinity of UST-2, UST-3 and UST-4. Two additional borings (GSB-7 and GSB-8) were also installed in this area closer to these USTs (Figure 2-4); however, no odors, staining or elevated PID readings were noted. Analytical results for the soil samples collected from these three locations showed that none of the analytical parameters were detected above their respective NHDES Remediation Standards. Delta concludes that the exact source of the odors and PID readings noted in GSB-9 could not be confirmed; however, based on observations and analytical results, the presence of these odors and PID readings were likely limited in extent and do not appear to have had a significant impact on subsurface soil quality.
- MW-2 (northeastern portion of Parcel 2): During the drilling of monitoring well MW-2, petroleum odors and staining as well as a PID reading of 1651 ppm were noted on one soil sample collected from this location at 30 to 32 feet below ground surface. No odors, staining or elevated PID readings were noted in any of the other soil samples collected at this location. Further, no odors, staining or elevated PID readings were noted in any of the soil samples, including samples from approximately 30 to 32 feet below ground surface, collected from wells MW-5, MW-6 or MW-7 installed upgradient of MW-2. Analytical results for the soil sample collected from MW-2 at 30 to 32 feet showed that while some VOCs, VOC TICs, SVOCs and PCBs were detected, none of the reported concentrations exceeded their respective NHDES Remediation Standards. A closer review of the VOC TICs reported in this sample indicated that these compounds were most closely associated with a degraded gasoline. Delta concludes that the exact source of the petroleum constituents noted in MW-2 at 30 to 32 feet below ground surface could not be confirmed; however, based on observations and analytical results, the presence of these constituents were likely limited in extent and do not appear to have had a significant impact on subsurface soil quality.

4.3 Groundwater

Overall, groundwater quality beneath the Site has been unaffected by the above-mentioned features of potential environmental concern or historic site operations. In general, observations and field screening results during groundwater monitoring well installation activities showed no significant impacts to groundwater quality. Analytical results for the groundwater samples collected during Delta's Phase II ESA activities showed the presence of some VOCs, VOC TICs and SVOCs; however, none of the reported concentrations exceeded applicable NHDES AGQS. In addition, it is important to note that the majority of the reported organic compound concentrations were either at or below their respective reporting limits or were also detected in the corresponding blank sample and, as such, are considered estimated.

The only exception to this was encountered at MW-2 in the northeastern portion of Parcel 2. As stated above, petroleum odors, staining and an elevated PID reading were noted on the soil sample from 30 to 32 feet below ground surface at this location. During well development, purging and sampling activities, a petroleum sheen was noted on the groundwater from this well; however, analytical results for the groundwater sample collected from MW-2 showed that none of the analytical parameters were detected above their respective NHDES AGQS. Similar to the soil sample results discussed above, a closer review of the VOC TICs associated with the groundwater sample from MW-2 also suggest the presence of degraded gasoline. Delta concludes that the exact source of the petroleum constituents in MW-2 could not be confirmed; however, based on observations and analytical results, the presence of these constituents were likely limited in extent and do not appear to have had a significant impact on groundwater quality.

5.0 RECOMMENDATIONS

Based on the results of the investigative activities conducted at the Site, Delta provides the following recommendations:

- The previously unknown UST associated with the vent pipe along the southeastern side of the building (UST-10) should be further evaluated to assess the integrity of this tank, identify the contents and assess whether the presence of this UST has impacted subsurface soil quality. Ultimately, this UST should either be closed in place or removed in accordance with NHDES requirements; and
- ➤ To the extent possible, proper regulatory closure in accordance with NHDES requirements should be pursued for UST-5 (removed) and UST-6 (closed in place) by notifying NHDES of the results of the investigations completed in these areas.

With the exception of the items noted above, no further investigative or remedial activities are recommended.

6.0 REMARKS

The recommendations contained in this report represent Delta's professional opinions based upon the currently available information and are arrived at in accordance with currently acceptable professional standards. This report is based upon a specific scope of work requested by the client. The Contract between Delta and its client outlines the scope of work, and only those tasks specifically authorized by that contract or outlined in this report were performed. This report is intended only for the use of Delta's Client and anyone else specifically listed on this report. Delta will not and cannot be liable for unauthorized reliance by any other third party. Other than as contained in this paragraph, Delta makes no express or implied warranty as to the contents of this report.

This report was prepared by:

DELTA CONSULTANTS

Scott K. Bryant, F. G. Senior Project Manager

Reviewed by:

Dan Pierce, P

Senior Consultant

cc:

Paul Durkin - Cookson Electronics

Table 2-1
Groundwater Monitoring Well Construction Details
Cookson Electronics - Polyclad Laminates - Franklin, New Hampshire
Delta Project No. 8B0704268P

Well ID	ID (ft. bgs) (ft.)		Ground Elevation (ft.)	Screened Interval Elevation (ft. bgs)	Sandpack Interval Elevation (ft. bgs)	Bentonite Seal Interval Elevation (ft. bgs)
MW-1	37.00	335.41	335.64	298.94-308.94	298.64-311.14	311.14-314.14
MW-2	33.92	334.89	335.14	301.52-311.52	301.22-314.02	314.02-317.02
MW-3	36.40	334.65	334.95	298.85-308.85	298.55-311.55	311.55-314.55
MW-4	36.80	337.17	337.45	300.95-310.95	310.65-313.65	313.65-316.65
MW-5	35.52	335.38	335.58	300.36-310.36	300.06-312.86	312.86-315.86
MW-6	39.24	335.18	335.42	296.48-306.48	296.18-308.98	308.98-311.98
MW-7	39.56	335.31	335.49	296.23-306.23	295.93-308.73	308.73-311.73

Notes:

Top of casing and ground elevations obtained from a site survey conducted by Darbyshire & Associates in 2007

Abbreviations:

bgs - below ground surface

ft - feet

Table 2-2

Summary of Sample Analytical Parameters Cookson Electronics - Polyclad Laminates - Franklin, NH Delta Project No. 8A0704268P

			SOIL AN	ALYSES		(GROUNDWATE	R ANALYSE	S
Test Pit/Boring/Well	Sample Depth (ft)	VOCs/VOC TICs	SVOCs and DMF	PCBs	PP Metals	VOCs/VOC TICs	SVOCs and DMF	PCBs	PP Metals
SOIL									
TP-1	10-12	Х	Х	Х	Х	NA	NA	NA	NA
TP-2	10-12	Х	Х	Х	Х	NA	NA	NA	NA
TP-3	8-10	Х	Х	Х	Х	NA	NA	NA	NA
TP-4	10-12	Х	Х	Х	Х	NA	NA	NA	NA
TP-5	3-4	Х	Х	Х	Х	NA	NA	NA	NA
TP-6	6-8	Х	Х	Х	Х	NA	NA	NA	NA
GSB-1	18-20	Х	NS	NS	NS	NA	NA	NA	NA
GSB-2	16-18	Х	NS	NS	NS	NA	NA	NA	NA
GSB-3	10-12	Х	Х	Х	Х	NA	NA	NA	NA
GSB-4	8-10	Х	Х	Х	Х	NA	NA	NA	NA
GSB-5	12-14	Х	Х	Х	Х	NA	NA	NA	NA
GSB-6	10-12	Х	Х	Х	Х	NA	NA	NA	NA
GSB-7	10-12	Х	Х	Х	Х	NA	NA	NA	NA
GSB-8	12-14	Х	Х	Х	Х	NA	NA	NA	NA
GSB-9	7-9	Х	Х	Х	Х	NA	NA	NA	NA
GSB-10	10-12	Х	Х	NS	NS	NA	NA	NA	NA
GSB-11	12-14	Х	Х	NS	NS	NA	NA	NA	NA
GSB-12	12-14	Х	Х	Х	Х	NA	NA	NA	NA
GSB-13	10-12	Х	Х	Х	Х	NA	NA	NA	NA
GSB-14	14-16	Х	Х	Х	Х	NA	NA	NA	NA
MW-1	8-10	Х	Х	Х	Х	NA	NA	NA	NA
MW-2	10-12	Х	Х	Х	Х	NA	NA	NA	NA
MW-2	30-32	Х	Х	Х	Х	NA	NA	NA	NA
MW-3	10-12	Х	Х	Χ	Х	NA	NA	NA	NA
MW-4	8-10	Х	Х	Х	Х	NA	NA	NA	NA
GROUNDWATER									
MW-1	NA	NA	NA	NA	NA	Х	Х	Х	Х
MW-2	NA	NA	NA	NA	NA	Х	Х	Х	Х
MW-3	NA	NA	NA	NA	NA	Х	Х	Х	Х
MW-4	NA	NA	NA	NA	NA	Х	Х	Х	Х
MW-5	NA	NA	NA	NA	NA	Х	Х	Χ	Х
MW-6	NA	NA	NA	NA	NA	Х	Х	Х	Х
MW-7	NA	NA	NA	NA	NA	Х	Х	Х	Х

Abbreviations:

VOCs Volatile Organic Compounds

VOC TICs Volatile Organic Compound Tentatively Identified Compounds

SVOCs Semi-Volatile Organic Compounds

DMF Dimethyl Formamide
PCBs Polychlorinated Biphenyls
PP Metals Priority Polluntant Metals

X Sample analyzed for these parameters

NS Not Sampled NA Not Applicable

Table 3-1 Summary of Groundwater Elevations June and November 2007

Cookson Electronics - Polyclad Laminates - Franklin, New Hampshire Delta Project No. 8A0704268P

Well ID	Date	Total Depth (ft.)	Top of Casing Elev. (ft)	Depth to Water (ft.)	Water Table Elev. (ft.)	Date	Total Depth (ft.)	Top of Casing Elev. (ft)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW-1	6/21/07	36.81	335.41	27.82	307.59	11/8/07	37.00	335.41	33.57	301.84
MW-2	6/21/07	33.96	334.89	27.76	307.13	11/8/07	33.92	334.89	DRY	UNKNOWN
MW-3	6/21/07	36.31	334.65	27.54	307.11	11/8/07	36.40	334.65	34.38	300.27
MW-4	6/21/07	36.29	337.17	28.95	308.22	11/8/07	36.80	337.17	33.85	303.32
MW-5	NA	NA	NA	NA	NA	11/8/07	35.52	335.38	31.12	304.26
MW-6	NA	NA	NA	NA	NA	11/8/07	39.24	335.18	35.17	300.01
MW-7	NA	NA	NA	NA	NA	11/8/07	39.56	335.31	35.45	299.86

Notes:

Top of casing elevations based on site survey completed by Darbyshire & Associates in 2007 NA Not Available - well not installed at the time of sample collection

Abbreviations:

bgs - below ground surface

ft - feet

Table 3-2 Summary of Analytical Results - Soil Sampling Detected Compounds and Analytes Sampling Dates: June 4-8, 2007 Cookson Electronics - Polyclad Laminates - Franklin, NH Delta Project No. 8A0704268P

	I	SAMPLE IDENTIFICATION AND DEPTH (ft)																								
	NHDES Soil Remediation	GSB 1	GSB-2	GSB 3	GSB 4	GSB 5	GSB 6	GSB 7	GSB 8	GSB 9	GSB 10	GSB 11	GSB 12	GSB 13	GSB 14	MW-1	MW-2	MW-2	MW-3	MW-4	TP-1	TP-2	TP-3	TP-4	TP-5	TP-6
PARAMETER	Standards (ug/kg)	(18-20)	(16-18)	(10-12)	(8-10)	(12-14)	(10-12)	(10-12)	(12-14)	(7-9)	(10-12)	(12-14)	(12-14)	(10-12)	(14-16)	(8-10)	(10-12)	(30-32)	(10-12)	(8-10)	(10-12)	(10-12)	(8-10)	(10-12)	(3-4)	(6-8)
VOCs (ug/kg)																										
Acetone	75000	5	5	ND	6	ND	ND	8	5	ND	9	ND	ND	ND	6	6	5	23	ND	6	ND	ND	ND	ND	6	ND
Carbon Disulfide	460000	- 1	- 1	2	- 1	2	2	2	ND	- 1	2	5	2	- 1	2	2	2	10	1	2	2	2	2	2	2	2
Methylene Chloride	100	12	15	9	20	26	16	24	21	22	26	54	28	20	35	29	29	66	24	19	16	12	17	12	23	18
Ethylbenzene	140000	ND	ND	ND	ND	ND	ND	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	1000000	ND	ND	ND	ND	1	ND	1	ND	- 1	- 1	4	1	ND	2	1	1	2	1	1	ND	ND	ND	ND	ND	ND
Total Xylenes	500000	ND	ND	ND	ND	ND	ND	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SVOCs (ug/kg)																										
Acenapthene	340000	NA	NA	ND	ND	ND	ND	14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	1000000	NA	NA	ND	ND	ND	ND	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	25	ND	ND	ND
Benzo(a)anthracene	700	NA	NA	ND	ND	ND	ND	120	ND	ND	ND	ND	ND	ND	17	ND	ND	ND	ND	ND	18	ND	180	ND	58	ND
Benzo(b)fluoranthene	700	NA	NA	ND	ND	ND	ND	140	ND	ND	ND	ND	ND	ND	22	ND	ND	ND	ND	ND	13	ND	180	ND	ND	ND
Benzo(k)fluoranthene	4000	NA	NA	ND	ND	ND	ND	58	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	75	ND	ND	ND
Benzo(ghi)perylene	960000	NA	NA	ND	ND	ND	ND	70	ND	ND	ND	ND	ND	ND	10	ND	ND	ND	ND	ND	9	ND	100	ND	ND	ND
Benzo(a)pyrene	700	NA	NA	ND	ND	ND	ND	100	ND	ND	ND	ND	ND	ND	10	ND	ND	ND	ND	ND	10	ND	150	ND	ND	ND
Bis(2-ethylhexyl) phthalate	NS	NA	NA	ND	ND	ND	59	ND	ND	ND	ND	ND	ND	ND	ND	270	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbazole	NS	NA	NA	ND	ND	ND	ND	22	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	ND	ND	ND
Chrysene	44000	NA	NA	ND	ND	ND	ND	140	ND	ND	ND	ND	ND	ND	24	ND	ND	ND	ND	ND	9	ND	170	ND	34	ND
Dibenzo(a,h)anthracene	700	NA	NA	ND	ND	ND	ND	23	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	30	ND	ND	ND
2,4-Dimethylphenol	4000	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	190	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-octyl phthalate	NS	NA	NA	21	19	11	23	190	13	8	16	18	25	11	200	11	11	10	12	10	ND	ND	ND	ND	ND	16
Fluoranthene	960000	NA	NA	ND	ND	ND	ND	280	ND	ND	ND	ND	ND	ND	68	ND	ND	ND	ND	ND	19	ND	300	ND	73	ND
Fluorene	77000	NA	NA	ND	ND	ND	ND	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	700	NA	NA	ND	ND	ND	ND	62	ND	ND	ND	ND	ND	ND	9	ND	ND	ND	ND	ND	ND	ND	87	ND	ND	ND
Phenanthrene	960000	NA	NA	ND	ND	ND	ND	180	ND	ND	ND	ND	ND	ND	65	ND	ND	ND	ND	ND	10	ND	100	ND	53	ND
Pyrene	720000	NA	NA	ND	ND	ND	ND	210	ND	ND	ND	ND	ND	ND	49	ND	ND	ND	ND	ND	17	ND	260	ND	62	ND
Total Metals (ug/kg)																										
Arsenic	11000	NA	NA	ND	3300	ND	ND	3600	ND	ND	NA	NA	ND	ND	ND	2300	ND	2700	ND	3600	3400	ND	2600	2000	2600	ND
Beryllium	1000	NA	NA	710	ND	ND	ND	200	ND	ND	NA	NA	ND	ND	ND	200	ND	320	330	290	330	ND	480	ND	250	240
Chromium (III/VI)	1000000/130000	NA	NA	3000	3100	4600	4300	43700	4200	5000	NA	NA	4000	8200	7200	3100	7100	17700	5300	4000	5400	3500	6400	5900	21400	7000
Copper	NS	NA	NA	2800	3500	4800	4400	8400	2900	5400	NA	NA	4400	7400	6600	4100	4000	12800	5700	7700	9600	3800	5600	15200	9200	4100
Lead	400000	NA	NA	1900	2200	1700	1500	2600	1200	1600	NA	NA	1300	2100	5200	2800	2500	3400	2500	1800	3400	1300	11100	1800	7800	3100
Nickel	400000	NA	NA	3400	3800	4100	3800	5300	3200	3800	NA	NA	3300	11400	4400	5200	3900	14800	5500	5400	4400	2700	4700	5700	6200	4000
Zinc	1000000	NA	NA	10100	13600	10500	10700	16600	9200	10000	NA	NA	10200	15600	16900	14600	12800	32800	18000	14900	17800	7600	25800	13600	28700	14300
PCBs (ug/kg)																										
Aroclor 1248	1000.0	NA	NA	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	6.8	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1260	1000.0	NA	NA	ND	ND	ND	ND	5.4	ND	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.4	ND

Notes:
Note 1 Sources: NH Code of Administrative Rules - Chapter Env-Or 600, Table 600-2
Note 2 Concentrations that exceed identified standards are highlighted in bold.
Note 3 Number in parentheses in the sample label represent the depth of the sample.
VOCs: Volatile Organic Compounds
ND C
ug/kg Micrograms per kilogram or parts per billion
NS N

NA Compound or analyte not analyzed ND Compound or analyte not detected NS No standard available

DJ Secondary dilution factor
J At or below RL
B Found in blank
BJ At or below RL and found in blank

Table 3-3

Summary of Analytical Results - Groundwater Sampling Detected Compounds and Analytes

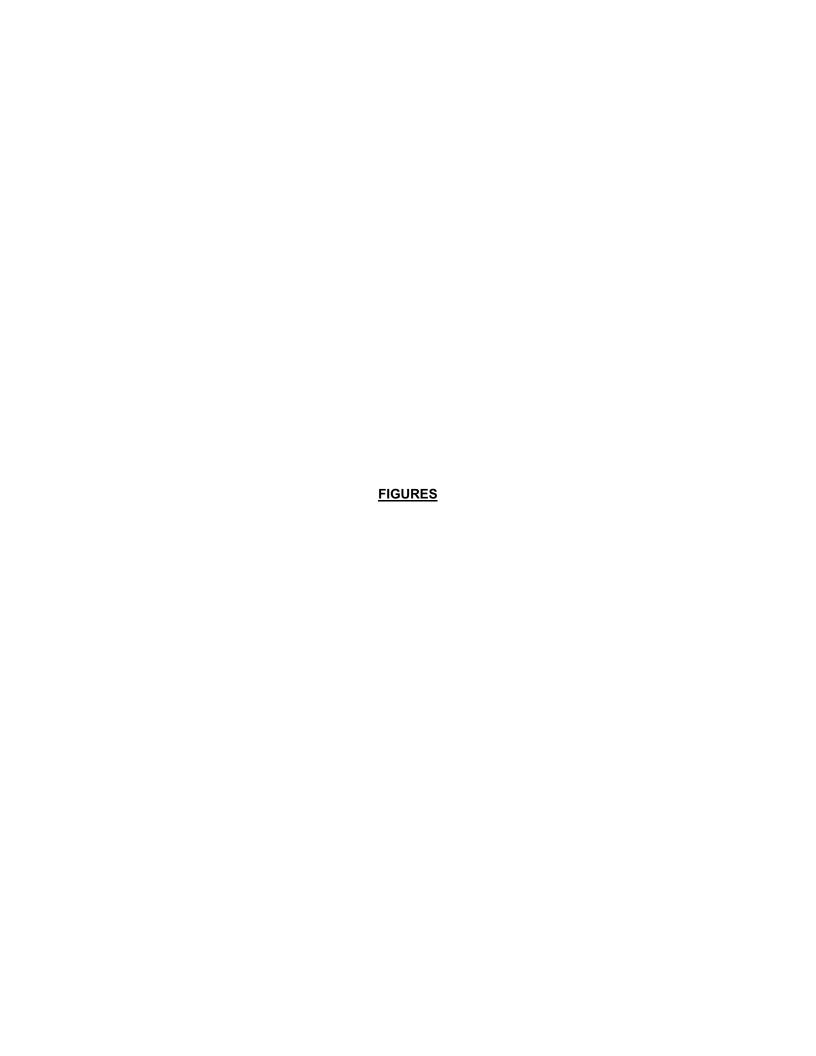
Sampling Dates: June 21, September 21 and November 8, 2007 Cookson Electronics – Polyclad Laminates – Franklin, NH

Delta Project No. 8A0704268P

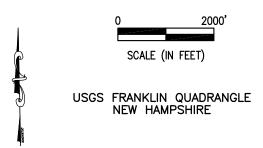
			SAMPI	E IDENTIFIC	CATION AND	DATE COLL	ECTED	
PARAMETER	NHDES Ambient Groundwater Quality Standards	MW-1 6/21/2007	MW-2 6/21/2007	MW-3 6/21/2007	MW-4 6/21/2007	MW-5 9/21/2007	MW-6 11/8/2007	MW-7 11/8/2007
VOCs (ug/L)								
Acetone	6,000	1.9	ND	ND	2.1	2.3*	ND	ND
MTBE	13	ND	ND	4.8	1.8	ND	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	0.44	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	0.52
SVOCs (ug/L)								
Bis(2-ethylhexyl)phthalate	NS	13	12	40	29	ND	ND	ND
Di-n-octyl phthalate	NS	0.9	0.5	0.4	0.6	ND	0.4	ND
Di-n-butyl phthalate	800	ND	ND	ND	ND	0.3	0.3	0.7
Fluoranthene	280	ND	ND	ND	ND	3.0	ND	ND
Pyrene	210	ND	ND	ND	ND	4.0	ND	ND

Notes:

Note 1 Source: NH Code of Administrative Rules - Chapter Env-Or 600, Table 600-1

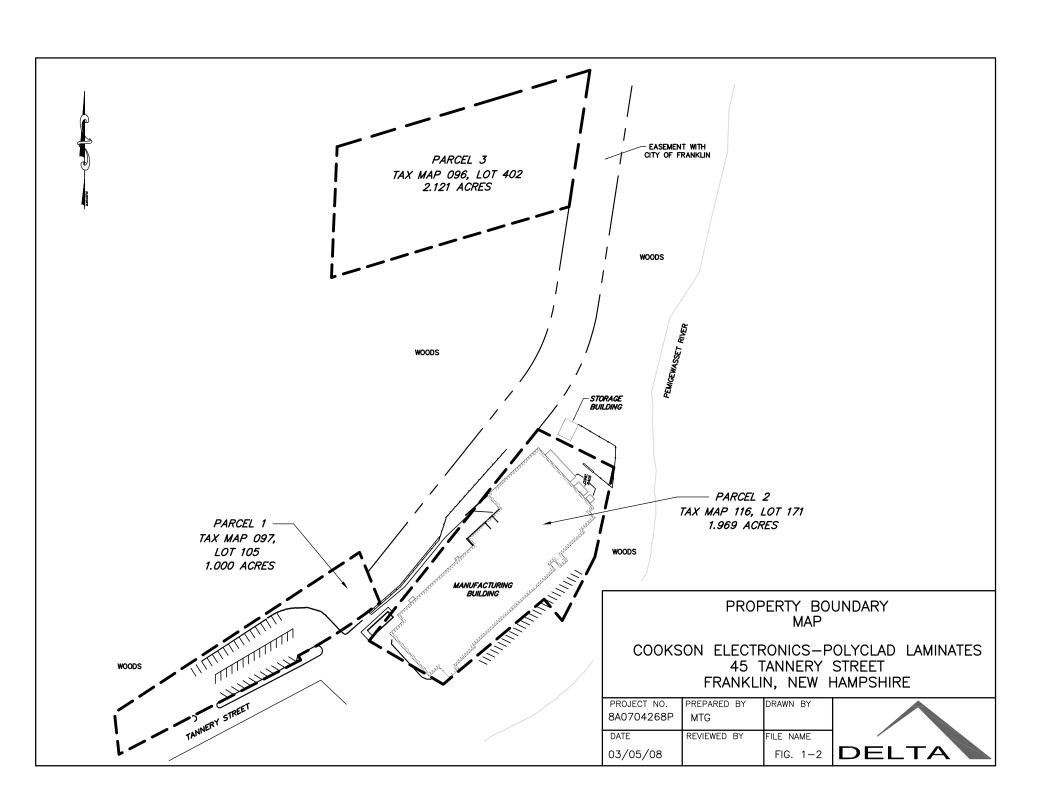

At or below RL At or below RL and found in blank

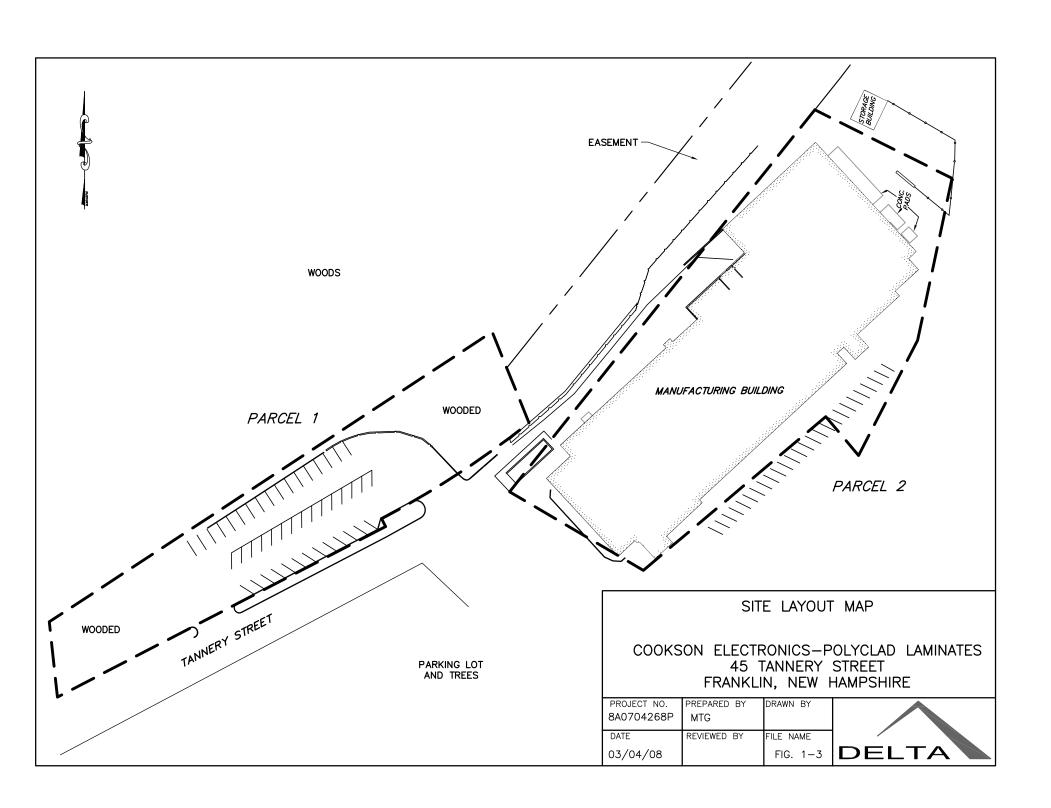
Note 2 Concentrations that exceed identified standards are highlighted in bold.

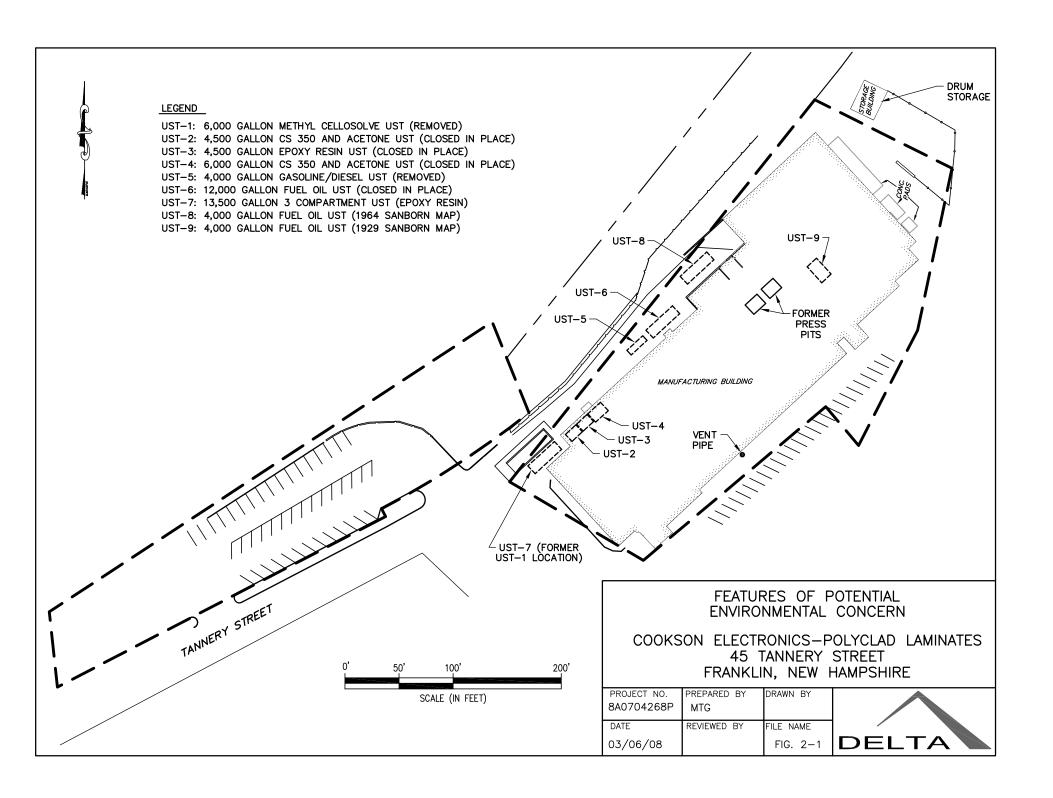

Note 3 * Acetone was reported in the Trip Blank associated with this sample at 3.2 ug/l such that the acetone concentration in this sample is likely erroneous.

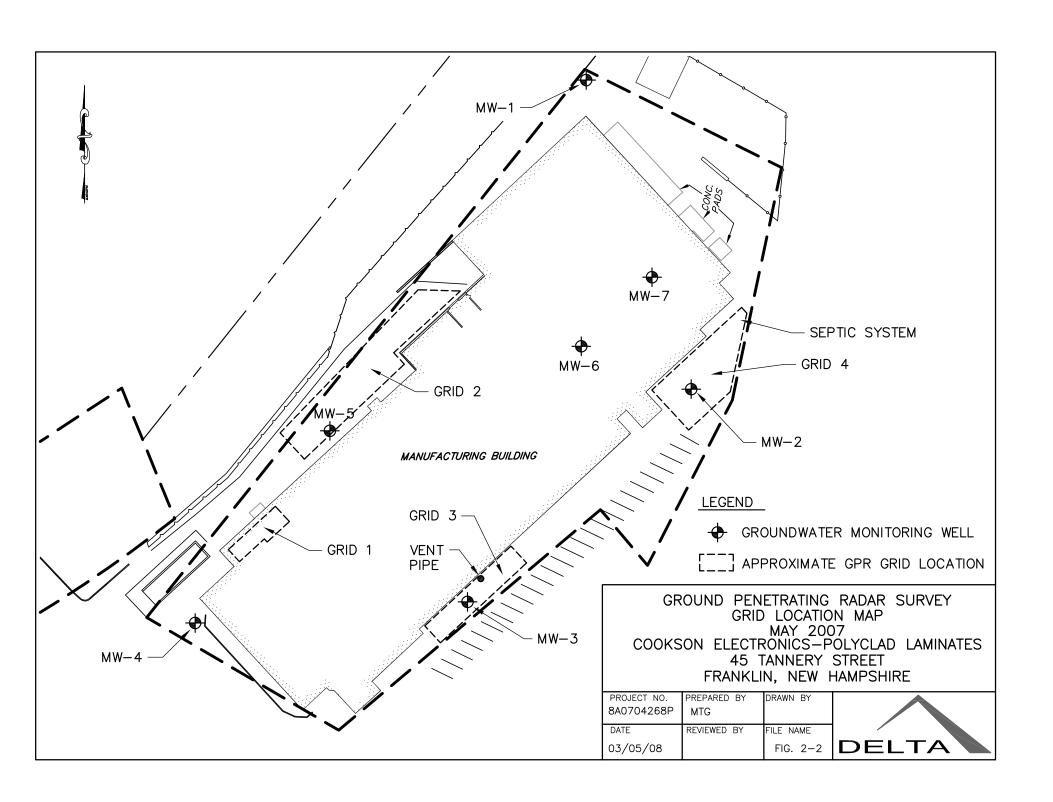
VOCs Volatile Organic Compounds SVOCs Semi-Volatile Organic Compounds ug/L Micrograms per liter or parts per billion NA Compound or analyte not analyzed ND Compound or analyte not detected

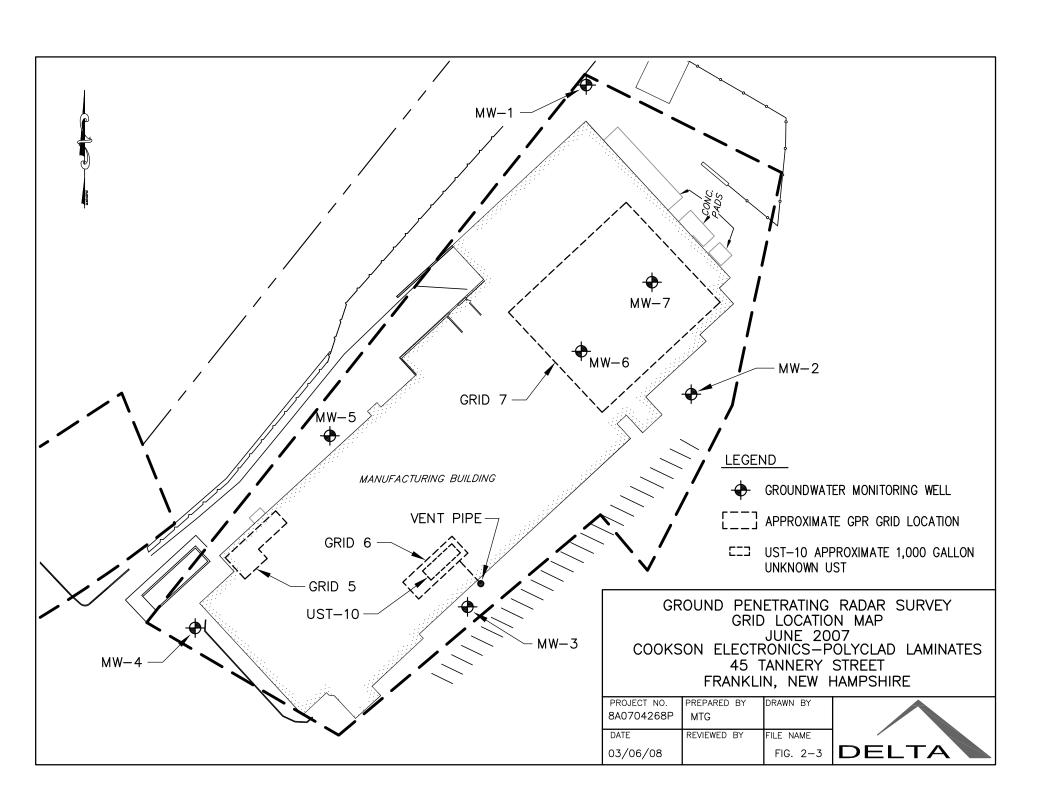
NS No standard available

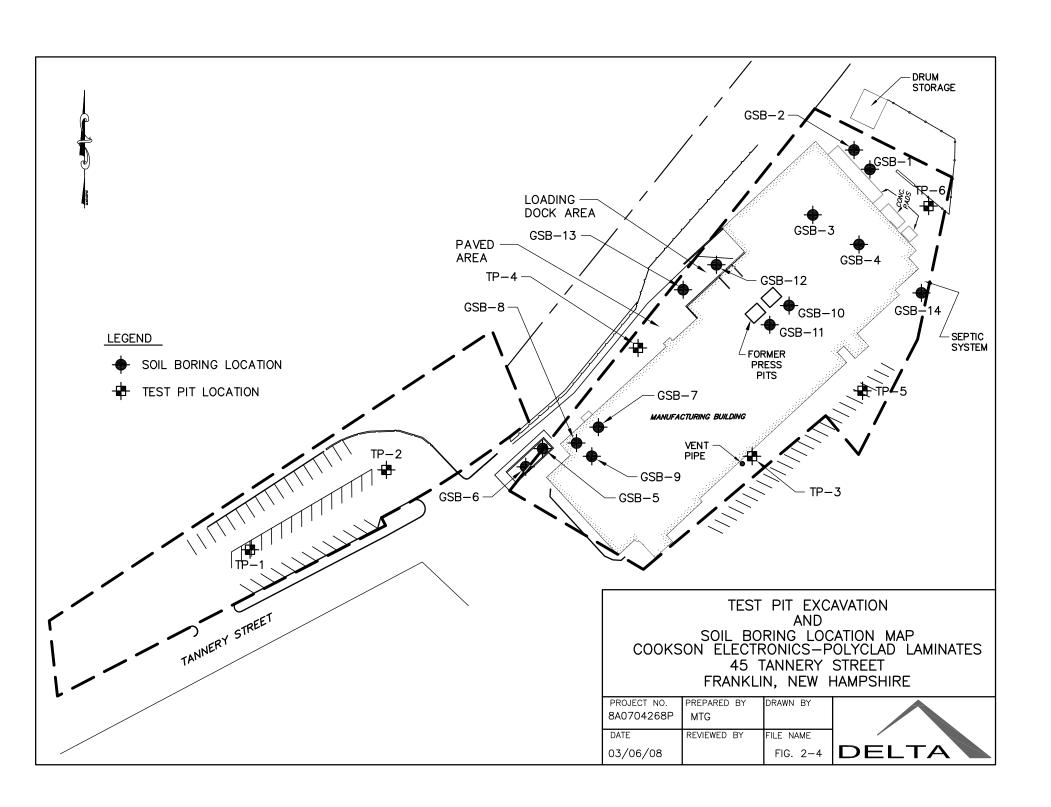


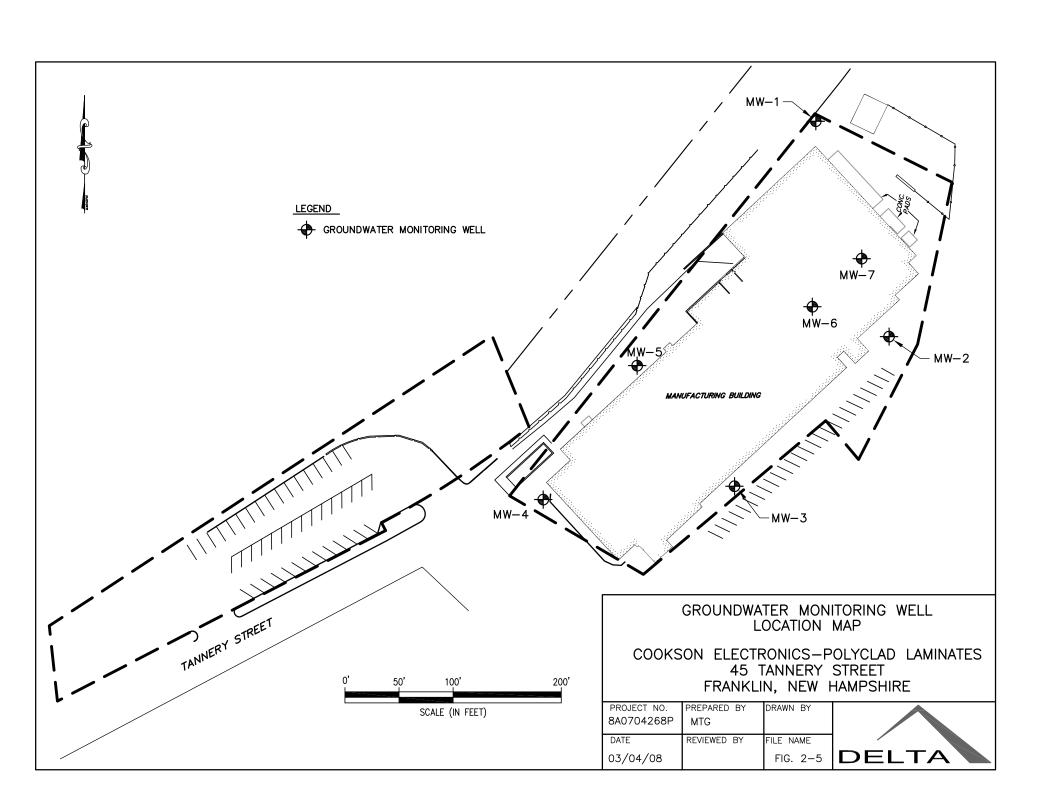

SITE LOCATION MAP

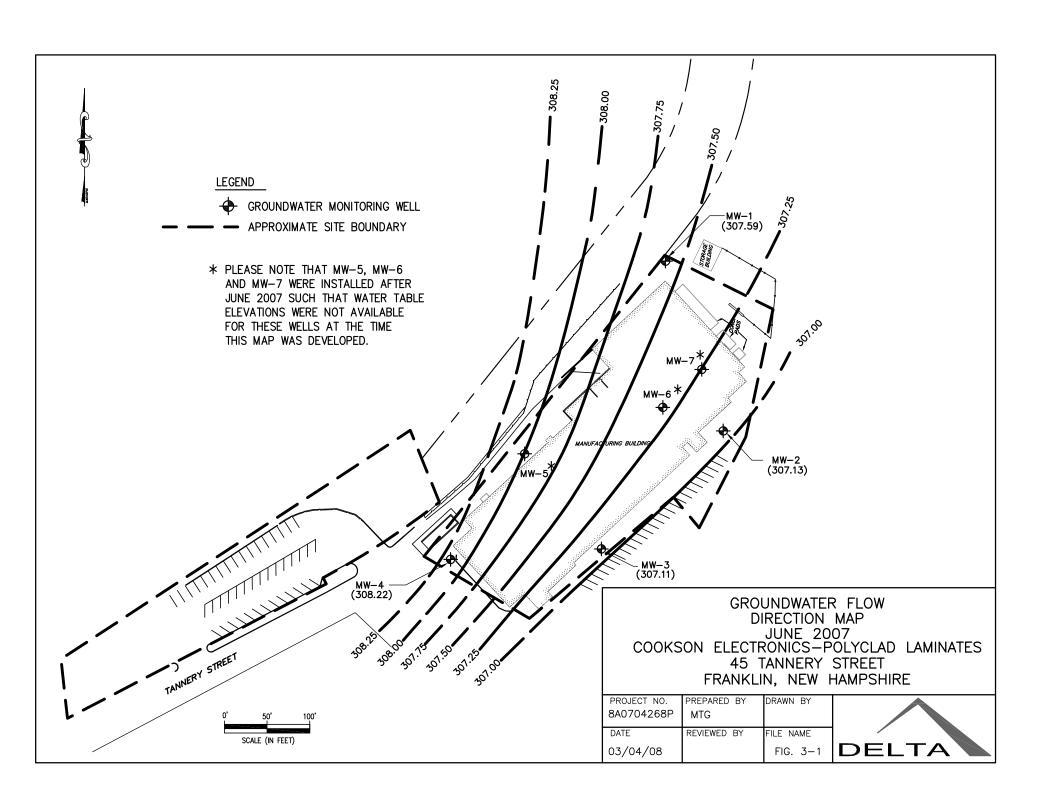

COOKSON ELECTRONICS—POLYCLAD LAMINATES
45 TANNERY STREET
FRANKLIN, NEW HAMPSHIRE


PROJECT NO. 8A0704268P	PREPARED BY MTG	DRAWN BY
DATE	REVIEWED BY	FILE NAME
02/29/08		FIG. 1-1

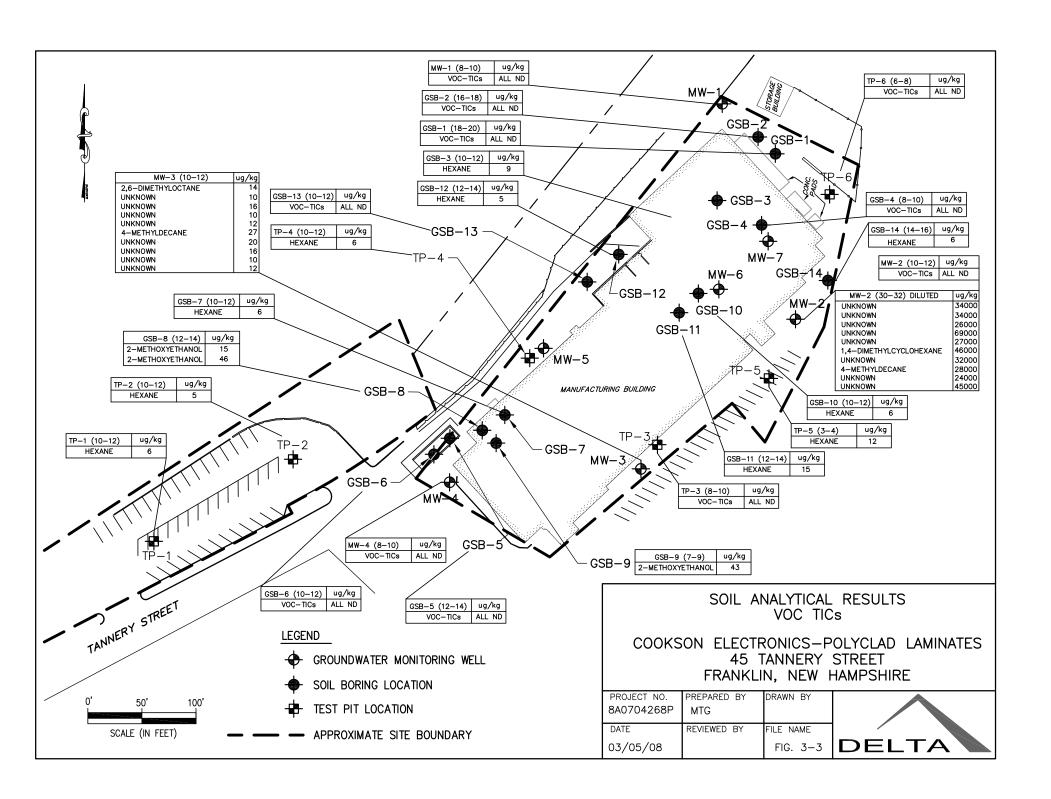


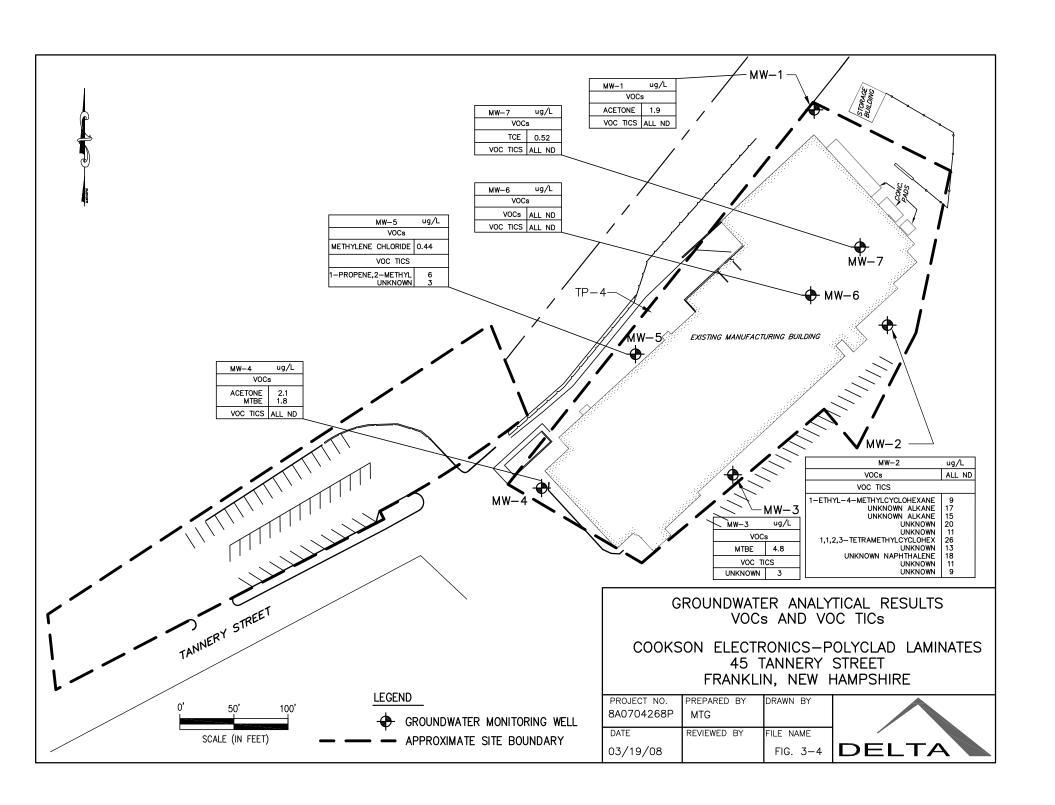


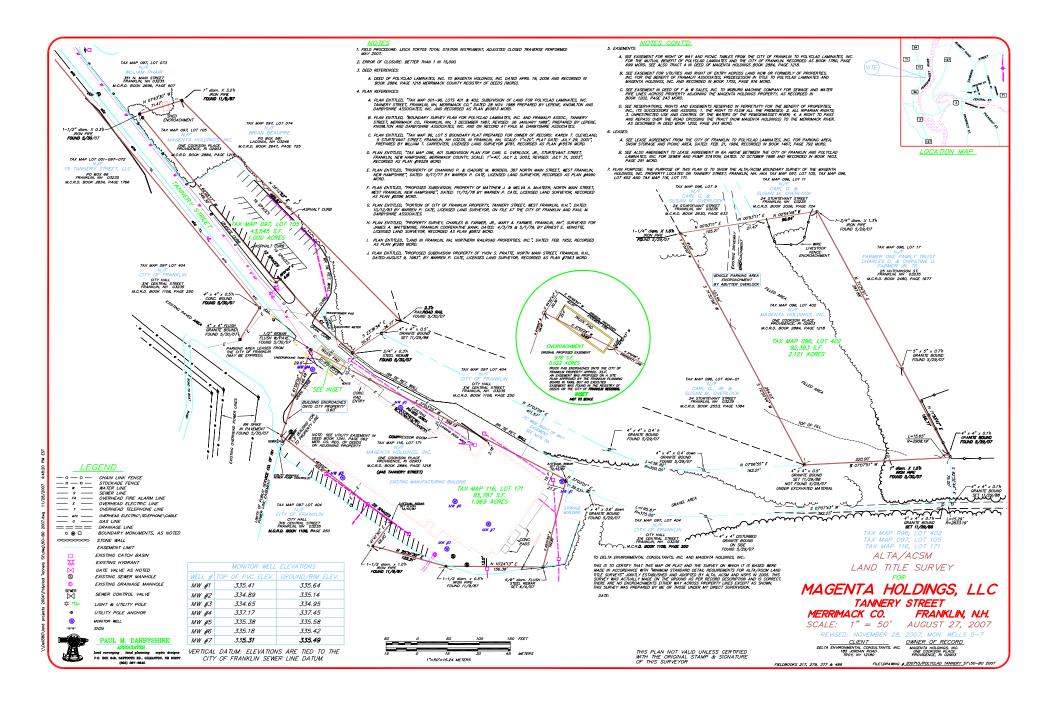












APPENDIX A

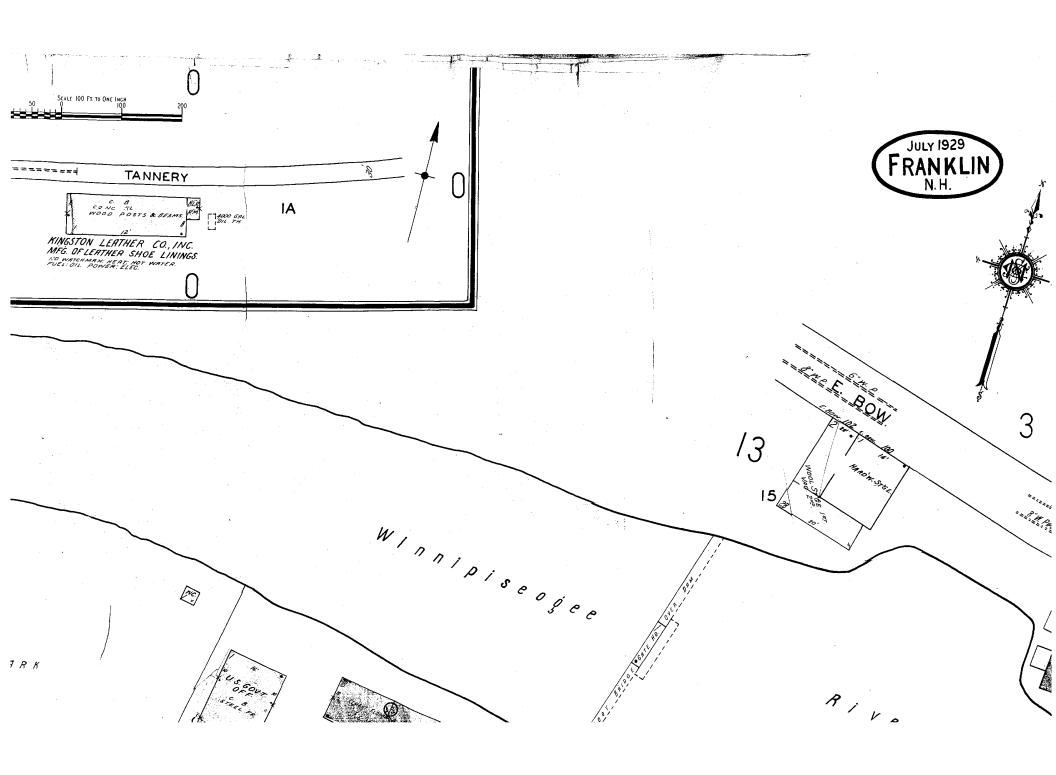
Miscellaneous Supplemental Historic Documentation

		<u> </u>	Manufactures		Franklin	HINH DUTY	reg
Batanan I	Product Name	Description	MATTERIAL CUSTOS	9.65音音: [17] [15] [15] [15] [15] [15] [15] [15] [15	\$35.7 <u>(22</u>	1 11 1	الأشي
CRIMINA	Product Name			Chemitech Specialities	A		
SHREILDEUTHER APPEA	Cab-O-Sii M5	Furned Silica	Cathot Corp.	Chemiech Specialities	A		
	Hi-8li T-152	Precipitated Silica	PPG Industry	Olioninosi operation	A		<u>l</u>
	Min-U-SN 5		US Silica		A		
	Cost-O-Sil 2400		GE Siliconee	D.N. Lukens Inc.	A		Γ.
Additive	Mistron C8	Telo	Luzenac	D.M. Lukata file.	A		
			Clarient		Ä	 	
	OP930		Tateumori Ltd.	Tetsumort USA	HI WATER	TELL SEE	1111
	Fuselex E-2	-9396449666966666666			Table 1	Å	A
		2-Methyl Imidazole	Degusea Corporation	Degusta	- ^-	A	N
	Z-1710	Z-pojetije (midezsio	Zeeland Chemical	Milter Stephenson		1 â	A
	BDMA	Benzyldimethylamine	Degusea AG	Deguista	Α	 ^	+~
	DICY	Dicyandlamide	Albemarte Corp.	DB Becker	A_	. 	+
	Ethacure 100		Air Products & Chemicals	Chemiech Specialties	A	 	+
Curing Agent	Imigure EMI-24			Harwick Standard	A	 	
Oding resur	Therm-Chek 705		Fелга Согр.	Meisel and Company	A	 	
	I Neutr-Cuer (02				! a	ļ	1
		ບບຮ	Huntsman	·	<u> </u>		-
	Aradur 976-1	(Diaminodiphenyl sulfone)	CONTROL SERVICE (C. 1963)				44
was in order to the constitute		世間開催用用用用原作的	Resolution	M F Regins and Plaments	- Δ	1	
ENDER HER MANDE	Bisphenol A-157	DPA	Kesoriani		THE REAL PROPERTY.	H.V.SHE	2440
Flame Retardant				1	Α_	<u> </u>	
	BF3	1 Down Triffouride compates	Alotech USA	STREET, OF STREET, STR		1111111111	349
Inhibitor	nesing spanish (delicity)			NAME OF TAXABLE PARTY AND PERSONS ASSESSMENT	A		<u> </u>
			Catalyst Systems	Melsei and Company	A		
	75% BPO, wet	Benzoyl Peroxide	Octalyst 51011111	Metael and Company	A		Т
Peroxide		2,5-Dirnethyl 2,5-dihesyne-3	Degutsa		PROPERTY.	di (HHI)	HH
	DYBP	PROPERTY OF THE PROPERTY OF THE PARTY OF THE			N	N	
		W. C. S.	Dow Chemical	Univer	N N	T N	
21501550			Sunoco		 	 -	\neg
	1	· 1	neos-Phenot	Harcros	A	- ' A	_
	Acetone		Sasot			+ ~	_
	į.		Incos-Phenol	Ashland	 N	N N	_
			DuPont	Univar	- N	- - ''-	+
		Dimethylformemide	BASE	Harcros		 	\dashv
	DMF	Dilliani And mennes	Taminco		 	 	_
Solvent			Shell Chemical	Linivar		- 	-1-
	MEK	Methyl Ethyl Ketone	Alichem Industries		A A	 ^	
	WILK		Dow Chemical	Univar		- A	-+
	PM	Propylene glycol methyl ether	Lyandell		A		}-
		1	Dow Chemical	Univar	A	_ _ ^	+
	PnB	Propylena glycol n-butyl ather	Sunoco	Univar	A	A	RIFE E
	Toluene		CONTRACTOR OF THE SECOND		45 11 11	福州福州省	
				TO SECURE AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TO THE			

1	_	Manufact	urer le	: distributo

Author:

S. Benedict


Global Resin Approved Vendor List

	 .			1104			EUROPI	 E	ASIA				
				USA	Elk			Germany	Dalien	Hulzhou	Talwan	Kuching	
ategory	Resin Type	Supplier	Franklin	Millbury	Grave			A	<u> </u>	<u> </u>			
acegory	DCD 528 A90	Dow	A			_ <u>A</u>	A	i A	A	A	A		
<u> </u>	DER 538-A80	Dow			<u> </u>	ļ	A		·A	A	A		
<u> </u>	DER 539-A80	Dow	A	<u> </u>	A		 ^- -	<u></u>	 	 	Α		
 	DER 593-A75	Dow	A	<u> </u>	A	<u> </u>	 		 	A			
	DER 540 (Insitu)	Dow	7	<u> </u>			}	├ ^ ─	╀───	F			
<u></u>	XZ 92439.02	Dow		Τ		<u> </u>	_	<u> </u>	+	A		<u> </u>	
L	XQ 82932.01	Dow	1			<u> </u>	}	 	 	 	 	 	
<u>!</u>	XO 82932.00	Dow				!	<u> </u>	<u>!</u>	!	<u> </u>		<u> </u>	
	DER 383	Dow	+				<u> </u>		A	A	Α	1	
Ţ	XZ 82932	Hexion	A	Α	Α	<u> </u>	<u> </u>	<u> </u>	 ^ -	 ~-			
General Epoxy	Ерол 1124-A80					A	A	A	+		 		
	Epikote 1143	Hexion		- 		T	T A	<u> </u>	 		- 	+	
Resins	Epikote 1144-A80	Hexion	A	A	N				 -	+ -	+		
	RSM 2421-A80	Hexion				T	<u>.</u>		A	TA			
	XTW 8051 A80	Huntsman		+]	ᆜ ——		 _	 		
<u> </u>	XTW 28380	<u>Huntsman</u>				A	A			-i -		- 	
	LZ 8001	Huntsman					Ţ	A_	4-	 	A		
<u> </u>	LZ 8081	Huntsman		- 			Τ		A	Α_	^-	-}	
-	LZ8008-A80	Huntsman	_			A		<u> </u>			-i		
	LT 8049	Huntsman						<u> </u>	_ A	A_	_ 		
<u> </u>	LTW 28300	Huntsman		- 			A						
<u>}</u> -	Peran 6600E-A73	PA Resins	A	-	Ā	A	A	A	A	E	A		
	Epon 1031-A70	Hexion	 -	^-				A					
	Epikote 55	Hexion				A	A		A		A	 -	
ŀ	4399-A70	Huntsman				- 			I A	Α	A		
Specialty	GZ 488-N40	Hunteman				_	i A						
	GZ 7488-N50	Huntsman				A				<u> </u>		_ 	
Epoxy	MY 0500	Huntsman		- 				A			A		
Resins	Eposid VP 868	Duroplast-Chemie	Α.	!							A		
	TNE190-A70	CCP				A							
. F	PKHH	Union Carbide		<u> ! </u>									

Global Resin Approved Vendor List

				USA			EUROP	E	ASIA			
0.4	Resin Type	Supplier	Franklin	Millbury	Elk Grove	France	Sweden	Germany		Huizhou	Talwan	Kuching
Category		Hexion	Α	А	A				A .	E	<u> </u>	<u> </u>
	CS-350	Bakelite AG	╅┈╌						 	- -	├	
	VE 4931		 	 			İ		<u> </u>			
	VE 8121	Bakelite AG	╅	<u> </u>				<u> </u>		E	 	<u>!</u>
<u> </u>	EPS 580	Bakelite AG					Ī		<u> </u>	E	 -	
	XU 19074	Dow	+	<u> </u>		1		[<u> </u>	E	 	}
Preblended Rasin	LSA 2102	Asahi Kasei		┼		—		L	<u> </u>	E	 	
	RSM 3740	Hexion	+A	λl	Δ	 	!	<u> </u>	<u> </u>	A	<u> </u>	
Solutions	RSM 3662	Hexion	 	N	A	+			A	<u> A</u>	<u> </u>	
	RSM 3614-A80	Hexion	 -^-	 ''		1	1			E	∔	
<u> </u>	XTW 28389-IN75 TW	Huntsman								A		
<u> </u>	LTW 28389	Huntsman	 	4					A	A	I A	<u> </u>
-	LTW 28052-A80	Huntsman				+	 	1	A	1 A	<u> </u>	
F	XTW 8490-A80	Huntsman		_		A	 		Α	A		<u> </u>
ВТ	BT 2110	Mitsubishi		-		 -						
ВІ	Kerimid 701A-N70	Huntsman	A			-						_ _
-	Kerimid 701-18	Huntsman	A_			 	 			T		
Polyimide -	Kerimid 701C	Huntsman	A								_ <u>i</u>	
· ·	Kerimid 8292-NPM60	Huntsman	A	_ _				+				
	Polystyrene Styron 685P	Dow	A									
į.	APPE POLYMER LM	Asahi Kasei	A					- 				
}	APPE POLYMER HM	Asahi Kase	A				- i					
LD-621/	S2122 Part K	Asahl Kasei	A_									
LD621 LV	Triallyl Isocyanurate (TAIC)	Mitaubishi	A					_		Ti		_∔
! }	Saytex 8010	Albemarle Corp.	A									<u> </u>
]	EXPO 0011-111	GE	A	_					_			
	33490	Durez	A		Α	`- -		A		A		
(Durite SD357B 50	Borden			Α				A		A	!
Novoisc	PHL 6635 1Z (B65)	Bakelite AG	A	A	<u>_</u>	` 	A	_	E			
Resins	HARZ 60001Z 04	Bakelite AG							8	E		
	GP 775D70	Georgia Pacific			F	`		- 			\Box	
	CS-361	Hexion	A					- 				
i	DER 542 T-30	Dow	A						_			
GETEK	XU EPN 1148 T-75	Huntsman	A								<u> </u>	
	Noryll 640-111 (PPO 0.40 IV)	GE Polymerland	A	<u> </u>			i					

FILE COPY

FITZGERALD & SESSLER P.A.

Attorneys at Law 11 Academy Square Luconia, New Hampshire 03246-3731

Paul T. Fitzgerald James N. Sessler

Alvin E. Nix, Jr. Shawn E. Nichols Lelephone 603-524-4060 Telecopier 603-524-0739

June 28, 1999

Donna Nashawaty, Acting City Manager City of Franklin Memorial Hall 316 Central Street Franklin, NII 03235

Re: Polyclad Easement

Dear Donna:

I am enclosing a draft easement that I received from Attorney Rolf Goodwin in connection with the above matter on Friday, June 25, 1999. Attorney Goodwin called me on Thursday afternoon and advised that he was forwarding these materials to me. I informed him at that point that I had not discussed this matter with you, but would review it upon receipt.

Please give me a call so we can go over this item at your earliest convenience.

Thank you for your attention to this matter.

Sincerely,

FITZGERALD & SESSLER P.A.

Paul T. Fitzgerald

PTF/sa enc(s)

1. Common pand chemispanist RKLS/Nasbawat nashawats 052,899 onlychid wpc

THI-ES 95 00;00 FROM HICCLANE THISPLIN 663-282-5604

Tu: 14335240730

PEKE: DI :04

MeLANE, GRAF, RAULERSON & MIDDLETON PROFESSIONAL ASSOCIATION

CONCORD BILLEN LENNING SCHOOL THE PERSONAL MAIN STREET CONCORD, NHOULE 751 (603) 726-0496

MA ((4)1: 221-4140

MAYCHESTER NINE HUNDRED ELM STRUCT P () 18(1 x 220 MANCHISTER NH 03:02:0325 17:1. (60); 621 6464 FAX. 16501 625-365-1

NASHUA 400 AMMERST STRY ILL SUITE OF PO BOX 6185 NASHUA, NH 03003-6180 TF.L. (1922) 295-97611 LAN. 1603, 595-9594

PORTSMOUTH TO PUNHALLOW STREET P.O. BOX 459 PORTSMOUTH, NH 03802-043-3 TEL: (602) 126-2813 FAX TOOM AMESTICA

MULTIPLE FACSIMILE TRANSMITTAL FORM ISSUED FROM THE NASHUA OFFICE

NOTE: If you have a question or problem regarding this transmission, please call (603) 595-9700

To:	Atty Paul Fitzgerald	Of:	City of Franklin	Fx:	524-0739	Tel:
To:	Richard A Correia, Jr.	Of:	Polyclad	Fx:	934-2670	Tel:
To:		Of:		Fx		Tel:
To:		OI:		Fx:		Tel:
To:		Of:		Fx:		Tel:
To:		Of:		FX:		Tel:

From: Rolf Goodwin

Date: 6/25/99

No. Pes: 3

File No .:

M	¢5	sa	26	

Enclosed is the proposed easement from the City to Polyclad, together with a copy of the relevant portion of the site plan. Please let me know of any changes, comments, etc. Thanks.

Original of the	ransmitted	document	Will	he sent	by.
-----------------	------------	----------	------	---------	-----

First Class	Mail

Overnight Mail

Hand Delivery

This transmission will be the only form of delivery

PRACTICE AREAS

Screenishables Law Administry Maris me Law 154 1ki ng 1.32 Bankrapics Bodily Injury, (leaves) Unity and Wateryful Death Litigation Ciosals Felic Fox textes Commercial Let gaston

i conversal Lercing and Second Transactions Composale Harris des Lan timing line Unconservation

introping proven and I when I gove שוני ומדשור זשו חב Paule Flanning Castle and Tros. Administration Farmpi Che. o. c. com Family Lawdamence Financing and Credit Arrangements Flight feeknotogy Law lemagnition (and International Law inglicental Property, Trademark, Congregat.

Lone Use and Development

MediculaProfessional Ma prunt as Merger, Acquisition, Sules well Description of Hownesses Mun'tipul Law Person at 1 Mouvement Plane (FRISA) Product Liability Luigation Real Fatate 1.3% Securiues Low Nupreme L'user Appeals' Appeliate Law Texeber Constitute and Index Just Las Exerni Goradivations Undiries Last Workers' Compensation

Attorneys Licensed in NIL MA, ME, NT, RL CT, NY, OH, PA & DC

A FENTION FAN OPERATOR! This refereps is attorney-client privileged and contains confidential information intended only for the person of named above. Any other distribution, copying, or disclosure is strictly prohibited. If the above-numed addresses is not a person at your office, this fax may have been missent to your number by mistake and should be reported to the sender immediately. Please telephonologists, subject if long-distance, to report the error. This fax may contain sensitive or confidential information the unnatended release of which may have unfortunate legal and other consequences. Thank you

DRAFT

EASEMENT

For consideration received, the City of Franklin with a mailing address of 316 Franklin Street, Franklin, NH 03230, conveys to Polyclad Laminatos, Inc., with a mailing address of 40 Industrial Park Drive, West Franklin, NH 03235

An easement in Franklin, Merrimack County, New Hampshire, on a portion of the City of Franklin property known as Tax Map Lot 001-097-404. Said easement is for the ourpose of constructing and utilizing a truck off-loading containment pad

Beginning at the southwest corner of a parcel of land currently owned by Polyclad Laminates, Inc., known as Tax Map Lot 001-116-171, located at 45 Tannery Street. Merrimack County, Franklin, NH. Said point of beginning is marked by a 1/2" diameter rebar found bent on 12/03/87.

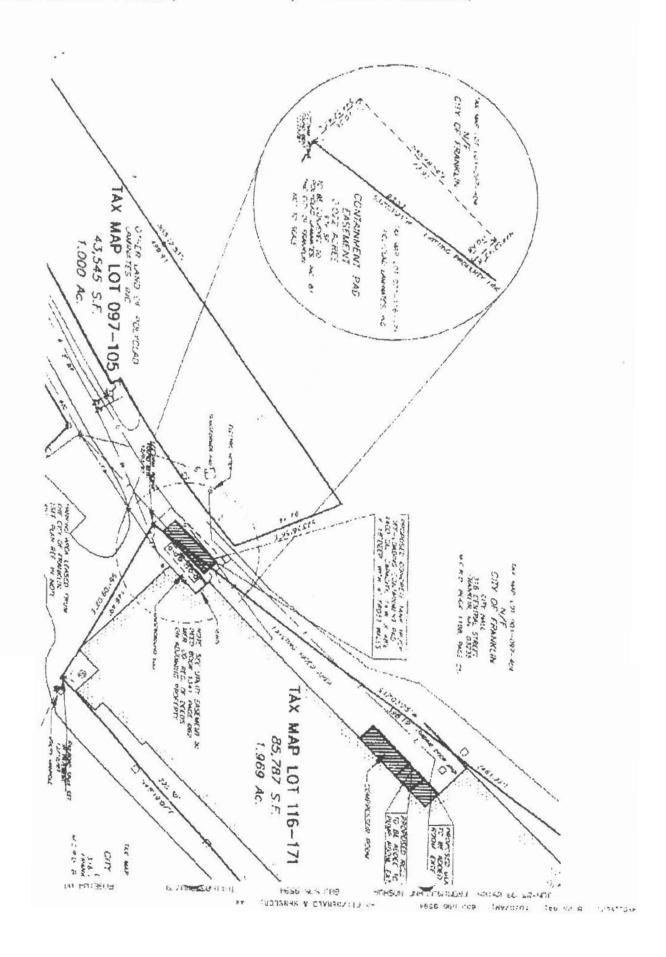
Thence, North 44" 52'43" West, 20.36 feet to an angle point.

Thence: North 15" 48' 54" East, 62.91 feet to an angle point.

Thence, South 44° 52' 43" East, 10.68 feet to an angle point at land of Polyclad Laminates, Inc.

Thence; along said Polyclad Property South 37" 03" 25" West, 63.53 feet to the point of beginning

The area of the casement herein described is 0.022 acres or 976 square feet.


See plan entitled. "Tax Map Lot 001-116-171, Site Plan & Easement Plan for Polyclad Laminates. Inc., 45 Tannery Street, Merrimack County, Franklin, New Hampshire, Scale. 1" - 50', May 6, 1999, Rev. June 14, 1999", to be approved by the Franklin Planning Board and recorded at Merrimack County Registry of Deeds.

Said eusement to run with the land.

Intended to be a portion of the property conveyed to the City of Franklin by deed recorded in said Registry, Book 1108, Page 250.

DATED.	, 1999

EGISTARD: 6 DE 30; THIOZAN: BOX 505 HOMA FLIKCERAL		
JUNI-25 99 09:06 FRONI-MCCLANE DESMIN RO3-0		M0734 F940161 IN
	CITY OF FRANK	LIN
	Name. Title: Only Authorized	
STATE OF NEW HAMPSHIRE COUNTY OF MERRIMACK		
The foregoing instrument wo 1909, by of Franklin, on behalf of the city, Before me:	acknowledged this the	day of of City
	Notary Public/Just	ice of the Peace
	My Commission E	
	[sea	.1]
Nedstand 42: 24 mag LASEMENT DOC June 23: 1999		

CITY COUNCIL MEETING AGENDA ITEM VIII

BACKGROUND INFORMATION

STREET EASEMENT - POLYCLAD, TANNERY STREET:

At the May 26, 1999 Planning Board meeting, site plan approval was granted with a condition that the construction of a containment basin be located on the West Side of the plant near the entrance. The purpose of the basin is to contain any possible chemical spillage resulting from trucks unloading material into the underground tanks. This proposal is considered by the EPA to be an improvement from the present transfer method.

The greater portion of the basin would be located in the Tannery Street right-of-way. The site plan was approved with the condition that Polyclad develop an easement document satisfactory to the City that would allow the encroachment. Required easement to be presented at a future City Council meeting.

SUGGESTED MOTION

STREET EASEMENT - POLYCLAD, TANNERY STREET

NO MOTION REQUIRED

APPENDIX B

Test Pit Logs

			annery Street, Frankli	n, NH			Sheet 1 of 1
	IT: Cookson E						-
DELT.	A PROJECT N	O: 8A0704268P			-		
		THOD: Backhoe		BIT SIZE	CORE	CASING	
	ING RIG: NA		NA	NA	NA	NA	DATE: 6-4-07
SUB C	ONTRACTOR:	Enviro. Services	INSPECTOR: Scott	Bryant			
DEPTH	SAMPLE	PID Reading		*			
(ft)	No.	(ppm)		SOIL DESCI			REMARKS
		·	Sand, gravel, cobb	les - fill material,	metal piping	g and wire mesh.	
1.0							no staining.
20		0.0					
2.0							
3.0							3'
3.0			Sand, little silt, tra	ce gravel (f) bro	wn grading t	O Grav	No odor,
4.0			Sand, nuic sin, na	ce graver (1), bro	wii grading t	o gray.	no staining.
7.0							no stanning.
5.0		0.0					
		0.0					·
6.0							
7.0							
8.0							
	,	0.0					
9.0							
10.0			Damp to moist from	n 10' to 11' bgs.			
110	1						4.41
11.0			C 1 1'41	1	• • • •		11'
12.0		0.0	Sand, little gravel,	orange brown, m	ioist.		No odor,
12.0		0.0					no staining.
13.0							13'
13.0			Bottom of pit at 13	' has		· · · · · · · · · · · · · · · · · · ·	13
14.0			Doublin of pit at 13	ഗളാ.			
17.0							
15.0							
12.0	<u> </u>						
16.0							
			•				
		•				·····	

PROJ	ECT: Polyclad	Laminates, 45 Ta	annery Street, Franklin,	NH				Sheet 1 of 1
	NT: Cookson E							
DELT	A PROJECT N	O: 8A0704268P	•					
EXCA	VATION MET	HOD: Backhoe	SAMPLER	BIT SIZE	CORE	CASING		
	ING RIG: NA		NA	NA	NA	NA		DATE: 6-4-07
SUB C	ONTRACTOR:		INSPECTOR: Scott B	ryant				
DEPTH	SAMPLE	PID Reading		si i				
(ft)	No.	(ppm)	·	SOIL DESCR	RIPTION		•	REMARKS
			Asphalt and road bas	se.		0.8'		No odor,
1.0			Sand, little silt.		i.			no staining.
			,					
2.0		0.0						,
			,					
3.0			. ა					
4.0								
5.0								
		0.0						
6.0			·					
-								
7.0							7'	
			Sand (m-cs), orange,	damp.				No odor,
8.0								no staining.
		0.0						
9.0				•			9'	
			Sand, trace boulders,	white.				No odor,
10.0								no staining.
-	1		*					
11.0								
	• • •	0.0						
12.0							12'	
			Bottom of pit at 12' b	ogs.	2		-	1
13.0			•					
14.0								
15.0								
16.0								
		,						

TEST PIT LOG
PIT NO.: TP-3

			annery Street, Franklir	ı, NH			Sheet 1 of 1			
CLIENT: Cookson Electronics										
		O: 8A0704268P								
		HOD: Backhoe		BIT SIZE	CORE	CASING				
	ING RIG: NA		NA	NA	NA	NA	DATE: 6-4-07			
SUB C	ONTRACTOR:		INSPECTOR: Scott	Bryant						
DEPTH	SAMPLE	PID Reading								
(ft)	No.	(ppm)		SOIL DESC			REMARKS			
			Sand, little gravel,	little cobbles - fi	II material, r	ubber and fabri				
1.0	. • .		material.				no staining.			
2.0										
2.0		0.0								
2.0			2							
3.0										
4.0										
4.∪										
5.0										
3.0		0.0	.							
6.0		0.0								
0.0		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	•							
7.0										
7.0										
8.0										
0.0	1	0.0								
9.0		0.0					9'			
- 10			Sand, little silt, dar	k brown grading	to medium l	prown - native	No odor,			
10.0		`	soil with roots.	, - · · · · · · · · · · · · · · · · · ·	,		no staining.			
		-				1	10.5'			
11.0			Sand (m-cs), light b	prown, damp to 1	noist.		No odor,			
		0.0	, ,,				no staining.			
12.0							12'			
			Bottom of pit at 12'	bgs.		· · · · · · · · · · · · · · · · · · ·				
13.0			-							
14.0										
	· · · · · · · · · · · · · · · · · · ·									
15.0										
16.0					•					

PIT NO.: TP-4

PROJECT: Polyclad Laminates, 45 Tannery Street, Franklin, NH Sheet 1 of 1 CLIENT: Cookson Electronics DELTA PROJECT NO: 8A0704268P EXCAVATION METHOD: Backhoe SAMPLER **BIT SIZE CORE** CASING NA DATE: 6-4-07 DRILLING RIG: NA NA NA NA INSPECTOR: Scott Bryant SUB CONTRACTOR: Enviro. Services DEPTH SAMPLE Reading No. REMARKS (ft) **SOIL DESCRIPTION** Sand - fill. No odor, no staining. 1.0 2.0 0.0 3.0 4.0 5.0 0.0 6.0 7.0 8.0 0.0 9.0 10' 10.0 Sand (m-cs), little gravel, orange brown, damp. No odor, no staining. 11.0 12.0 12' 0.0

Bottom of pit at 12' bgs.

13.0

14.0

15.0

16.0

DELTA CONSULTANTS TEST PIT LOG PIT NO.: TP-5

PROJI	ECT: Polyclad	Laminates, 45 Ta	annery Street, Franklii	n, NH				Sheet 1 of 1
	IT: Cookson E							
		O: 8A0704268P						
		HOD: Backhoe		BIT SIZE	CORE	CASING		: .
	ING RIG: NA		NA	NA	NA	NA NA		DATE: 6-4-07
SUB C	ONTRACTOR:	Enviro. Services	INSPECTOR: Scott	Bryant				
DEPTH (ft)	SAMPLE No.	PID Reading (ppm)		SOIL DESCI	RIPTION			REMARKS
			Fill material, hides	and leather piece	es found in f	ill.		
1.0								
2.0								
3.0								
	1							
4.0				·	,		4'	
			Sand, little silt, gra	vel, cobbles.				·
5.0	•	·	÷					
6.0								•
7.0	*************************************							
7.0						*		
8.0								·
9.0		·						'
10.0	· · · · · · · · · · · · · · · · · · ·							
11.0	-							•
11.0					4		•	·
12.0		·					12'	
13.0			Bottom of pit at 12	' bgs.				
13.0								
14.0								
15.0								
16.0								
16.0								

			nnery Street, Franklin,	NH	-		Sheet 1 of 1
CLIENT: C	Cookson Electron	ics					
	OJECT NO: 8A					-	
	ION METHOD:	Backhoe	SAMPLER	BIT SIZE	CORE	CASING	
DRILLING F			NA	NA	NA	NA	DATE: 6-4-07
SUB CONTR	RACTOR: Enviro.		INSPECTOR: Scott B	ryant			
DEPTH S		PID Reading (ppm)		SOIL DESCR	RIPTION		REMARKS
· 1	,		Sand, fill material.			· · · · · · · · · · · · · · · · · · ·	No odor,
1.0		0.0					no staining.
2.0							
3.0							
4.0							
5.0		0.0					
6.0			*.				
7.0	1						7'
			Sand, little silt, trace	gravel, brown.	native soil wi	th roots.	No odor,
8.0		0.0		g,,			no staining.
9.0							
10.0							10'
			Bottom of pit at 10' b	gs.			
11.0							
12.0							w
13.0							
14.0							
15.0							
16.0							
				·			

APPENDIX C

Soil Boring Logs

11	$T \cap P$	alvelad	I amin	ates 45 T	annery Street, Franklin, NH	Sheet 1 of 1
	T: Coc				aimery Street, Frankrim, 1911	Sheet 1 01 1
				0704268I		· .
				ect Push	SAMPLER BIT SIZE CORE CASING	
	ING RIG			-	Macrocore 1.5" NA NA	DATE: 6-5-07
	ERS: N.				INSPECTOR: Scott Bryant	BITTE: 0 0 0,
	SAMPLE	Blows	REC.	PID		
(ft)	No.	Per 6"	(ft)	Reading (ppm)	SOIL DESCRIPTION	REMARKS
	1	N/A	3.9	41-7	Sand (f-m), little silt, brown to light brown, dry to damp, slightly	No odor,
1.0	-	1,111	3,5		coarser at bottom.	no staining
				0.0		
2.0						
3.0						
4.0				0.0		
				0.0		
5.0					5'	
	2	N/A	3.9		Sand (f-m), little silt, orange brown at top grading to light brown,	No odor,
6.0	~~	14/21	3.5		damp.	no staining
				0.0		
7.0						
+						
8.0						! .
						•
9.0				0.0		
7.0				0.0		*,
10.0					10'	
10.0	3	N/A	4.7	•	Same as above - slightly coarser.	No odor,
11.0		14/11	7.7		Sum as accre singing course.	no staining
				0.0		110 0111111119
12.0				0.0		
				•		
13.0						
•						
14.0		-		0.0		·
				0.0		
15.0				·	15'	
	4	N/A	4.2		Sand (f-cs), trace silt, trace gravel (f), brown to orange brown	No odor,
16.0	•	T 41 T F	سد		towards bottom, moist.	no staining
				0.0		
17.0				0.0		
				-		
18.0						
19.0				0.0		
-2.0				0.0		
20.0					19.8'	
			-		Refusal at 19.8' bgs.	

PROJI	ECT: P	olyclad	Lamin	ates, 45 T	annery Street, Franklin, NH	Sheet 1 of 1
	T: Coc					
DELT.	A PROJ	ECT N	O: 8A	0704268F		
DRILI	LING M	ETHO	D: Dir	ect Push	SAMPLER BIT SIZE CORE CASING	
DRILL	ING RIC	: Geopr	obe		Macrocore 1.5" NA NA	DATE: 6-5-07
DRILL	ERS: N.	H. Bor	ng		INSPECTOR: Scott Bryant	
DEPTH (ft)	SAMPLE No.	Blows Per 6"	REC. (ft)	PID Reading (ppm)	SOIL DESCRIPTION	REMARKS
	1	N/A	4.0		Sand (f-cs), little silt - dry mica flakes, brown grading to light	No odor,
1.0					brown.	no staining
				0.0		
2.0						
3.0	·					
4.0				0.0		
5.0					5	
<u> </u>	2	N/A	4.1		Same as above - damp.	No odor,
6.0						no staining
7.0				0.0		
7.0						*
8.0						
0.0						
9.0				0.0		
9.0				0.0		
10.0					10'	
10.0	3	N/A	4.0		Same as above - sightly coarser.	No odor,
11.0		11/7	7.0		Sume as above signify coarser.	no staining
11.0				0.0		lio stanning
12.0						
13.0						
14.0				0.0		
15.0					15	
3	4	N/A	4.3		Sand (f-cs), little gravel (f-m), orange brown grading to light	No odor,
16.0					brown, damp.	no staining
				0.0		
17.0						
18.0						
10.5	-					
19.0				0.0		
20.0						

PROJE	ECT: Po	olyclad	Lamin	ates, 45 T	annery Street, Franklin,	NH			She	eet 1 of 1
	IT: Coo									
				.07042681				: 		
				ect Push	SAMPLER	BIT SIZE	CORE	CASING	·	
	ING RIC				Macrocore	1.5"	NA	NA	DA	TE: 6-5-07
	ERS: N.			PID	INSPECTOR: Scott E	Bryant				
DEPTH (ft)	SAMPLE No.	Blows Per 6"	REC. (ft)	Reading (ppm)		SOIL DESC				MARKS
1	5	N/A	3.1		Sand (f-cs), little gra	ivel (f-cs), trac	e silt, light b	rown to white,		No odor,
21.0					dry.				r	o staining
22.0				0.0						
22.0										
23.0									ĺ	
23.0									İ	
24.0				0.0					24'	
24.0				0.0	Refusal at 24' bgs.			· · ·		
25.0					11010001 01 27 053.					
					1				, [
26.0				···						
					14 A	*				
27.0	1.									
28.0					·					
29.0					•				-	
					1	,				
30.0										
									·	
31.0									·	
32.0										
									ŀ	
33.0									.	,
34.0										
35.0										
36.0				-					-	
27.0										
37.0									.	
20.0			ļ							
38.0										
20.0			\vdash	: -						
39.0										
40.0	-			4-4						
40.0									•	

PROJECT: Polyclad Laminates, 45 Tannery Street, Franklin, NH									
	VT: Coc								
				0704268F					
				ect Push	SAMPLER BIT SIZE CORE CASING				
	ING RIC				Macrocore 1.5" NA NA	DATE: 6-5-07			
DRILL	ERS: N.	H. Bori	ng	-	INSPECTOR: Scott Bryant				
DEPTH (ft)	SAMPLE No.	Blows Per 6"	REC. (ft)	PID Reading (ppm)	SOIL DESCRIPTION	REMARKS			
	1	N/A	3.1		Concrete and fill.	No odor,			
1.0]•	no staining			
				0.0	Sand (f-m), little silt, brown to white, dry to damp, uniform.				
2.0									
3.0									
4.0				0.7					
5.0		> T / A	2.4		5'				
	2	N/A	3.4		Sand (f-m), little silt, brown to white, dry to damp, uniform.	No odor,			
6.0				1 77		no staining			
7.0				1.7					
7.0									
8.0									
8.0									
9.0				2.1					
7.0		-		2.1					
10.0	* •								
10.0	3	N/A	4.1		Same as above.				
11.0		11/11							
				2.3					
12.0		-			12'				
					Sand (f-cs), little silt, trace gravel (f-m), orange brown to brown,	No odor,			
13.0					mica flakes.	no staining			
						'			
14.0				0.0					
15.0					15'				
160					End of boring at 15' bgs.	• •			
16.0									
170									
17.0	ě.								
18.0									
10.0									
19.0			-						
17.0				-					
20.0	•								
20.0									
						1			

PROJI	ECT: P	olyclad	Lamin	ates, 45 T	annery Street, Franklin, NH	Sheet 1 of 1
	IT: Coo					
				0704268I		-
				ect Push	SAMPLER BIT SIZE CORE CASING	•
	ING RIC				Macrocore 1.5" NA NA	DATE: 6-5-07
DRILL	ERS: N	. H. Bori	ng		INSPECTOR: Scott Bryant	
DEPTH (ft)	SAMPLE No.	Blows Per 6"	REC. (ft)	PID Reading (ppm)	SOIL DESCRIPTION	REMARKS
	1	N/A	3.0		Concrete and fill.	No odor,
1.0				0.0]	no staining
				0.0	Sand (f-m), little silt, brown to light brown, dry to damp.	
2.0						
3.0						
3.0						*
4.0				0.3		
1.0			-	0.5		
5.0						
	2	N/A	3.3		Same as above.	No odor,
6.0						no staining
				0.8		
7.0						
						-
8.0					8'	
0.0					Sand (f-cs), little silt, trace gravel (f), dry, mica flakes.	
9.0				1.8		
10.0				· · · · · · · · · · · · · · · · · · ·	101	
10.0	3	N/A	4.1		Same as above - coaser, dry to damp.	No odor,
11.0	3	1N/A	4.1		Same as above - coaser, dry to damp.	no staining
11.0				0.9		no staming
12.0				<u> </u>		
13.0						
				-		·
14.0				0.0		· · · · ·
			,			·
15.0					15'	
160					End of boring at 15' bgs.	
16.0						
17.0						
17.0						
18.0						
10.0						
19.0		·		•		
20.0						

חם ביי	OT: P	- l 1 - 1	T!	-4 45 T	DOMING NO.: GSD-3	01
	T: Co				annery Street, Franklin, NH	Sheet 1 of 1
				ncs .0704268F		
				ect Push		
				eci Pusn	SAMPLER BIT SIZE CORE CASING Macrocore 1.5" NA NA	DATE: C C OS
	ING RIC ERS: N				Macrocore 1.5" NA NA INSPECTOR: Scott Bryant	DATE: 6-5-07
		_		PID	INSPECTOR. Scott bryant	
DEPTH (ft)	SAMPLE No.	Blows Per 6"	REC. (ft)	Reading (ppm)	SOIL DESCRIPTION	REMARKS
1.0	. 1	N/A	3.6		Gravel (f) and sand (f-cs) coarse fill material, brown, uniform.	No odor, no staining
				0.0		ino stamme
2.0						
3.0						
1.0				0.0		
5.0					Refusal at 4.5' bgs.	.5'
6.0			-			
7.0						
3.0						
0.0						
0.0						
11.0						
12.0						
3.0						
14.0						
15.0						
6.0						
7.0						
8.0						
9.0						
20.0						
						1

PROJI	ECT: P	olyclad	Lamin	ates, 45 T	annery Street, Franklin, NH	Sheet 1 of 1
CLIEN	VT: Coo	okson E	lectror	nics		
DELT.	A PROJ	ECT N	O: 8A	.07042681		
				ect Push	SAMPLER BIT SIZE CORE CASING	
	ING RIC				Macrocore 1.5" NA NA	DATE: 6-5-07
	ERS: N.			PID	INSPECTOR: Scott Bryant	
DEPTH (ft)	SAMPLE No.	Blows Per 6"	REC. (ft)	Reading (ppm)	SOIL DESCRIPTION	REMARKS
	1	N/A	3.3		Gravel and sand fill, brown, dry, uniform.	No odor,
1.0						no staining
2.0				0.0		
2.0						
3.0						
3.0						
4.0		,		0.0		
		-				
5.0						
	2	N/A	2.9		Same as above.	No odor,
6.0						no staining
7.0				0.0		
7.0						
8.0						
8.0				* .		·
9.0				0.0		·
7.0						
10.0					10'	
	3	N/A	4.2		Sand (f-cs), little silt, trace gravel (f-m), light brown to white, dry	No odor,
11.0					to damp.	no staining
				0.0		
12.0						
12.0						
13.0						
14.0				0.0		
17.0	-			0.0		e -
15.0			 	•	15'	
					End of boring at 15' bgs.	
16.0						
17.0		-				
10.0						
18.0						
19.0						
19.0	 					
20.0						
<u> </u>						

PROJI	ECT: P	olyclad	Lamir	ates, 45 T	annery Street, Franklin, NH	Sheet 1 of 1
	IT: Coo					
				0704268F		
				ect Push	SAMPLER BIT SIZE CORE CASING	
DRILL	ING RIC	: Geopr	obe		Macrocore 1.5" NA NA	DATE: 6-5-07
	ERS: N			PID	INSPECTOR: Scott Bryant	
DEPTH (ft)	SAMPLE No.	Blows Per 6"	REC. (ft)	Reading (ppm)	SOIL DESCRIPTION	REMARKS
	1	N/A			Concrete and gravel fill. 0.7'	No odor,
1.0				,	Sand (f-cs), trace silt, trace gravel (f), orange brown to light	no staining
					brown, dry to damp.	
2.0						
3.0						
1.0						
4.0			1			
5.0						5'
5.0	2	N/A			Sand (f-cs), trace silt, trace gravel (f), orange brown to light	No odor,
6.0		14/11			brown, dry to damp.	no staining
						3
7.0						
8.0		` `				
9.0						
10.0			<u>.</u>			10'
10.0	3	N/A			Sand (f-m), trace silt, trace gravel, light gray to light brown, dry,	No odor,
11.0		1 1/11			loose, uniform.	no staining
12.0						
12.0						
13.0						
14.0		·		-		
15.0				•		15'
13.0					End of boring at 15' bgs.	
16.0		-			End of boring at 15 ogs.	
		1				
17.0						
18.0						
10.0						
19.0						
20.0			. *			
20.0						

PROJE	ECT: P	olyclad	Lamin	ates, 45 T	annery Street, Franklin, NH	Sheet 1 of 1
	IT: Coo					
DELT	A PROJ	ECT N	O: 8A	0704268I		
DRILL	JNG M	ETHO	D: Dir	ect Push	SAMPLER BIT SIZE CORE CASING	
	ING RIC				Macrocore 1.5" NA NA	DATE: 6-5-07
DRILL	ERS: N	H. Bori	ng		INSPECTOR: Scott Bryant	
DEPTH (ft)	SAMPLE No.	Blows Per 6"	REC. (ft)	PID Reading	SOIL DESCRIPTION	REMARKS
	1	N/A	2.7	(ppm)	Concrete and gravel fill. 0.7'	No odor,
1.0	1	14/21	2.7		Sand (f-cs), trace silt, trace gravel (f), orange brown to light	no staining
1.0				5.5	brown, dry to damp.	no stanning
2.0					joic way to dump.	
						
3.0						
4.0				2.3		
					•	
5.0						5'
	2	N/A	3.9		Sand (f-cs), trace silt, trace gravel (f), orange brown to light	No odor,
6.0					brown, dry to damp.	no staining
				4.7		
7.0						
		,				
8.0						
9.0				2.7		
10.0						101
10.0		NT/A	4.0			10'
11.0	3	N/A	4.2		Sand (f-m), trace silt, trace gravel, light gray to light brown, dry,	
11.0				2.4	loose, uniform.	no staining
12.0				2.4		
12.0						·
13.0						
13.0		-				
14.0	-			16.0		
11.0				10.0		
15.0						15'
10.0					End of boring at 15' bgs.	
16.0						
17.0						
18.0						
19.0				-		
20.0						
				-		

DRΩπ	CT. D.	helad	Iamin	atec 15 T	annery Street, Frankli	n NH	<u> </u>			Sheet 1 of 1
	IT: Cod				annery Succi, Frankli	11, 1911		<u> </u>	•	SHEEL I OI I
				.0704268I)	<u> </u>				······································
				ect Push	SAMPLER	BIT SIZE	CORE	CASING	•	
	ING RIC			usii	Macrocore	1.5"	NA NA	NA NA		DATE: 6-5-07
	ERS: N				INSPECTOR: Scott		1117	1477		DITTE. 0-5-07
DEPTH	SAMPLE	Blows	REC.	PID		•				
(ft)	No.	Per 6"	(ft)	Reading (ppm)		SOIL DESC	RIPTION			REMARKS
					Concrete and grave					
1.0]		-			
							•			
2.0									2'	·
	1	N/A	3.8		Sand (f-cs), trace s	ilt, trace gravel (f), light brov	vn, dry, loose.		
3.0				10.0	1					
4.0				10.0						
4.0		·		· · ·						
5.0										
5.0				•	4					
6.0				193.0	1					
0.0			\vdash	173.0						
7.0									7'	
7.0	2	N/A	4.9	V	Same as above - li	oht grav to brown	· · · · · · · · · · · · · · · · · · ·			
8.0		T 4/ T T	1.7	* :		Sill Bruy to 010WI				·
2.0		-		245.0	1					
9.0		-			1					
					1					
10.0					1					
								-		
11.0				75.0						
12.0									12'	
10.0					End of boring at 12	2' bgs.				
13.0		-								
140				·						
14.0				4						
15.0					-					
13.0	•									
16.0										
10.0										
17.0					-					
17.0										
18.0					1					
10.0				······································						
19.0					1				1	
	`				1					
20.0					1					

DDCT		.11 *	т	-4 45-	Control Contro	G1 . 1 . 2 .
					annery Street, Franklin, NH	Sheet 1 of 1
	IT: Coo					
				07042681		
				ect Push	SAMPLER BIT SIZE CORE CASING	DATE (5.05
	ING RIC			-	Macrocore 1.5" NA NA	DATE: 6-5-07
	ERS: N.			PID	INSPECTOR: Scott Bryant	
DEPTH (ft)	SAMPLE No.	Blows Per 6"	REC. (ft)	Reading (ppm)	SOIL DESCRIPTION	REMARKS
	1	N/A	2.4		Concrete and sand and gravel fill base.	No odor,
1.0					1	no staining
				0.0	Sand (f-cs), trace silt, trace gravel (f-m), brown, dry.	ļ
2.0						
2.0						
3.0						
4.0				2.3		
4.0			\vdash	2.3		
5.0			\vdash			
3.0	2	N/A	2.9		Same as above - dry to damp, coarse.	No odor,
6.0			2.5		l	no staining
0.0				4.8		lio stanning
7.0						
				· · · · · ·		
8.0						
9.0				3.0		
						,
10.0		•				
	3	N/A	4.3		Same as above - coarser.	No odor,
11.0						no staining
				5.9		
12.0						,
12.0						
13.0				· · · · · · · · · · · · · · · · · · ·		
14.0				3.4		
17.0				J. 4		
15.0			\vdash		15'	
10.0			\vdash		End of boring at 15' bgs.	1
16.0						,
			 			
17.0						
18.0						
19.0						
20.0						

PROJE	ECT: P	olyclad	Lamin	ates, 45 T	annery Street, Franklin, NH	Sheet 1 of 1
	IT: Coo					· ·
				.0704268F)	
DRILI	JING M	ETHO	D: Dir	ect Push	SAMPLER BIT SIZE CORE CASING	
	ING RIC				Macrocore 1.5" NA NA	DATE: 6-5-07
DRILL	ERS: N	H. Bori	ng		INSPECTOR: Scott Bryant	
DEPTH (ft)	SAMPLE No.	Blows Per 6"	REC. (ft)	PID Reading (ppm)	SOIL DESCRIPTION	REMARKS
	1	N/A	1.0		Sand (f-cs), some gravel (f-m), trace silt, brown, dry.	No odor,
1.0						no staining
				0.0		
2.0						
3.0						
4.0				3.3		
5.0					5	
	2	N/A			Sand (f-cs), little gravel (f-m), trace silt, brown, dry, loose.	No odor,
6.0	,			2.0		no staining
7.0				3.0		
7.0						
8.0						
9.0				2.7		
10.0					10'	
10.0	3	N/A			Sand (f-cs), little gravel (f-m), brown, dry, coarser then above,	No odor,
11.0					loose.	no staining
		1.		4.3		
12.0						
13.0						
14.0				5.1		
15.0					End of boring at 15' bgs.	
16.0					End of boring at 15 bgs.	
17.0						
18.0						
19.0						
20.0						

				· · · · ·	DUKING NU.: GSD-12	
					annery Street, Franklin, NH	Sheet 1 of 1
	VT: Coo					
				0704268I	· · · · · · · · · · · · · · · · · · ·	
				ect Push	SAMPLER BIT SIZE CORE CASING	
	ING RIC				Macrocore 1.5" NA NA	DATE: 6-5-07
DRILL	ERS: N	. H. Bori	ng	PID	INSPECTOR: Scott Bryant	
DEPTH (ft)	SAMPLE No.	Blows Per 6"	REC. (ft)	Reading (ppm)	SOIL DESCRIPTION	REMARKS
	1	N/A	4.1		Asphalt and road base. 0.8'	No odor,
1.0					Sand (f-cs), little gravel (f-m), trace silt, brown, dry, coarse,	no staining
2 0				0.2	loose.	
2.0			·			
3.0						
3.0						
4.0				0.2	4.1	,
 ' ' ' 				0.2	Sand (f-cs), trace silt, trace gravel (f) slightly finer with depth,	1
5.0	·				brown grading to light gray, dry, loose.	
	2	N/A	3.6			No odor,
6.0						no staining
				0.5		
7.0						
8.0					·	
9.0				0.9		
100						
10.0	3	N/A	4.7		Sama as abaya dama	No oden
11.0	3	IN/A	4./		Same as above - damp.	No odor, no staining
11.0				1.2		no stanning
12.0				1.2		
12.0						
13.0		-				
14.0				1.2		
15.0					15	<u>'</u>
160				-	End of boring at 15' bgs.	
16.0						
17.0						i ·
17.0						
18.0			 			£.
10.0						
19.0						
17.0			\vdash			
20.0						

PROJE	ECT: Po	olyclad	Lamin	ates, 45 T	annery Street, Franklin, NH	Sheet 1 of 1
	IT: Coo					
DELT	A PROJ	ECT N	O: 8A	0704268F)	
DRILI	ING M	ETHOI	D: Dir	ect Push	SAMPLER BIT SIZE CORE CASING	
	ING RIC				Macrocore 1.5" NA NA	DATE: 6-5-07
DRILL	ERS: N.	H. Bori	ng		INSPECTOR: Scott Bryant	
DEPTH	SAMPLE	Blows	REC.	PID Reading		
(ft)	No.	Per 6"	(ft)	(ppm)	SOIL DESCRIPTION	REMARKS
	1	N/A	4.0		Asphalt and road base. 0.6'	No odor,
1.0					Sand (f-cs), trace silt, trace gravel (f) gravel at top, brown to	no staining
				3.8	1.5' bgs. then light gray, dry.	
2.0						
20				*		
3.0						
40				5.2		
4.0	•			5.2		
5.0					5	
5.0	2	N/A	4.4	·	Sand (f-cs), trace silt, trace gravel (f), white, dry, loose.	
6.0	<u> </u>	IN/A	4,4		Sand (1-cs), trace sni, trace graver (1), white, dry, loose.	No odor, no staining
0.0				4.1		no stanning
7.0				4.1		
7.0						
8.0						
0.0						
9.0				3.1		
10						
10.0				-		
	3	N/A	4.7		Same as above.	No odor,
11.0					11.2	no staining
				6.1	Sand (f-cs), little gravel (f-m), trace silt, brown to orange brown,	1 [
12.0		-			dry, coarse, loose.	
	•	-				·
13.0		-				
						·
14.0				3.8		
						•
15.0					15	<i>1</i>
					End of boring at 15' bgs.	·
16.0						
	•					
17.0						·
						,
18.0	-					
						·
19.0						
						·
20.0						
					<u></u>	

					DOMING NO. GOD-14	
					annery Street, Franklin, NH	Sheet 1 of 1
	T: Coo					· .
DELT.	A PROJ	ECT N	O: 8A	07042681		
DRILI	LING M	ETHO	D: Dir	ect Push	SAMPLER BIT SIZE CORE CASING	1,000
	DRILLING RIG: Geoprobe				Macrocore 1.5" NA NA	DATE: 6-5-07
DRILLERS: N. H. Boring					INSPECTOR: Scott Bryant	
DEPTH	SAMPLE	Blows	REC.	PID Reading		
(ft)	No.	Per 6"	(ft)	(ppm)	SOIL DESCRIPTION	REMARKS
	1	N/A	2.0		Asphalt and road base.	No odor,
1.0					Sand (f-cs), little silt, trace gravel (f), brown, dry, damp.	no staining
				0.0		
2.0						
3.0						
4.0				2.8		
5.0						
	2	N/A	2.2		Same as above.	No odor,
6.0						no staining
				4.8		
7.0						
-						
8.0						
0.0						
9.0				5.7		, i
10.0						
10.0		NT/A	2.1		G	No adam
11 0	3	N/A	2.1		Same as above.	No odor,
11.0				1.6		no staining
12.0			-	4.6		
12.0						
13.0					-	
13.0						
14.0			* - 1	5.1		
14.0				3.1		
15.0			-			
13.0	4	N/A	1.9		Same as above.	No odor,
16.0	- 7	T 4/ 1/2	1.7		Junio as above.	no staining
10.0				6.6	1	ino stanning
17.0				0.0		
17.0						,
18.0						
10.0						
19.0				3.2		1 '
17.0				J.4		· .
20.0						
20.0					End of boring at 20' bgs.	1
L						1

APPENDIX D

Laboratory Analytical Reports - Soil

STL Buffalo

10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

ANALYTICAL REPORT

Job#: <u>A07-6329, A07-6476</u>

STL Project#: NY4A9341

SDG#: 6329

Site Name: Delta Environmental Consultants, Inc.

Task: Cookson site/Tannery Street

Mr. Scott Bryant Delta Environmental 185 Jordan Rd. Troy, NY 1218013214

STL Buffalo

Brian J Fischer Project Manager

06/22/2007

STL Buffalo Current Certifications

As of 5/16/2007

STATE	Program	Cert # / Lab ID
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA,NELAP CWA, RCRA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	NELAP SDWA, CWA, RCRA	NY455
New York	NELAP AIR, SDWA, CWA, RCRA,CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA, RCRA	998310390

SAMPLE SUMMARY

			SAMPLED		RECEIVED	
LAB SAMPLE ID	CLIENT SAMPLE ID	<u>MATRIX</u>	DATE	TIME	DATE	TIME_
A7632907	GSB-1 (18-20)	SOIL	06/05/2007	11:00	06/07/2007	08:45
A7647605	GSB-10(10-12)	SOIL	06/07/2007	12:45	06/09/2007	09:00
A7647606	GSB-11 (12-14)	SOIL	06/07/2007	13:00	06/09/2007	09:00
A7647607	GSB-12 (12-14)	SOIL	06/07/2007		• •	
A7647608	GSB-13 (10-12)	SOIL	06/07/2007	14:10	06/09/2007	09:00
A7647609	GSB-14 (14-16)	SOIL	06/07/2007	16:05	06/09/2007	09:00
A7632908	GSB-2 (16-18)	SOIL			06/07/2007	
A7632909	GSB-3 (10-12)	SOIL			06/07/2007	
A7632910	GSB-4 (8-10)	SOIL	06/05/2007	12:20	06/07/2007	08:45
A7647602	GSB-5 (12-14)	SOIL	•		06/09/2007	
A7632911	GSB-6 (10-12)	SOIL			06/07/2007	
A7632912	GSB-7 (10-12)	SOIL	• •		06/07/2007	
A7647603	GSB-8 (12-14)	SOIL	06/07/2007	09:45	06/09/2007	09:00
A7647604	GSB-9 (7-9)	SOIL	06/07/2007	10:15	06/09/2007	09:00
A7647601	MW-1 (8-10)	SOIL	06/06/2007	12:30	06/09/2007	09:00
A7647610	MW-2 (10-12)	SOIL	06/07/2007	15:15	06/09/2007	09:00
A7647611	MW-2 (30-32)	SOIL	06/07/2007	15:30	06/09/2007	09:00
A7647612	MW-3 (10-12)	SOIL	06/08/2007	09:15	06/09/2007	09:00
A7647613	MW-4(8-10)	SOIL			06/09/2007	09:00
A7632901	TP-1 (10-12)	SOIL			06/07/2007	08:45
A7632902	TP-2 (10-12)	SOIL	06/04/2007	11:20	06/07/2007	08:45
A7632903	TP-3 (8-10)	SOIL	06/04/2007	12:55	06/07/2007	08:45
A7632904	TP-4 (10-12)	SOIL	06/04/2007	15:15	06/07/2007	08:45
A7632905	TP-5 (3-4)	SOIL	06/05/2007	10:20	06/07/2007	08:45
A7632906	TP-6 (6-8)	SOIL	06/05/2007	12:05	06/07/2007	08:45

METHODS SUMMARY

Job#: <u>A07-6329, A07-6476</u>

STL Project#: NY4A9341

SDG#: <u>6329</u>

Site Name: Delta Environmental Consultants, Inc.

PARAMETER	ANALYTICAL METHOD
DELTA-METHOD 8260 - TCL VOLATILE ORGANICS	SW8463 8260
METHOD 8270 - TCL SEMI-VOAs+dimethyl formamide	SW8463 8270
METHOD 8270 - TCL SEMI-VOLATILE ORGANICS	SW8463 8270
DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS	SW8463 8082
Antimony - Total	SW8463 6010
Arsenic - Total	SW8463 6010
Beryllium - Total	SW8463 6010
Cadmium - Total	SW8463 6010
Chromium - Total	SW8463 6010
Copper - Total	SW8463 6010
Lead - Total	SW8463 6010
Mercury - Total	SW8463 7471
Nickel - Total	SW8463 6010
Selenium - Total	SW8463 6010
Silver - Total	SW8463 6010
Thallium - Total	SW8463 6010
Zinc - Total	SW8463 6010

References:

SW8463

"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

SDG NARRATIVE

Job#: A07-6329, A07-6476

STL Project#: NY4A9341

SDG#: 6329

Site Name: Delta Environmental Consultants, Inc.

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A07-6329

Sample Cooler(s) were received at the following temperature(s); 2.0 °C All samples were received in good condition.

A07-6476

Sample Cooler(s) were received at the following temperature(s); 2.0 °C Sample GSB-11(12-14) was received with a broken 8ozGW volume. Remaining volume is limited so please use sparingly.

GC/MS Volatile Data

For method 8260, the recovery of surrogate p-bromofluorobenzene and the internal standard 1,4-dichlorobenzene was outside quality control limits for sample MW-2(30-32). However, the chromatogram shows clear evidence of matrix interference and all other quality control samples met acceptance criteria. The sample was analyzed at a dilution with all QA criteria within acceptance limits. Both sets of data are included in this report.

GC/MS Semivolatile Data

No deviations from protocol were encountered during the analytical procedures.

GC Extractable Data

No deviations from protocol were encountered during the analytical procedures.

Metals Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Brian J. Fischer Project Manager

Lo-22-07

Date

Date: 06/22/2007 Time: 10:25:48

Dilution Log w/Code Information For Project NY4A9341, SDG 6329

Rept: AN1266R

Client Sample ID Lab Sample ID Parameter (Inorganic)/Method (Organic) Dilution Code TP-5 (3-4)

A7632905

8270

5.00 012

Dilution Code Definition:

002 - sample matrix effects

003 - excessive foaming

004 - high levels of non-target compounds

005 - sample matrix resulted in method non-compliance for an Internal Standard

006 - sample matrix resulted in method non-compliance for Surrogate

007 - nature of the TCLP matrix

008 - high concentration of target analyte(s)

009 - sample turbidity

010 - sample color

011 - insufficient volume for lower dilution

012 - sample viscosity

013 - other

STL

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- ¹ Indicates coelution.
- * Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

- ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.
- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- G Indicates a value greater than or equal to the project reporting limit but less than the laboratory quantitation limit
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA-METHOD 8260 - TCL VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		GSB-1 (18-20) A07-6329 06/05/2007	A7632907	GSB-10(10-12) A07-6476 06/07/2007	A7647605	GSB-11(12-14) A07-6476 06/07/2007	A7647606	GSB-12(12-14) A07-6476 06/07/2007	A7647607
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/KG	5 J	25	9 J	25	ND	64	ND	25
Benzene	UG/KG	ND	5	ND	5	ND	13	ND I	5
Bromodichloromethane	UG/KG	ND	5	ND	5	ND	13	ND	5
Bromoform	UG/KG	ND	5	ND	5	ND ND	13	l ND	5
Bromomethane	UG/KG	ND	5	ND I	5	ND	13	ND I	5
2-Butanone	UG/KG	ND ND	25	ND	25	ND	64	ND I	25
Carbon Disulfide	UG/KG	1 J	5	2 J	5	5 J	13	2 J	5
Carbon Tetrachloride	ug/kg	ND	5	ND	5	ND	13	ND ND	5
Chlorobenzene	ug/kg	ND	5	ND	5	ND	13	ND ND	5
Chloroethane	ug/kg	ND	5	ND ND	5	ND	13	ND ND	5
Chloroform	ug/kg	ND	5	ND	5	ND ND	13	ND ND	5
Chloromethane	ug/kg	ND	5	ND I	5	ND	13	ND ND	5
Cyclohexane	UG/KG	ND	5	ND ND	5	ND ND	13	ND	5
1.2-Dibromoethane	UG/KG	ND	5	ND ND	5	ND ND	13	ND ND	5
Dibromochloromethane	UG/KG	ND I	5	ND ND	5	ND ND	13	ND ND	5
1,2-Dibromo-3-chloropropane	UG/KG	ND I	5	ND ND	5	ND ND	13	ND ND	5
1,2-Dichlorobenzene	UG/KG	ND I	5	ND ND	5	ND ND	13	ND ND	5
1,3-Dichlorobenzene	UG/KG	ND	5	ND ND	5	ND	13	ND ND	5
1,4-Dichlorobenzene	UG/KG	ND	5	ND ND	5	ND ND	13	ND ND	5
Dichlorodifluoromethane	UG/KG	ND	5	ND ND	5	ND ND	13	ND ND	5
1,1-Dichloroethane	UG/KG	ND	5	ND ND	5	ND	13	ND ND	5
1,2-Dichloroethane	UG/KG	ND	5	ND	· 5	ND ND	13	ND ND	5
1,1-Dichloroethene	UG/KG	ND	5 :	ND ND	5	ND ND	13	ND ND	5
cis-1,2-Dichloroethene	UG/KG	ND	5	ND	5	ND ND	13	ND ND	5
trans-1,2-Dichloroethene	UG/KG	ND ND	5	ND ND	5	ND ND	13		5 5
1,2-Dichloropropane	UG/KG	ND ND	5	ND ND	5	ND ND	13	ND ND	5 5
cis-1,3-Dichloropropene	UG/KG	ND ND	5	ND ND	5	ND ND	13	ND ND	_
trans-1,3-Dichloropropene	UG/KG	ND	5	ND ND	5	ND ND	• •	ND ND	5
Ethylbenzene	UG/KG	ND ND	5	ND ND	5	ND ND	13	ND	5
2-Hexanone	UG/KG	ND	25	ND ND	25	ND ND	13 64	ND	5
Isopropylbenzene	UG/KG	ND	5	ND ND	5			ND	25
Methyl acetate	UG/KG	ND ND	5	ND ND	5	ND	13	ND	5
Methylcyclohexane	UG/KG	ND	5	ND ND	_	ND	13	ND	5
Methylene chloride	UG/KG	12	5	26 B	5 5	ND .	13	ND	5
4-Methyl-2-pentanone	1		_		-	54 B	13	28 B	5
	UG/KG UG/KG	ND	25 5	ND	25	ND	64	ND	25
Methyl-t-Butyl Ether (MTBE)		ND	-	ND	5	ND ND	13	ND	5
Styrene	UG/KG	ND	5	ND	5	ND	13	ND	5
1,1,2,2-Tetrachloroethane	UG/KG	ND	5	ND	5	ND	. 13	· ND	5
Tetrachloroethene	UG/KG	ND	5	ND	5	ND I	13	ND	5
Toluene	UG/KG	ND	5	ND	5	ND	13	ND	5
1,2,4-Trichlorobenzene	UG/KG	ND	5	ND	5	ND	13	ND	5
1,1,1-Trichloroethane	UG/KG	ND	5	ND	5	ND	13	ND	5
1,1,2-Trichloroethane	UG/KG	ND (5	ND	5	ND	. 13	ND	5

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA-METHOD 8260 - TCL VOLATILE ORGANICS

Rept: ANO326

Client ID Job No Lab ID Sample Date		GSB-1 (18-20) A07-6329 06/05/2007	A7632907	GSB-10(10-12) A07-6476 06/07/2007	A7647605	GSB-11(12-14) A07-6476 06/07/2007	A7647606	GSB-12(12-14) A07-6476 06/07/2007	A7647607
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Trichloroethene Vinyl chloride Total Xylenes	ug/kg ug/kg ug/kg ug/kg ug/kg	ND ND ND ND ND	5 5 5 10 15	ND 1 J ND ND ND	5 5 10 15	ND 4 J ND ND ND	13 13 13 25 38	ND 1 J ND ND ND	5 5 5 10 15
IS/SURROGATE(S) Chlorobenzene-D5 1,4-Difluorobenzene 1,4-Dichlorobenzene-D4 Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	% % % % %	109 115 99 96 88 96	50-200 50-200 50-200 71-125 72-126 64-126	101 100 96 112 107 112	50-200 50-200 50-200 71-125 72-126 64-126	106 106 101 102 96 99	50-200 50-200 50-200 71-125 72-126 64-126	105 104 96 105 98 105	50-200 50-200 50-200 71-125 72-126 64-126

STL Buffalo

Client ID Job No Lab ID Sample Date		GSB-13(10-12) A07-6476 06/07/2007	A7647608	GSB-14(14-16) A07-6476 06/07/2007	A7647609	GSB-2 (16-18) A07-6329 06/05/2007	A7632908	GSB-3 (10-12) A07-6329 06/05/2007	A7632909
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/KG	ND	25	6 J	25	5 J	25	ND	25
Benzene	UG/KG	ND	5	ND	5	ND	5	ND I	5
Bromodichloromethane	UG/KG	ND	5	ND	5	ND	5	ND ND	5
Bromoform	UG/KG	ND	5	. ND	5	ND	5	ND ND	5
Bromomethane	UG/KG	ND	5	ND	5	ND	5	ND ND	5
2-Butanone	ug/kg	ND	25	ND	25	ND	25	ND ND	25
Carbon Disulfide	UG/KG	1 J	5	2 J	5	1 1	5	2 J	5
Carbon Tetrachloride	UG/KG	ND	5	ND ND	5	ND ND	5	ND 23	. 5
Chlorobenzene	UG/KG	ND	5	ND ND	5	ND ND	5	ND ND	5 5
Chloroethane	UG/KG	ND	5	ND ND	5	ND ND	5	ND ND	5 5
Chloroform	UG/KG	ND	. 5	ND	5	ND ND	5	ND ND	. 5
Chloromethane	UG/KG	ND	5	ND ND	5	ND ND	5	ND ND	5 5
Cyclohexane	UG/KG	ND	5	ND ND	5	ND ND	5	ND ND	5
1,2-Dibromoethane	UG/KG	ND	5	ND	5	ND ND	5	ND ND	5
Dibromochloromethane	UG/KG	ND	5	ND ND	5	ND ND	5	ND ND	5 5
1,2-Dibromo-3-chloropropane	UG/KG	ND	5	ND ND	5	ND ND	5	ND ND	5
1,2-Dichlorobenzene	UG/KG	ND	5	ND ND	5	ND ND	5		5 5
1,3-Dichlorobenzene	UG/KG	ND	5	ND ND	5	ND ND	5	ND ND	5 5
1,4-Dichlorobenzene	UG/KG	ND	5	ND ND	5	ND ND	5	ND ND	5 5
Dichlorodifluoromethane	UG/KG	ND ND	5	ND ND	5	ND ND	5 5	ND ND	5
1,1-Dichloroethane	UG/KG	ND	5	ND ND	5	ND ND	5	ND ND	_
1,2-Dichloroethane	UG/KG	ND ND	5	ND ND	5	ND ND	5	ND	5
1,1-Dichloroethene	UG/KG	ND ND	5	ND ND	5	ND ND	5 5	ND	5
cis-1,2-Dichloroethene	UG/KG	ND	5	ND ND	5	ND ND	5 5	ND	5
trans-1,2-Dichloroethene	UG/KG	ND	5	ND ND	5	ND ND	•	ND	5
1,2-Dichloropropane	UG/KG	ND	5	ND ND	5	1	5	ND	5
cis-1,3-Dichloropropene	UG/KG	ND	5	ND ND	5	ND	5	ND	5
trans-1,3-Dichloropropene	UG/KG	ND ND	5	ND ND	5 5	ND	5	ND	5
Ethylbenzene	UG/KG	ND ND	5	ND ND	5 5	ND	5	ND	5
2-Hexanone	UG/KG	ND	25	ND ND	25	ND ND	5	ND	5
Isopropylbenzene	UG/KG	ND ND	5	ND ND		ND	25	ND ND	25
Methyl acetate	UG/KG	ND ND	5	1	5	ND ND	5	ND	5
Methylcyclohexane	UG/KG	ND ND	5 5	ND ND	5	ND	5	ND	5
Methylene chloride	UG/KG	ии 20 в	5	ND ZE D	5	ND .	5	ND	5
4-Methyl-2-pentanone	UG/KG	ND ZO B	25	35 B	5	15	5	9 В	5
Methyl-t-Butyl Ether (MTBE)	UG/KG			ND ND	25	ND	25	ND	25
Styrene	UG/KG	ND	5	ND	5	ND	5	ND	5
1,1,2,2-Tetrachloroethane		ND	5	ND	5	ND	5	ND	5
Tetrachloroethene	UG/KG	ND	5	ND	5	ND	5	ND	5
Toluene	UG/KG	ND	5	ND	5	ND	5	ND	5
	UG/KG	ND	5	ND	5	ND	5	ND	5
1,2,4-Trichlorobenzene	UG/KG	ND	. 5	ND	5	ND	5	ND ND	5
1,1,1-Trichloroethane	UG/KG	ND	5	ND	5	ND	5	ND	5
1,1,2-Trichloroethane	UG/KG (ND (5	ND I	5	l ND I	5	ND	5

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA-METHOD 8260 - TCL VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		GSB-13(10-12) A07-6476 06/07/2007	A7647608	GSB-14(14-16) A07-6476 06/07/2007	A7647609	GSB-2 (16-18) A07-6329 06/05/2007	A7632908	GSB-3 (10-12) A07-6329 06/05/2007	A7632909
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
1,1,2-Trichloro-1,2,2-trifluor Trichlorofluoromethane Trichloroethene Vinyl chloride Total Xylenes	UG/KG UG/KG UG/KG UG/KG UG/KG	ND ND ND ND ND	5 5 5 10 15	ND 2 J ND ND ND	5 5 5 10 15	ND ND ND ND	5 5 5 10 15	ND ND ND ND	5 5 5 10 15
IS/SURROGATE(S) Chlorobenzene-D5 1,4-Difluorobenzene 1,4-Dichlorobenzene-D4 Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	% % % % %	107 104 105 95 93 100	50-200 50-200 50-200 71-125 72-126 64-126	105 101 99 105 100 108	50-200 50-200 50-200 71-125 72-126 64-126	104 106 98 98 90 89	50-200 50-200 50-200 71-125 72-126 64-126	100 98 99 98 94 100	50-200 50-200 50-200 71-125 72-126 64-126

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA-METHOD 8260 - TCL VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		GSB-4 (8-10) A07-6329 06/05/2007	A7632910	GSB-5(12-14) A07-6476 06/07/2007	A7647602	GSB-6 (10-12) A07-6329 06/05/2007	A7632911	GSB-7 (10-12) A07-6329 06/05/2007	A7632912
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/KG	6 J	25	ND	25	ND	25	8 J	25
Benzene	UG/KG	ND	5	ND	5 .	ND	5	ND	5
Bromodichloromethane	UG/KG	ND	5	ND	5	ND ND	5	ND	5
Bromoform	UG/KG	ND	5	ND	5	ND	5	ND	5
Bromomethane	UG/KG	ND	5	ND	5	ND	5	ND	5
2-Butanone	UG/KG	ND	25	ND	25	ND	25	ND	25
Carbon Disulfide	UG/KG	1 J	5	2 J	5	2 J	5	2 J	5
Carbon Tetrachloride	UG/KG	ND	5	ND	5	ND	5	ND ND	5
Chlorobenzene	UG/KG	ND	5	ND	5	ND	5	ND ND	5
Chloroethane	UG/KG	ND	5	ND	5	ND	5	ND ND	5
Chloroform	UG/KG	ND	5	ND	5	ND	5	ND ND	5
Chloromethane	UG/KG	ND	. 5	ND ND	5	ND	5	ND ND	5
Cyclohexane	UG/KG	ND	5	ND	5	ND	5	ND ND	5
1,2-Dibromoethane	UG/KG	ND	5	ND	5	ND	5	ND ND	5
Dibromochloromethane	UG/KG	ND	5	ND	5	ND ND	5	ND ND	5
1,2-Dibromo-3-chloropropane	UG/KG	ND	5	ND ND	5	ND ND	5	ND ND	5
1,2-Dichlorobenzene	UG/KG	ND	5	ND ND	5	ND ND	5	ND ND	5
1,3-Dichlorobenzene	UG/KG	ND	5	ND	5	ND ND	5	ND ND	5
1,4-Dichlorobenzene	UG/KG	ND	5	ND ND	5	ND ND	5	ND ND	5
Dichlorodifluoromethane	UG/KG	ND	5	ND	5	ND ND	5	ND	5
1.1-Dichloroethane	UG/KG	ND	5	ND	5	ND ND	5		5
1,2-Dichloroethane	UG/KG	ND	5	ND ND	5	ND ND	5	ND ND	5
1,1-Dichloroethene	UG/KG	ND ND	5	ND	5	ND ND	5	ND ND	5
cis-1,2-Dichloroethene	UG/KG	ND ND	5	ND ND	5	ND ND	5	ND ND	5
trans-1,2-Dichloroethene	UG/KG	ND	5	ND ND	5	ND ND	5	1	5
1,2-Dichloropropane	UG/KG	ND ND	5	ND ND	5	ND ND	5	ND ND	5
cis-1,3-Dichloropropene	UG/KG	ND	5	ND ND	5	ND ND	5		5
trans-1,3-Dichloropropene	UG/KG	ND ND	5	ND ND	5	ND ND	5	ND	5
Ethylbenzene	UG/KG	ND	5	ND ND	5	ND ND	5	ND 5	
2-Hexanone	UG/KG	ND ND	25	ND ND	25	ND ND	25	I -	5
Isopropylbenzene	UG/KG	ND	5	ND ND	5	ND ND		ND	25
Methyl acetate	UG/KG	ND	5	ND ND	5		5	ND	5
Methylcyclohexane	UG/KG	ND ND	5	ND ND	5	ND	5	ND	5
Methylene chloride	UG/KG	20	5	26 B	5	ND	5	ND .	5
4-Methyl-2-pentanone	UG/KG		25		_	16	5	24	5
Methyl-t-Butyl Ether (MTBE)	UG/KG	ND ND	25 5	ND	25	ND	25	ND	25
Styrene			-	ND	5	ND	5	ND	5
1,1,2,2-Tetrachloroethane	UG/KG UG/KG	ND ND	5 5	ND	5	ND	5	ND	5
Tetrachloroethene		***	-	ND	5	ND	5	ND	5
	UG/KG	ND	5.	ND	5	ND	5	ND	5
Toluene	UG/KG	ND	5	ND	5	ND	5	ND	5
1,2,4-Trichlorobenzene	UG/KG	ND	5	ND	5	ND	5	ND	5
1,1,1-Trichloroethane	UG/KG	ND	5	ND	5	ND	5	ND	5
1,1,2-Trichloroethane	UG/KG	ND	5	ND	5	ND	5	ND	5

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA-METHOD 8260 - TCL VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		GSB-4 (8-10) A07-6329 06/05/2007	A7632910	GSB-5(12-14) A07-6476 06/07/2007	A7647602	GSB-6 (10-12) A07-6329 06/05/2007	A7632911	GSB-7 (10-12) A07-6329 06/05/2007	A7632912
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
,1,2-Trichloro-1,2,2-trifluor		ND	5 .	ND	5	ND	5	ND	5
richlorofluoromethane	UG/KG	ND	5	1 J	5	ND	5	1 J	5
richloroethene	UG/KG	ND	5	ND	5	ND	5	ND	5
inyl chloride/	UG/KG	ND ND	10	ND	10	ND	10	ND	10
otal Xylenes	UG/KG	ND	15	ND	15	ND	15	25	15
=====Is/surrogate(s)======									
hlorobenzene-D5	%	97	50-200	94	50-200	98	50-200	95	50-200
,4-Difluorobenzene	%	101	50-200	89	50-200	105	50-200	99	50-200
,4-Dichlorobenzene-D4	%	89	50-200	93	50-200	88	50-200	87	50-200
oluene-D8	%	108	71-125	109	71-125	106	71-125	108	71-125
-Bromofluorobenzene	%	101	72-126	110	72-126	96	72-126	101	72-126
.2-Dichloroethane-D4	%	112	64-126	94	64-126	106	64-126	111	64-126

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA-METHOD 8260 - TCL VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		GSB-8(12-14) A07-6476 06/07/2007	A7647603	GSB-9(7-9) A07-6476 06/07/2007	A7647604	MW-1 (8-10) A07-6476 06/06/2007	A7647601	MW-2(10-12) A07-6476 06/07/2007	A7647610
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/KG	5 J	24	ND	25	6 J	26	5 J	25
Benzene	UG/KG	ND	5	ND	5	ND	5	ND	5
Bromodichloromethane	UG/KG	ND	5	ND	5	ND	5	ND	5
Bromoform	UG/KG	ND	5	ND	5	ND	5	ND	5
Bromomethane	ug/kg	ND I	5	ND	5	ND ND	5	ND	5
2-Butanone	UG/KG	ND ND	24	ND	25	ND ND	26	ND	25
Carbon Disulfide	UG/KG	ND I	5	1 J	5	2 J	5	2 J	5
Carbon Tetrachloride	UG/KG	ND ND	5	ND	5	ND ND	5	ND Z J	5
Chlorobenzene	UG/KG	ND ND	5	ND	5	ND ND	5	ND ND	5
Chloroethane	UG/KG	ND ND	5	ND ND	5	ND ND	5	ND ND	5
Chloroform	UG/KG	ND	5	ND	5	ND ND	5	ND ND	5
Chloromethane	UG/KG	ND I	5	ND ND	5	ND ND	5		5
Cyclohexane	UG/KG	ND ND	5	ND	5	ND ND	5	ND	5
1,2-Dibromoethane	UG/KG	ND ND	5	ND ND	5	1		ND	
Dibromochloromethane	UG/KG	ND ND	5	ND ND	5	ND ND	5	ND	5
1,2-Dibromo-3-chloropropane	UG/KG	ND ND	بر 5	ND	5	ND	5_	ND	5
1,2-Dichlorobenzene	UG/KG	ND ND		1		ND	5	ND	5
1,3-Dichlorobenzene	UG/KG	ND ND	5	ND	5	ND	5	ND	5
1,4-Dichlorobenzene	UG/KG		5	ND	5	ND	5	ND	5
Dichlorodifluoromethane		ND		ND	5	ND	5	ND	5
	UG/KG	ND	5	ND	5	ND	5	ND	5
1,1-Dichloroethane	UG/KG	ND ND	5	ND	5 .	ND	5	ND	5
1,2-Dichloroethane	UG/KG	ND	5	ND	5	ND	5	ND	5
1,1-Dichloroethene	UG/KG	ND	5	ND	5	ND	. 5	ND	5
cis-1,2-Dichloroethene	UG/KG	ND	5	ND	5	ND	5	ND	5
trans-1,2-Dichloroethene	UG/KG	ND	5	ND	5	ND	5	ND	5
1,2-Dichloropropane	UG/KG	ND	5	ND	5	ND	5	ND	5
cis-1,3-Dichloropropene	UG/KG	ND	5	ND	5	ND	5	ND	5
trans-1,3-Dichloropropene	UG/KG	ND	5	ND	5	ND	5	ND	5
Ethylbenzene	UG/KG	ND	5	ND	5	ND	5	ND	5
2-Hexanone	UG/KG	ND	24	ND	25	ND	26	ND ND	25
Isopropylbenzene	UG/KG	ND	5	ND	5	ND	5	ND	5
Methyl acetate	UG/KG	ND	5	ND	5	ND ND	5	ND	5
Methylcyclohexane	UG/KG	ND	5	ND	5	ND	5	ND	5
Methylene chloride	UG/KG	21 B	5	22 B	5	29 B	5	29 B	5
4-Methyl-2-pentanone	UG/KG	ND	24	ND	25	ND	26	ND	25
Methyl-t-Butyl Ether (MTBE)	UG/KG	ND	5	ND	5	ND	5	ND	5
Styrene	UG/KG	ND	5	ND	5	ND	5	ND ND	5
1,1,2,2-Tetrachloroethane	UG/KG	ND	5	ND	5	ND	5	ND	5
Tetrachloroethene	UG/KG	ND	5	ND	5	ND ND	5	ND ND	5
Toluene	UG/KG	ND	5	ND	5	ND ND	5	ND ND	5
1,2,4-Trichlorobenzene	UG/KG	ND	5	ND	5	ND	5	ND ND	5
1,1,1-Trichloroethane	UG/KG	ND ND	5	ND ND	5	ND ND	5	1	5
1,1,2-Trichloroethane	UG/KG	ND ND	5	ND ND	5	ND ND	5	ND	5
., .,	1,	.,,,		ND	,	ND	, ,	ND	ן י

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA-METHOD 8260 - TCL VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		GSB-8(12-14) A07-6476 06/07/2007	A7647603	GSB-9(7-9) A07-6476 06/07/2007	A7647604	MW-1 (8-10) A07-6476 06/06/2007	A7647601	MW-2(10-12) A07-6476 06/07/2007	A7647610
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
1,1,2-Trichloro-1,2,2-trifluor Trichlorofluoromethane Trichloroethene Vinyl chloride Total Xylenes	UG/KG UG/KG UG/KG UG/KG UG/KG	ND ND ND ND	5 5 5 10 15	ND 1 J ND ND ND	5 5 5 10 15	ND 1 J ND ND ND	5 5 5 10 15	ND 1 J ND ND ND	5 5 5 10 15
IS/SURROGATE(S) Chlorobenzene-D5 1,4-Difluorobenzene 1,4-Dichlorobenzene-D4 Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	% % % % %	89 84 88 102 103 111	50-200 50-200 50-200 71-125 72-126 64-126	104 98 98 105 105	50-200 50-200 50-200 71-125 72-126 64-126	101 99 100 109 106 105	50-200 50-200 50-200 71-125 72-126 64-126	106 106 100 100 94 101	50-200 50-200 50-200 71-125 72-126 64-126

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA-METHOD 8260 - TCL VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		MW-2(30-32) A07-6476 06/07/2007	A7647611	MW-2(30-32) A07-6476 06/07/2007	A7647611DL	MW-3(10-12) A07-6476 06/08/2007	A7647612	MW-4(8-10) A07-6476 06/08/2007	A7647613
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/KG	23 J	28	ND	550	ND	24	6 J	26
Benzene	UG/KG	ND	6	ND	110	ND	5	ND	5
romodichloromethane	UG/KG	ND	6	ND	110	ND	5	ND	5
Bromoform	UG/KG	ND	6	ND	110	ND	5	ND	5
Bromomethane	ug/kg	ND	6	ND	110	ND	5	ND	5
2-Butanone	UG/KG	ND	28	ND	550	ND ND	24	ND	26
Carbon Disulfide	UG/KG	10	6	ND	110	· 1 j	5	2 J	5
Carbon Tetrachloride	UG/KG	ND	6	ND	110	ND ND	5	ND ND	s s
Chlorobenzene	UG/KG	ND	6	ND	110	ND ND	5	ND	5
Chloroethane	UG/KG	ND ND	6	ND ND	110	ND ND	5	ND ND	5
Chloroform	UG/KG	ND ND	6	ND ND	110	ND ND	5	ND ND	5
Chloromethane	UG/KG		6		110	1	5		5
		ND		ND		ND	1	ND	
Cyclohexane	UG/KG	ND	6	ND	110	ND	5	ND	5
1,2-Dibromoethane	UG/KG	ND	6	ND	110	ND	5	ND	5
Dibromochloromethane	UG/KG	ND	6	ND	110	ND	5	ND	5
1,2-Dibromo-3-chloropropane	UG/KG	ND	6	ND	110	ND	5	ND	5
1,2-Dichlorobenzene	UG/KG	ND	6	ND	110	ND	5	ND	5
1,3-Dichlorobenzene	UG/KG	ND	6	ND	110	ND	5	ND	5
1,4-Dichlorobenzene	UG/KG	ND ND	6	ND	110	ND	5	ND	5
Dichlorodifluoromethane	UG/KG	ND	6	ND	110	ND	5	ND	5
1,1-Dichloroethane	UG/KG	ND	6	ND ·	110	ND	5	ND	5
1,2-Dichloroethane	UG/KG	ND	6	ND	110	ND	5	ND	5
1,1-Dichloroethene	UG/KG	ND	6	ND	110	ND	5	ND	5
cis-1,2-Dichloroethene	UG/KG	ND	6	ND	110	ND	5	ND	5
trans-1,2-Dichloroethene	UG/KG	l ND	6	ND	110	ND	5	ND	5
1,2-Dichloropropane	ug/kg	l ND	6	ND	110	ND	5	ND	5
cis-1,3-Dichloropropene	UG/KG	ND	6	ND	110	ND	5	ND	5
trans-1,3-Dichloropropene	UG/KG	ND	6	ND	110	ND ND	5	ND	5
Ethylbenzene	UG/KG	ND	6	ND	110	ND ND	5	ND	5
2-Hexanone	UG/KG	ND	28	ND ND	550	ND ND	24	ND	26
[sopropylbenzene	UG/KG	ND ND	6	ND ND	110	ND ND	5	ND ND	5
Methyl acetate	UG/KG	ND ND	6	ND	110	ND ND	5	ND ND	5
Methylcyclohexane	UG/KG	ND ND	6	ND ND	110	ND ND	5	ND ND	5
Methylene chloride	UG/KG	24 B	6	66 DJ	110	24 B	5	19 B	5
4-Methyl-2-pentanone	UG/KG	ND ND	28	ND ND	550	ND ND	24		26
Methyl-t-Butyl Ether (MTBE)	UG/KG	ND ND	6	ND ND	110	1	5	ND ND	5
•			l .			ND	_	ND	
Styrene	UG/KG	ND	. 6	ND ND	110	ND	5	ND	5
1,1,2,2-Tetrachloroethane	UG/KG	ND	6	ND	110	ND	5	ND	5
Tetrachloroethene	UG/KG	ND	6	ND	110	ND	5	ND	5
Toluene	UG/KG	ND	6	ND	110	ND	5	ND	5
1,2,4-Trichlorobenzene	UG/KG	ND	6	ND	110	ND	5	ND	5
1,1,1-Trichloroethane	ug/kg	ND	6	ND ·	110	ND	5	ND	5
1,1,2-Trichloroethane	UG/KG	ND	6	ND	[110	ND	[5	ND	[5

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA-METHOD 8260 - TCL VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		MW-2(30-32) A07-6476 06/07/2007	A7647611	MW-2(30-32) A07-6476 06/07/2007	A7647611DL	MW-3(10-12) A07-6476 06/08/2007	A7647612	MW-4(8-10) A07-6476 06/08/2007	A7647613
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
1,1,2-Trichloro-1,2,2-trifluor Trichlorofluoromethane Trichloroethene Vinyl chloride Total Xylenes	UG/KG UG/KG UG/KG UG/KG UG/KG	ND 2 J ND ND ND	6 6 6 11 16	ND ND ND ND ND	110 110 110 220 330	ND 1 J ND ND ND	5 5 5 10 15	ND 1 J ND ND ND	5 5 5 10 16
IS/SURROGATE(S) Chlorobenzene-D5 1,4-Difluorobenzene 1,4-Dichlorobenzene-D4 Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	% % % % % %	114 88 27 * 86 50 * 95	50-200 50-200 50-200 71-125 72-126 64-126	92 93 82 101 91	50-200 50-200 50-200 71-125 72-126 64-126	109 105 108 97 97 88	50-200 50-200 50-200 71-125 72-126 64-126	108 107 109 103 102 98	50-200 50-200 50-200 71-125 72-126 64-126

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA-METHOD 8260 - TCL VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		TP-1 (10-12) A07-6329 06/04/2007	A7632901	TP-2 (10-12) A07-6329 06/04/2007	A7632902	TP-3 (8-10) A07-6329 06/04/2007	A7632903	TP-4 (10-12) A07-6329 06/04/2007	A7632904
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/KG	ND	28	ND	26	ND	29	ND	25
Benzene	UG/KG	ND	6	ND	. 5	ND	6	ND	5
Bromodichloromethane	UG/KG	ND	6	l ND	5	ND	6	ND	5
Bromoform	UG/KG	ND	6	ND ND	5	ND	6	ND	5
Bromomethane	UG/KG	ND	6	l ND I	5	ND	6	ND ND	5
2-Butanone	UG/KG	ND	28	ND ND	26	ND ND	29	ND	25
Carbon Disulfide	UG/KG	2 J	6	2 J	5	2 J	6		
Carbon Tetrachloride	UG/KG	ND .	6	ND 2	5			2 J	5
Chlorobenzene	UG/KG	ND	6	ND ND	. 5	ND ND	6	ND	5
Chloroethane	UG/KG	ND ND	6	ND ND	. 5	ND	6	ND	5
Chloroform	UG/KG	ND	6	ND ND	5 5	ND	6	ND	5
Chloromethane	UG/KG	ND ND	6	1	_	ND	6	ND	5
Cyclohexane	UG/KG	ND	6	ND	5	ND	6	ND	5
1,2-Dibromoethane	UG/KG		-	ND ND	5	ND	6	ND	5
Dibromochloromethane		ND	6	ND	5	ND	6	ND	5
	UG/KG	ND	6	ND	5	ND	6	ND	5
1,2-Dibromo-3-chloropropane	UG/KG	ND	6	ND	5	ND	6	ND	5
1,2-Dichlorobenzene	UG/KG	ND -	6	ND	5	ND	6	ND	5
1,3-Dichlorobenzene	UG/KG	ND	6	ND	5	ND	6	ND	5
1,4-Dichlorobenzene	UG/KG	ND	6	ND	5	ND	6	ND	5
Dichlorodifluoromethane	UG/KG	ND	6	ND	5	ND	6	ND	5
1,1-Dichloroethane	UG/KG	ND	6	ND	5	ND	6	ND	5
1,2-Dichloroethane	UG/KG	ND	6	ND	5	ND	6	ND ND	5
1,1-Dichloroethene	UG/KG	ND	6	ND ND	5	ND	6	ND ND	5
cis-1,2-Dichloroethene	UG/KG	ND	6	ND	5	ND	6	ND	5
trans-1,2-Dichloroethene	UG/KG	ND	6	ND ND	5	ND	6	ND	5
1,2-Dichloropropane	UG/KG	ND	6	ND	5	ND ND	6	ND ND	5
cis-1,3-Dichloropropene	UG/KG	ND	6	ND	5	ND ND	6	ND ND	5
trans-1,3-Dichloropropene	UG/KG	ND	6	ND ND	5	ND ND	6	. ND	5
Ethylbenzene	ug/kg	ND	6	ND	5	ND ND	6	ND	5
2-Hexanone	UG/KG	ND	28	ND I	26	ND ND	29	ND ND	
Isopropylbenzene	UG/KG	ND I	6	ND	5				25
Methyl acetate	UG/KG	ND	6	ND ND	5	ND ND	6	ND	5
Methylcyclohexane	UG/KG	ND	6	ND ND	5	ND ND	-	ND	5
Methylene chloride	UG/KG	16 B	6	12 B	5 5		6	ND .	5
4-Methyl-2-pentanone	UG/KG	ND	28		_	17 B	6	12 B	5
Methyl-t-Butyl Ether (MTBE)	UG/KG	ND ND	6	ND ND	26	ND	29	ND	25
Styrene	UG/KG	ND		ND	5	ND	6	ND	5
1,1,2,2-Tetrachloroethane	UG/KG	ľ	6	ND	. 5	ND	6	ND	5
Tetrachloroethene	UG/KG	ND	6	ND	5	ND	6	ND	5
		ND	6	ND	5	ND ·	6	ND	5
Foluene	UG/KG	ND	6	ND	5	ND	6	ND	5
1,2,4-Trichlorobenzene	UG/KG	ND	6	ND	5	ND	6	ND	5
1,1,1-Trichloroethane	UG/KG	ND	6	, ND	5	ND	6	ND	5
1,1,2-Trichloroethane	UG/KG	ND	6	ND I	5	ND	6	ND	5

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA-METHOD 8260 - TCL VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		TP-1 (10-12) A07-6329 06/04/2007	A7632901	TP-2 (10-12) A07-6329 06/04/2007	A7632902	TP-3 (8-10) A07-6329 06/04/2007	A7632903	TP-4 (10-12) A07-6329 06/04/2007	A7632904
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
1,1,2-Trichloro-1,2,2-trifluor Trichlorofluoromethane Trichloroethene Vinyl chloride Total Xylenes	UG/KG UG/KG UG/KG UG/KG UG/KG	ND ND ND ND ND	6 6 11 17	ND ND ND ND ND	5 5 5 10 15	ND ND ND ND ND	6 6 6 12 17	ND ND ND ND ND	5 5 5 10 15
IS/SURROGATE(S) Chlorobenzene-D5 1,4-Difluorobenzene 1,4-Dichlorobenzene-D4 Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	% % % % %	98 98 97 99 90 94	50-200 50-200 50-200 71-125 72-126 64-126	101 101 100 100 91 95	50-200 50-200 50-200 71-125 72-126 64-126	103 102 98 100 88 94	50-200 50-200 50-200 71-125 72-126 64-126	97 96 90 100 89 95	50-200 50-200 50-200 71-125 72-126 64-126

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA-METHOD 8260 - TCL VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		TP-5 (3-4) A07-6329 06/05/2007	A7632905	TP-6 (6-8) A07-6329 06/05/2007	A7632906				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/KG	6 J	26	ND	26	NA		NA NA	
Benzene	UG/KG	ND	5	ND	5	l NA	,	l NA	
Bromodichloromethane	UG/KG	ND	5	ND	5	NA .		NA NA	
Bromoform	υσ/κσ	ND	5	ND	5	NA		NA	
Bromomethane	UG/KG	ND	5	ND	5	NA NA		NA	
2-Butanone	UG/KG	ND	26	ND	26	NA NA		NA NA	
Carbon Disulfide	UG/KG	2 J	5	2 J	5	NA NA		NA NA	
Carbon Tetrachloride	UG/KG	ND .	5	ND	5	NA NA		NA NA	
Chlorobenzene	UG/KG	ND	5	ND	5	NA NA		NA NA	
Chloroethane	UG/KG	ND	5	ND	5	NA NA	1	NA NA	
Chloroform	UG/KG	ND	5	ND	5	NA NA		NA NA	
Chloromethane	UG/KG	ND ND	5	ND	5	NA NA		NA NA	
Cyclohexane	UG/KG	ND ND	5	ND	5	NA NA		1	
1,2-Dibromoethane	UG/KG	ND ND	5	ND	5	NA NA		NA NA	
Dibromochloromethane	UG/KG	ND ND	5	ND	5	NA NA			
1,2-Dibromo-3-chloropropane	UG/KG	ND	5	ND	5	1		NA NA	
1,2-Dichlorobenzene	UG/KG	ND ND	5		5	NA NA		NA NA	
1,3-Dichlorobenzene		ND ND	5	ND		NA NA		NA 	
	UG/KG	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ND	5	NA		NA	
1,4-Dichlorobenzene	UG/KG	ND	5	ND	5_	NA		NA NA	
Dichlorodifluoromethane	UG/KG	ND	5	ND	5	NA		NA NA	
1,1-Dichloroethane	UG/KG	ND	5	ND	5	NA NA		NA ·	
1,2-Dichloroethane	ug/kg	ND	5	ND	5	NA NA		NA NA	
1,1-Dichloroethene	UG/KG	ND	5	ND	5	NA NA		NA NA	
cis-1,2-Dichloroethene	ug/kg	ND	5	ND	5	NA		NA	*
trans-1,2-Dichloroethene	UG/KG	ND	5	ND	5	NA NA		NA	
1,2-Dichloropropane	ug/kg	ND	5	ND	5	NA		NA NA	
cis-1,3-Dichloropropene	UG/KG	ND	5	ND	5	NA NA		NA NA	
trans-1,3-Dichloropropene	UG/KG	ND	5	ND	5	NA NA		NA NA	
Ethylbenzene	UG/KG	ND	5	ND	5	NA		NA	
2-Hexanone	UG/KG	ND	26	ND	26	NA NA		NA NA	
Isopropylbenzene	UG/KG	ND	5	ND	5	NA		NA	
Methyl acetate	UG/KG	ND	5	ND	5	NA NA		NA NA	
Methylcyclohexane	UG/KG	ND	5	ND	5	NA NA		NA NA	
Methylene chloride	UG/KG	23	5	18	5	NA NA		NA	
4-Methyl-2-pentanone	UG/KG	ND	26	ND	26	NA NA		NA NA	
Methyl-t-Butyl Ether (MTBE)	UG/KG	ND	5	ND	5	NA NA		NA.	
Styrene	UG/KG	ND	5	ND	5	NA NA	1	NA NA	
1,1,2,2-Tetrachloroethane	UG/KG	ND	5	ND	5	NA		NA NA	
Tetrachloroethene	UG/KG	ND	5	ND	5	NA NA		NA NA	
Toluene	UG/KG	ND	5	ND ND	5	NA NA	1	1	
1,2,4-Trichlorobenzene	UG/KG	ND ND	5	ND	5	NA NA		NA NA	
1,1,1-Trichloroethane	UG/KG	ND ND	5	ND	5	1		NA NA	
• •		ND ND	5) 5	NA NA	1	NA NA	
,1,2-Trichloroethane	UG/KG	עא	ן כ	ND	י ס	Į NA	Į.	NA NA	l

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA-METHOD 8260 - TCL VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		TP-5 (3-4) A07-6329 06/05/2007	A7632905	TP-6 (6-8) A07-6329 06/05/2007	A7632906				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Trichloroethene /inyl chloride Total Xylenes	ug/kg ug/kg ug/kg ug/kg ug/kg	ND ND ND ND	5 5 5 10 16	ND ND ND ND	5 5 5 10 15	NA NA NA NA		NA NA NA NA	
IS/SURROGATE(S) hlorobenzene-D5 ,4-Difluorobenzene ,4-Dichlorobenzene-D4 oluene-D8 >-Bromofluorobenzene ,2-Dichloroethane-D4	% % % % %	106 113 94 99 89 98	50-200 50-200 50-200 71-125 72-126 64-126	107 113 94 99 88 97	50-200 50-200 50-200 71-125 72-126 64-126	NA NA NA NA NA	4	NA NA NA NA NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID Sample Date		GSB-12(12-14) A07-6476 06/07/2007	A7647607	GSB-13(10-12) A07-6476 06/07/2007	A7647608	GSB-14(14-16) A07-6476 06/07/2007	A7647609	GSB-3 (10-12) A07-6329 06/05/2007	A7632909
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample · Value	Reporting Limit	Sample Value	Reporting Limit
N,N-Dimethyl formamide	UG/KG	ND	660	ND	650	ND	680	ND	660
Acenaphthene	UG/KG	ND	170	ND	170	ND	170	ND	170
Acenaphthylene	UG/KG	ND	170	ND	170	ND	170	ND	170
Acetophenone	UG/KG	ND	170	ND	170	ND	170	ND	170
Anthracene	UG/KG	ND	170	ND	170	ND I	170	ND	170
Atrazine	UG/KG	ND	170	ND	170	ND	170	ND	170
Benzaldehyde	UG/KG	ND	170	ND	170	ND .	170	ND	170
Benzo(a)anthracene	UG/KG	ND	170	ND	170	17 J	170	ND	170
Benzo(b)fluoranthene	UG/KG	ND	170	ND	170	22 J	170	ND	170
Benzo(k)fluoranthene	UG/KG	ND	170	ND	170	ND	170	ND	170
Benzo(ghi)perylene	UG/KG	ND	170	ND	170	10 J	170	ND	170
Benzo(a)pyrene	UG/KG	ND	170	ND	170	10 J	170	ND	170
Benzoic acid	UG/KG	ND	4800	ND	4700	ND	4900	ND	4800
Benzyl alcohol	UG/KG	ND	330	ND ND	320	ND	340	ND	330
Biphenyl	ug/kg	ND	170	ND	170	ND	170	ND	170
Bis(2-chloroethoxy) methane	UG/KG	ND	170	ND	170	ND	170	ND	170
Bis(2-chloroethyl) ether	UG/KG	ND	170	ND	170	ND I	170	ND	170
2,2'-Oxybis(1-Chloropropane)	UG/KG	ND	170	ND	170	ND	170	ND	170
Bis(2-ethylhexyl) phthalate	UG/KG	ND	170	ND	170	ND	170	ND	170
4-Bromophenyl phenyl ether	ug/kg	ND	170	ND	170	ND ND	170	ND	170
Butyl benzyl phthalate	ug/kg	ND ·	170	ND	170	ND ND	170	ND	170
Caprolactam	UG/KG	ND	170	ND	170	ND ND	170	ND	170
4-Chloroaniline	UG/KG	ND	170	ND	170	ND	170	ND	170
4-Chloro-3-methylphenol	υσ/κσ	ND	170	ND	170	ND ND	170	ND	170
2-Chloronaphthalene	UG/KG	ND	170	ND	170	ND	170	ND	170
2-Chlorophenol	υg/κg	ND	170	ND	170	ND	170	ND	170
4-Chlorophenyl phenyl ether	ug/kg	ND	170	ND	170	ND	170	ND	170
Carbazole	ug/kg	NĐ	170	ND	170	ND	170	ND	170
Chrysene	ug/kg	ND	170	ND	170	24 J	170	ND	170
Dibenzo(a,h)anthracene	UG/KG	ND	170	ND	170	ND	170	ND	170
Dibenzofuran	UG/KG	ND	170	ND	170	ND	170	ND	170
Di-n-butyl phthalate	UG/KG	ND	170	ND	170	ND	170	ND	170
3,3'-Dichlorobenzidine	ug/kg	ND	170	ND	170	ND	170	ND	170
2,4-Dichlorophenol	ug/kg	ND	170	ND	170	ND	170	ND	170
Diethyl phthalate	UG/KG	ND	170	ND	170	ND	170	ND	170
2,4-Dimethylphenol	UG/KG	ND	170	ND	170	ND	170	ND	170
Dimethyl phthalate	ug/kg	ND	170	ND	170	ND	170	ND	170
4,6-Dinitro-2-methylphenol	UG/KG	ND	330	ND	320	ND	340	ND	330
2,4-Dinitrophenol	ug/kg	ND	330	ND	320	ND	340	ND	330
2,4-Dinitrotoluene	ug/kg	ND	170	ND	170	ND	170	ND	170
2,6-Dinitrotoluene	UG/KG	ND	170	ND	170	ND	170	ND ND	170
Di-n-octyl phthalate	UG/KG	25 BJ	170	11 BJ	170	200 B	170	21 BJ	170
Fluoranthene	UG/KG	ND ND	170	ND	170	68 J	170	ND ND	170

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID Sample Date		GSB-12(12-14) A07-6476 06/07/2007	A7647607	GSB-13(10-12) A07-6476 06/07/2007	A7647608	GSB-14(14-16) A07-6476 06/07/2007	A7647609	GSB-3 (10-12) A07-6329 06/05/2007	A7632909
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Fluorene	UG/KG	ND	170	ND	170	ND	170	ND	170
Hexachlorobenzene	UG/KG	ND	170	ND	170	ND	170	ND	170
Hexachlorobutadiene	UG/KG	ND	170	ND	170	ND	170	ND	170
Hexachlorocyclopentadiene	UG/KG	ND	170	ND	170	ND	170	ND	170
Hexachloroethane	UG/KG	ND	170	ND	170	ND	170	ND	170
Indeno(1,2,3-cd)pyrene	UG/KG	ND	170	ND	170	9 J	170	ND	170
Isophorone	ug/kg	ND	170	ND	170	ND	170	ND	170
2-Methylnaphthalene	UG/KG	ND	170	ND	170	ND	170	ND	170
2-Methylphenol	UG/KG	ND	170	ND	170	ND	170	ND	170
4-Methylphenol	UG/KG	ND	170	ND	170	ND	170	ND	170
Naphthalene	υg΄/κg	ND	170	ND	170	ND	170	ND I	170
2-Nitroaniline	UG/KG	ND	330	ND	320	ND I	340	ND	330
3-Nitroaniline	UG/KG	ND	330	ND	320	ND	340	ND	330
4-Nitroaniline	UG/KG	ND	330	ND	320	ND	340	ND	330
Nitrobenzene	UG/KG	ND	170	ND	170	ND I	170	ND ND	170
2-Nitrophenol	UG/KG	ND	170	ND	170	ND ND	170	ND	170
4-Nitrophenol	UG/KG	ND	330	ND	320	ND ND	340	ND	330
N-nitrosodiphenylamine	UG/KG	ND	170	ND	170	ND	170	ND	170
N-Nitroso-Di-n-propylamine	UG/KG	ND	170	ND	170	ND ND	170	ND ND	170
Pentachlorophenol	UG/KG	ND	330	ND	320	ND	340	ND ND	330
Phenanthrene	UG/KG	ND	170	ND	170	65 J	170	ND ND	170
Phenol	UG/KG	ND	170	ND ND	170	ND ND	170	ND ND	170
Pyrene	UG/KG	ND ND	170	ND	170	49 J	170	ND	170
2,4,5-Trichlorophenol	UG/KG	ND ND	170	ND	170	ND ND	170	ND ND	170
2,4,5-Trichlorophenol	UG/KG	ND ND	170	ND ND	170	ND ND	170	ND ND	170
IS/SURROGATE(S)	100/10	NU	170	, NV	170	NU	170	ND	
1,4-Dichlorobenzene-D4	%	114	50-200	121	50-200	115	50-200	100	50-200
Naphthalene-D8	%	114	50-200	127	50-200	114	50-200	98	50-200
Acenaphthene-D10	\\\ \\ \\	119	50-200	130	50-200	116	50-200	99	50-200
Phenanthrene-D10	%	118	50-200	124	50-200	114	50-200	96	50-200
	1%	110	50-200	118	50-200	110	50-200	98	50-200
Chrysene-D12	\\\ \\ \\	120	50-200	131	50-200	124	50-200 50-200	125	50-200 50-200
Perylene-D12			35-113	85	35-113	89	35-200 35-113	77	35-113
Nitrobenzene-D5	% %	79 80		88	43-119	92	33-113 43-119	77	43-119
2-Fluorobiphenyl	1		43-119	106	43-119 51-125	102	43-119 51-125	87	43-119 51-125
p-Terphenyl-d14	%	93	51-125					1	
Phenol-D5	1%	81	36-116	88	36-116	85	36-116	77	36-116
2-Fluorophenol	%	69	30-107	75	30-107	75	30-107	68	30-107
2,4,6-Tribromophenol	\%	97	46-129	107	46-129	108	46-129	97	46-129

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID Sample Date		GSB-4 (8-10) A07-6329 06/05/2007	A7632910	GSB-5(12-14) A07-6476 06/07/2007	A7647602	GSB-6 (10-12) A07-6329 06/05/2007	A7632911	GSB-7 (10-12) A07-6329 06/05/2007	A7632912
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
N,N-Dimethyl formamide	UG/KG	ND	690	ND	690	ND	680	ND	660
Acenaphthene	UG/KG	ND	180	ND	180	ND	180	14 J	170
Acenaphthylene	UG/KG	ND	180	ND	180	ND	180	ND	170
Acetophenone	UG/KG	ND	180	ND	180	ND	180	ND	170
Anthracene	ug/kg	ND	180	ND	180	ND	180	25 J	170
Atrazine	UG/KG	ND	180	ND	180	ND	180	ND	170
Benzaldehyde	UG/KG	ND	180	ND	180	ND	180	ND	170
Benzo(a)anthracene	UG/KG	ND	180	ND	180	ND	180	120 J	170
Benzo(b)fluoranthene	UG/KG	ND	180	ND	180	ND	180	140 J	170
Benzo(k)fluoranthene	UG/KG	ND	180	ND	180	ND	180	58 J	170
Benzo(ghi)perylene	UG/KG	ND I	180	ND	180	ND	180	70 J	170
Benzo(a)pyrene	UG/KG	ND I	180	ND	180	ND I	180	100 J	170
Benzoic acid	UG/KG	ND	5000	ND ND	5000	ND	4900	ND ND	4800
Benzyl alcohol	UG/KG	ND ND	340	ND ND	340	ND ND	340	ND	330
Biphenyl	UG/KG	ND ND	180	ND	180	ND ND	180	ND	170
Bis(2-chloroethoxy) methane	UG/KG	ND ND	180	ND ND	180	ND ND	180	ND ND	170
Bis(2-chloroethyl) ether	UG/KG	ND ND	180	ND ND	180	ND ND	180	ND ND	170
2,2'-0xybis(1-Chloropropane)	UG/KG	ND ND	180	ND ND	180	ND ND	180	ND ND	170
Bis(2-ethylhexyl) phthalate	UG/KG	ND ND	180	ND ND	180	59 J	180	ND ND	170
	UG/KG	ND ND	180	ND ND	180	ND ND	180	ND	170
4-Bromophenyl phenyl ether	1 '.	ND ND	180	ND ND	180	ND ND	180	ND ND	170
Butyl benzyl phthalate	UG/KG		180		180	1	180		170
Caprolactam	UG/KG	ND		ND		ND		ND	170
4-Chloroaniline	UG/KG	ND	180	ND	180	ND	180	ND	
4-Chloro-3-methylphenol	UG/KG	ND	180	ND	180	ND	180	ND	170
2-Chloronaphthalene	UG/KG	ND	180	ND	180	ND	180	ND	170
2-Chlorophenol	UG/KG	ND	180	ND	180	ND	180	ND	170
4-Chlorophenyl phenyl ether	ug/kg	ND	180	ND	180	ND	180	ND	170
Carbazole	ug/kg	ND	180	ND	180	ND	180	22 J	170
Chrysene	UG/KG	ND	180	ND	180	ND	180	140 J	170
Dibenzo(a,h)anthracene	UG/KG	ND	180	ND	180	ND	180	23 J	170
Dibenzofuran	ug/kg	ND	180	ND	180	ND	180	ND	170
Di-n-butyl phthalate	UG/KG	ND	180	ND	180	ND	180	ND	170
3,3'-Dichlorobenzidine	UG/KG	ND	180	ND	180	ND	180	ND ·	170
2,4-Dichlorophenol	UG/KG	ND	180	ND	180	ND	180	ND	170
Diethyl phthalate	UG/KG	ND	180	ND	180	ND	180	ND ND	170
2,4-Dimethylphenol	ug/kg	ND	180	ND	180	ND	180	ND	170
Dimethyl phthalate	ug/kg	ND .	180	ND	180	ND	180	ND	170
4,6-Dinitro-2-methylphenol	UG/KG	ND	340	ND	340	ND	340	ND	330
2,4-Dinitrophenol	UG/KG	ND	340	ND	340	ND	340	ND	330
2,4-Dinitrotoluene	UG'/KG	ND	180	ND	180	ND	180	ND	170
2,6-Dinitrotoluene	UG/KG	ND	180	ND	180	ND	180	ND	170
Di-n-octyl phthalate	UG/KG	19 BJ	180	11 BJ	180	23 BJ	180	190 B	170
Fluoranthene	UG/KG	ND ND	180	ND ND	180	ND	180	280	170

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID Sample Date	·	GSB-4 (8-10) A07-6329 06/05/2007	A7632910	GSB-5(12-14) A07-6476 06/07/2007	A7647602	GSB-6 (10-12) A07-6329 06/05/2007	A7632911	GSB-7 (10-12) A07-6329 06/05/2007	A7632912
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocytlopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone 2-Methylnaphthalene 2-Methylphenol 4-Methylphenol Naphthalene 2-Nitroaniline 3-Nitroaniline Nitrobenzene 2-Nitrophenol 4-Nitrophenol N-nitrosodiphenylamine N-Nitroso-Di-n-propylamine Pentachlorophenol Phenanthrene Phenol Pyrene 2,4,5-Trichlorophenol	UG/KG UG/KG	ND ND ND ND ND ND ND ND ND ND ND ND ND N	180 180 180 180 180 180 180 180 180 340 340 340 180 340 180 180 180 180 180	ND ND ND ND ND ND ND ND ND ND ND ND ND N	180 180 180 180 180 180 180 180 180 340 340 340 180 180 180 180 180 180	ND ND ND ND ND ND ND ND ND ND ND ND ND N	180 180 180 180 180 180 180 180 180 340 340 340 180 180 180 180 180 180	10 J ND ND ND 62 J ND ND ND ND ND ND ND ND ND ND ND ND ND	170 170 170 170 170 170 170 170 170 170
2,4,6-Trichlorophenol IS/SURROGATE(S)	UG/KG	ND	180	ND	180	ND	180	ND	
1,4-Dichlorobenzene-D4 Naphthalene-D8 Acenaphthene-D10 Phenanthrene-D10 Chrysene-D12 Perylene-D12 Nitrobenzene-D5 2-Fluorobiphenyl p-Terphenyl-d14 Phenol-D5 2-Fluorophenol 2,4,6-Tribromophenol	% % % % % % % % % % % % % % % % % % %	106 105 107 105 106 136 71 71 82 71 64	50-200 50-200 50-200 50-200 50-200 50-200 35-113 43-119 51-125 36-116 30-107 46-129	112 111 113 110 106 112 77 78 92 76 67	50-200 50-200 50-200 50-200 50-200 50-200 35-113 43-119 51-125 36-116 30-107 46-129	96 95 96 93 95 125 76 77 87 78 69	50-200 50-200 50-200 50-200 50-200 50-200 35-113 43-119 51-125 36-116 30-107 46-129	109 106 106 103 108 137 68 69 77 67 60 84	50-200 50-200 50-200 50-200 50-200 50-200 35-113 43-119 51-125 36-116 30-107 46-129

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID Sample Date		GSB-8(12-14) A07-6476 06/07/2007	A7647603	GSB-9(7-9) A07-6476 06/07/2007	A7647604	MW-1 (8-10) A07-6476 06/06/2007	A7647601	MW-2(10-12) A07-6476 06/07/2007	A7647610
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
N,N-Dimethyl formamide	UG/KG	ND	660	ND	. 660	ND	690	ND	670
Acenaphthene	UG/KG	ND	170	ND	170	ND	180	ND	170
Acenaphthylene	UG/KG	ND	170	ND	170	ND	180	ND	170
Acetophenone	UG/KG	ND	170	ND	170	ND	180	ND	170
Anthracene	UG/KG	ND	170	ND	170	ND	180	ND	170
Atrazine	UG/KG	ND	170	ND	170	ND	180	ND	170
Benzaldehyde	UG/KG	ND	170	ND	170	ND	180	ND	170
Benzo(a)anthracene	UG/KG	· ND	170	ND	170	ND	180	ND	170
Benzo(b)fluoranthene	UG/KG	ND	170	ND	170	ND	180	ND	170
Benzo(k)fluoranthene	UG/KG	ND	170	ND	170	ND	180	ND	170
Benzo(ghi)perylene	ug/kg	ND	170	ND	170	ND	180	ND	170
Benzo(a)pyrene	UG/KG	ND	170	ND	170	ND	180	ND	170
Benzoic acid	UG/KG	ND	4800	ND	4800	ND	5000	ND	4900
Benzyl alcohol	UG/KG	ND	330	ND	330	ND	340	ND	340
Biphenyl	UG/KG	ND	170	ND ND	170	ND	180	ND	170
Bis(2-chloroethoxy) methane	UG/KG	ND	170	ND ND	170	ND	180	ND	170
Bis(2-chloroethyl) ether	UG/KG	ND	170	ND	170	ND	180	ND	170
2,2'-0xybis(1-Chloropropane)	UG/KG	ND	170	ND	170	ND	180	ND	170
Bis(2-ethylhexyl) phthalate	UG/KG	ND	170	ND	170	270	180	ND	170
4-Bromophenyl phenyl ether	UG/KG	ND	170	ND	170	ND	180	ND ND	170
Butyl benzyl phthalate	UG/KG	ND	170	ND	170	ND	180	ND	170
Caprolactam	UG/KG	ND	170	ND	170	ND	180	ND	170
4-Chloroaniline	UG/KG	ND	170	ND	170	ND ND	180	ND	170
4-Chloro-3-methylphenol	UG/KG	ND	170	ND ND	170	ND ND	180	ND	170
2-Chloronaphthalene	UG/KG	ND	170	ND	170	ND ND	180	ND	170
2-Chlorophenol	UG/KG	ND	170	ND ND	170	ND	180	ND ND	170
4-Chlorophenyl phenyl ether	UG/KG	ND	170	ND ND	170	ND	180	ND ND	170
Carbazole	UG/KG	ND	170	ND	170	ND	180	ND ND	170
Chrysene	UG/KG	ND ND	170	ND	170	ND	180	ND ND	170
Dibenzo(a,h)anthracene	UG/KG	ND ND	170	ND	170	ND ND	180	ND ND	170
Dibenzofuran	UG/KG	ND ND	170	ND ND	170	ND ND	180	ND ND	170
Di-n-butyl phthalate	UG/KG	ND ND	170	ND	170	ND ND	180	ND ND	170
3,3'-Dichlorobenzidine	UG/KG	ND ND	170	ND ND	170	ND ND	180	ND ND	170
2,4-Dichlorophenol	UG/KG	ND ND	170	ND ND	170	ND ND	180	ND ND	170
Diethyl phthalate	UG/KG	ND ND	170	ND ND	170	ND ND	180	ND ND	170
2,4-Dimethylphenol	UG/KG	ND ND	170	ND ND	170	ND ND	180	ND	170
Dimethyl phthalate	UG/KG	ND ND	170	ND ND	170	ND ND	180	ND	170
4,6-Dinitro-2-methylphenol	UG/KG	ND ND	330	ND ND	330	ND ND	340	ND ND	340
2,4-Dinitro-2-methytphenot	UG/KG	ND ND	330	ND ND	330	ND ND	340	ND ND	340
2,4-Dinitrophenot	UG/KG	ND ND	170	ND ND	170	ND ND	180	ND ND	170
2,4-Dinitrotoluene	UG/KG	ND ND	170	ND ND	170	ND ND	180	ND ND	170
Di-n-octyl phthalate	UG/KG	13 BJ	170	ND 8 BJ	170	1			
Fluoranthene	UG/KG	ND 12 B1	170	1		11 BJ	180	11 BJ	170
r tuoi anthene	ן טט / גט	עא	170	ND	170	ND	180	(ND	170

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID Sample Date		GSB-8(12-14) A07-6476 06/07/2007	A7647603	GSB-9(7-9) A07-6476 06/07/2007	A7647604	MW-1 (8-10) A07-6476 06/06/2007	A7647601	MW-2(10-12) A07-6476 06/07/2007	A7647610
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Fluorene	UG/KG	ND	170	ND ·	170	ND	180	ND	170
Hexachlorobenzene	UG/KG	ND	170	ND	170	ND	180	ND	170
Hexachlorobutadiene	UG/KG	ND	170	ND -	170	ND	180	ND	170
Hexachlorocyclopentadiene	UG/KG	ND	170	ND	170	ND	180	ND	170
Hexachloroethane	UG/KG	ND ·	170	ND	170	ND	180	ND	170
Indeno(1,2,3-cd)pyrene	UG/KG	ND I	170	ND	170	ND	180	ND	170
Isophorone	UG/KG	ND	170	ND	170	ND	180	ND	170
2-Methylnaphthalene	UG/KG	ND	170	ND	170	ND	180	ND	170
2-Methylphenol	UG/KG	ND	170	ND	170	ND	180	ND	170
4-Methylphenol	UG/KG	ND	170	ND	170	ND	180	ND	170
Naphthalene	UG/KG	ND	170	ND	170	ND	180	ND	170
2-Nitroaniline	ug/kg	ND	330	ND	330	ND	340	ND	340
3-Nitroaniline	ug/kg	ND ND	330	ND	330	ND	340	ND	340
4-Nitroaniline	ug/kg	ND	330	ND	330	ND	340	ND	340
Nitrobenzene	ug/kg	ND ND	170	ND	170	ND	180	ND	170
2-Nitrophenol	UG/KG	ND ND	170	ND	170	ND	180	ND	170
4-Nitrophenol	UG/KG	l ND	330	ND	330	ND	340	l ND	340
N-nitrosodiphenylamine	UG/KG	ND ND	170	ND	170	ND	180	ND	170
N-Nitroso-Di-n-propylamine	ug/kg	ND	170	ND	170	ND	180	ND	170
Pentachlorophenol	UG/KG	ND	330	ND	330	ND	340	ND	340
Phenanthrene	ug/kg	ND	170	l ND	170	ND	180	ND	170
Phenol	ug/kg	ND	170	ND	170	ND	180	ND	170
Pyrene	UG/KG	ND	170	ND	170	ND	180	ND	170
2,4,5-Trichlorophenol	UG/KG	ND	170	ND	170	ND	180	ND	170
2,4,6-Trichlorophenol	UG/KG	ND	170	ND	170	ND	180	ND	170
IS/SURROGATE(S)	1								
1,4-Dichlorobenzene-D4	%	116	50-200	116	50-200	98	50-200	110	50-200
Naphthalene-D8	%	114	50-200	116	50-200	101	50-200	111	50-200
Acenaphthene-D10	%	115	50-200	114	50-200	103	50-200	113	50-200
Phenanthrene-D10	%	112	50-200	113	50-200	99	50-200	109	50-200
Chrysene-D12	%	109	50-200	112	50-200	97	50-200	108	50-200
Perylene-D12	1%	114	50-200	124	50-200	99	50-200	120	50-200
Nitrobenzene-D5	%	87	35-113	82	35-113	83	35-113	88	35-113
2-Fluorobiphenyl	1%	86	43-119	84	43-119	84	43-119	91	43-119
p-Terphenyl-d14	%	100	51-125	95	51-125	98	51-125	104	51-125
Phenol-D5	%	86	36-116	84	36-116	82	36-116	87	36-116
2-Fluorophenol	%	75	30-107	75	30-107	72	30-107	75	30-107
2,4,6-Tribromophenol	\%	105	46-129	87	46-129	102	46-129	108	46-129

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID Sample Date		MW-2(30-32) A07-6476 06/07/2007	A7647611	MW-3(10-12) A07-6476 06/08/2007	A7647612	MW-4(8-10) A07-6476 06/08/2007	A7647613	TP-1 (10-12) A07-6329 06/04/2007	A7632901
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
N,N-Dimethyl formamide	UG/KG	ND	710	ND.	660	ND	700	ND	710
Acenaphthene	UG/KG	ND	180	ND	170	ND	180	ND	180
Acenaphthylene	ug/kg	ND	180	ND	170	ND ND	180	ND	180
Acetophenone	UG/KG	ND	180	ND ND	170	ND	180	ND ND	180
Anthracene	UG/KG	ND	180	ND	170	ND	180	ND I	180
Atrazine	UG/KG	ND	180	ND	170	ND ND	180	ND ND	180
Benzaldehyde	UG/KG	ND	180	ND	170	ND ND	180	ND ND	180
Benzo(a)anthracene	UG/KG	ND	180	ND ND	170	ND ND	180	18 J	180
Benzo(b)fluoranthene	UG/KG	ND	180	ND ND	170	ND ND	180	13 J	180
Benzo(k)fluoranthene	UG/KG	ND	180	ND ND	170	ND	180	ND ND	180
Benzo(ghi)perylene	UG/KG	ND	180	ND	170	ND ND	180	9 J	180
Benzo(a)pyrene	UG/KG	ND	180	ND	170	ND ND	180	10 J	180
Benzoic acid	UG/KG	ND	5200	ND ND	4800	ND	5100	ND ND	5200
Benzyl alcohol	UG/KG	ND ND	360	ND ND	330	ND ND	350	ND ND	360
Biphenyl	UG/KG	ND ND	180	ND ND	170	ND ND	180	ND ND	180
Bis(2-chloroethoxy) methane	UG/KG	ND ND	180	ND ND	170	ND ND	180	ND ND	180
Bis(2-chloroethyl) ether	UG/KG	ND ND	180	ND	170	ND ND	180		180
2,2'-0xybis(1-Chloropropane)	UG/KG	ND ND	180	ND	170	ND ND		ND	
Bis(2-ethylhexyl) phthalate	UG/KG	ND	180	ND ND	170		180	ND	180
4-Bromophenyl phenyl ether	UG/KG	ND ND	180	ND ND		ND	180	ND	180
Butyl benzyl phthalate	UG/KG	ND	180		170	ND	180	ND	180
Caprolactam	UG/KG		180	ND ND	170	ND	180	ND.	180
4-Chloroaniline	UG/KG	ND		ND	170	ND	180	ND	180
	UG/KG	ND ND	180	ND	170	ND	180	ND	180
4-Chloro-3-methylphenol	1 1	ND	180	ND	170	ND	180	ND	180
2-Chloronaphthalene	UG/KG	ND	180	ND	170	ND	180	ND	180
2-Chlorophenol	UG/KG	ND	180	ND	170	ND	180	ND	180
4-Chlorophenyl phenyl ether	UG/KG	ND	180	ND	170	ND	180	ND	180
Carbazole	UG/KG	ND	180	ND	170	ND	180	ND	180
Chrysene	UG/KG	ND	180	ND	170	ND	180	9 J	180
Dibenzo(a,h)anthracene	UG/KG	ND	180	ND	170	ND	180	ND	180
Dibenzofuran	UG/KG	ND	180	ND	170	ND	180	ND	180
Di-n-butyl phthalate	UG/KG	ND	180	ND	170	ND	180	ND	180
3,3'-Dichlorobenzidine	UG/KG	ND	180	ND	170	ND	180	ND	180
2,4-Dichlorophenol	UG/KG	ND	180	ND	170	ND	180	ND	180
Diethyl phthalate	UG/KG	ND	180	ND	170	ND	180	ND	180
2,4-Dimethylphenol	UG/KG	190	180	ND ·	170	ND	180	ND	180
Dimethyl phthalate	UG/KG	ND	180	ND	170	ND	180	ND	180
4,6-Dinitro-2-methylphenol	UG/KG	ND	360	ND	330	ND	350	ND	360
2,4-Dinitrophenol	UG/KG	ND	360	ND	330	ND	350	ND ND	360
2,4-Dinitrotoluene	UG/KG	ND	180	ND	170	ND	180	ND	180
2,6-Dinitrotoluene	UG/KG	ND	180	ND	170	ND	180	ND	180
Di-n-octyl phthalate	UG/KG	10 BJ	180	12 BJ	170	∕ 10 BJ	180	ND	180
Fluoranthene	UG/KG	ND	180	ND	170	ND	180	19 J	180

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID Sample Date		MW-2(30-32) A07-6476 06/07/2007	A7647611	MW-3(10-12) A07-6476 06/08/2007	A7647612	MW-4(8-10) A07-6476 06/08/2007	A7647613	TP-1 (10-12) A07-6329 06/04/2007	A7632901
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Fluorene Hexachlorobenzene	UG/KG UG/KG	ND ND	180 180	ND ND	170 170	ND ND	180 180	ND ND	180 180
Hexachlorobutadiene	UG/KG	ND	180	ND	170	ND	180	ND	180
Hexachlorocyclopentadiene	UG/KG	ND	180	ND	170	ND	180	ND	180
Hexachloroethane	UG/KG	ND	180	ND	170	ND	180	ND	180
Indeno(1,2,3-cd)pyrene	UG/KG	ND	180	ND	170	ND	180	ND	180
Isophorone	UG/KG	ND	180	ND	170	ND	180	ND	180
2-Methylnaphthalene	UG/KG	ND	180	ND	170	ND	180	ND	180
2-Methylphenol	UG/KG	ND	180	ND	170	ND	180	ND	180
4-Methylphenol	UG/KG	ND	180	ND	170	ND	180	ND	180
Naphthalene	UG/KG	ND	180	ND	170	ND	180	ND	180
2-Nitroaniline	UG/KG	ND	360	ND	330	ND	350	ND	360
3-Nitroaniline	UG/KG	ND	360	ND	330	ND	350	ND	360
4-Nitroaniline	UG/KG	ND ND	360	ND	330	ND	350	ND	360
Nitrobenzene	UG/KG	ND	180	ND	170	ND	180	ND	180
2-Nitrophenol	UG/KG	ND	180	ND	170	ND	180	ND	180
4-Nitrophenol	UG/KG	ND	360	ND	330	ND	350	ND	360
N-nitrosodiphenylamine	UG/KG	ND	180	ND	170	ND	180	ND	180
N-Nitroso-Di-n-propylamine	UG/KG	ND	180	ND	170	ND	180	ND	180
Pentachlorophenol	UG/KG	ND	360	ND	330	ND	350	ND	360
Phenanthrene	UG/KG	ND	180	ND	170	ND	180	10 J	180
Phenol	UG/KG	ND	180	ND	170	ND	180	ND	180
Pyrene	UG/KG	ND	180	ND	170	ND	180	17 J	180
2,4,5-Trichlorophenol	UG/KG	ND	180	ND	170	ND	180	ND ND	180
2,4,6-Trichlorophenol IS/SURROGATE(S)	UG/KG	ND	180	ND	170	ND	180	ND	180
1,4-Dichlorobenzene-D4	%	116	50-200	117	50-200	107	50-200	115	50-200
Naphthalene-D8	\\\ \\	110	50-200	116	50-200	106	50-200	113	50-200
Acenaphthene-D10	% %	111	50-200	118	50-200	109	50-200	114	50-200
Phenanthrene-D10	\\\ \%	107	50-200	116	50-200	106	50-200	114	50-200
Chrysene-D12	%	108	50-200	112	50-200	104	50-200	112	50-200
Perylene-D12	%	123	50-200	132	50-200	118	50-200	118	50-200
Nitrobenzene-D5	/%	94	35-113	81	35-113	82	35-113	64	35-113
2-Fluorobiphenyl	\\\ \\\	92	43-119	85	43-119	85	43-119	69	43-119
p-Terphenyl-d14	%	100	51-125	102	51-125	95	51-125	83	51-125
Phenol-D5	%	85	36-116	80	36-116	80	36-116	64	36-116
2-Fluorophenol	%	75	30-107	67	30-107	67	30-107	54	30-107
2,4,6-Tribromophenol	/%	111	46-129	103	46-129	100	46-129	91	46-129
E, 70 II IDI OMOPHENOL		1'''	10 12/	103	1 .5 .2	1	1.5		.5 ,2 ,

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID Sample Date		TP-2 (10-12) A07-6329 06/04/2007	A7632902	TP-3 (8-10) A07-6329 06/04/2007	A7632903	TP-4 (10-12) A07-6329 06/04/2007	A7632904	TP-5 (3-4) A07-6329 06/05/2007	A7632905
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
N,N-Dimethyl formamide	UG/KG	ND	670	ND	740	ND	650	ND	3400
Acenaphthene	UG/KG	ND	170	ND	190	ND I	170	ND	880
Acenaphthylene	UG/KG	ND	170	ND .	190	ND I	170	ND	880
Acetophenone	UG/KG	ND	170	ND	190	ND I	170	ND	880
Anthracene	UG/KG	ND	170	25 J	190	ND I	170	ND	880
Atrazine	UG/KG	ND	170	ND	190	ND	170	ND	880
Benzaldehyde	lug/kg	ND	170	ND	190	ND ND	170	ND	880
Benzo(a)anthracene	UG/KG	ND	170	180 J	190	ND ND	170	58 J	880
Benzo(b)fluoranthene	UG/KG	ND	170	180 J	190	ND ND	170	ND ND	880
Benzo(k)fluoranthene	UG/KG	ND	170	75 J	190	ND ND	170	ND ND	880
Benzo(ghi)perylene	UG/KG	ND	170	100 J	190	ND ND	170	ND ND	880
Benzo(a)pyrene	UG/KG	ND	170	150 J	190	ND ND	170	ND ND	880
Benzoic acid	UG/KG	ND	4800	ND	5400	ND ND	4700	ND	25000
Benzyl alcohol	UG/KG	ND	330	ND	370	ND ND	320	ND	1700
Biphenyl	UG/KG	ND	170	ND	190	ND ND	170	ND	880
Bis(2-chloroethoxy) methane	UG/KG	ND ND	170	ND ND	190	ND ND	170	ND ND	880
Bis(2-chloroethyl) ether	UG/KG	ND	170	ND	190	ND ND	170		
2,2'-0xybis(1-Chloropropane)	UG/KG	ND	170	ND	190		170	ND	880
Bis(2-ethylhexyl) phthalate	UG/KG	ND	170	ND ND	190	ND ND		ND	880
4-Bromophenyl phenyl ether	UG/KG	ND	170	ND	190	ND ND	170	ND	880
Butyl benzyl phthalate	UG/KG	ND ND	170				170	ND	880
Caprolactam	UG/KG	ND I	170	ND	190	ND	170	ND	880
4-Chloroaniline	UG/KG		170	ND	190	ND	170	ND	880
4-Chloro-3-methylphenol	UG/KG	ND ND		ND	190	ND	170	ND	880
2-Chloronaphthalene	1 4		170	ND	190	ND	170	ND	880
	UG/KG	ND	170	ND	190	ND	170	ND	880
2-Chlorophenol	UG/KG	ND	170	ND	190	ND	170	ND	880
4-Chlorophenyl phenyl ether	UG/KG	ND	170	ND .	190	ND	170	ND	880
Carbazole	UG/KG	ND	170	10 J	190	ND	170	ND	880
Chrysene	UG/KG	ND	170	170 J	190	ND	170	34 J	880
Dibenzo(a,h)anthracene	UG/KG	ND	170	30 J	190	ND	170	ND	880
Dibenzofuran	UG/KG	ND	170	ND	190	ND	170	ND	880
Di-n-butyl phthalate	UG/KG	ND	170	ND	190	ND	170	ND	880
3,3'-Dichlorobenzidine	UG/KG	ND	170	ND	190	ND ·	170	ND	880
2,4-Dichlorophenol	UG/KG	ND	170	ND	190	ND	170	ND	880
Diethyl phthalate	UG/KG	ND	170	ND	190	ND	170	ND	880
2,4-Dimethylphenol	UG/KG	ND	170	ND	190	ND	170	ND	880
Dimethyl phthalate	UG/KG	ND	170	ND	190	ND	170	ND	880
4,6-Dinitro-2-methylphenol	UG/KG	ND	330	ND	370	ND	320	ND	1700
2,4-Dinitrophenol	UG/KG	ND	330	ND	370	ND	320	ND	1700
2,4-Dinitrotoluene	UG/KG	ND	170	ND	190	ND	170	ND	880
2,6-Dinitrotoluene	UG/KG	ND	170	ND	190	ND	170	ND	880
Di-n-octyl phthalate	UG/KG	ND	170	ND	190	ND	170	ND	880
Fluoranthene	UG/KG	ND I	170	300	190	ND ND	170	73 j	880

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID Sample Date		TP-2 (10-12) A07-6329 06/04/2007	A7632902	TP-3 (8-10) A07-6329 06/04/2007	A7632903	TP-4 (10-12) A07-6329 06/04/2007	A7632904	TP-5 (3-4) A07-6329 06/05/2007	A7632905
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocythane Indeno(1,2,3-cd)pyrene Isophorone 2-Methylnaphthalene 2-Methylphenol 4-Methylphenol Naphthalene 2-Nitroaniline 3-Nitroaniline 4-Nitroaniline Nitrobenzene 2-Nitrophenol 4-Nitrophenol N-nitrosodiphenylamine N-Nitroso-Di-n-propylamine Pentachlorophenol Phenanthrene Phenol Pyrene	UG/KG UG/KG	ND ND ND ND ND ND ND ND ND ND ND ND ND N	170 170 170 170 170 170 170 170 170 170	ND ND ND ND ND ND ND ND ND ND ND ND ND N	190 190 190 190 190 190 190 190 190 370 370 370 190 190 370 190 190	ND ND ND ND ND ND ND ND ND ND ND ND ND N	170 170 170 170 170 170 170 170 170 170	ND ND ND ND ND ND ND ND ND ND ND ND ND N	880 880 880 880 880 880 880 880 880 1700 170
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	UG/KG UG/KG	ND ND	170 170	ND ND	190 190	ND ND	170 170	ND ND	880 880
IS/SURROGATE(S) 1,4-Dichlorobenzene-D4 Naphthalene-D8 Acenaphthene-D10 Phenanthrene-D10 Chrysene-D12 Perylene-D12 Nitrobenzene-D5 2-Fluorobiphenyl p-Terphenyl-d14 Phenol-D5 2-Fluorophenol 2,4,6-Tribromophenol	% % % % % % % % % % % % % % % % % % %	103 100 103 102 103 102 76 76 76 88 75 65	50-200 50-200 50-200 50-200 50-200 50-200 35-113 43-119 51-125 36-116 30-107 46-129	106 105 107 106 107 112 81 82 87 81 69	50-200 50-200 50-200 50-200 50-200 50-200 35-113 43-119 51-125 36-116 30-107 46-129	113 111 114 111 112 114 68 69 84 67 60 94	50-200 50-200 50-200 50-200 50-200 50-200 35-113 43-119 51-125 36-116 30-107 46-129	106 104 105 104 100 103 67 74 80 67 58	50-200 50-200 50-200 50-200 50-200 50-200 35-113 43-119 51-125 36-107 46-129

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID Sample Date		TP-6 (6-8) A07-6329 06/05/2007	A7632906						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
N,N-Dimethyl formamide	UG/KG	ND	700	NA		NA NA		NA	
Acenaphthene	UG/KG	ND	180	NA		l NA		NA	
Acenaphthylene	UG/KG	ND	180	NA		NA NA		NA	
Acetophenone	UG/KG	ND	180	NA		NA NA		NA	
Anthracene	UG/KG	ND	180	NA		NA NA		NA	
Atrazine	UG/KG	ND	180	NA		NA NA		NA NA	
Benzaldehyde	UG/KG	ND ND	180	NA NA		NA NA		NA NA	
Benzo(a)anthracene	UG/KG	ND	180	NA NA		NA NA		NA NA	
Benzo(b) f luoranthene	UG/KG	ND ND	180	NA NA		NA NA		NA NA	
Benzo(k) fluoranthene	UG/KG	ND ND	180	NA NA		NA NA		NA NA	
Benzo(ghi)perylene	UG/KG	ND ND	180	NA NA		NA NA		NA NA	
Benzo(a)pyrene	UG/KG	. ND	180	NA NA		NA NA		NA NA	
Benzoic acid	UG/KG	ND ND	5000	NA NA		NA NA		NA NA	
Benzyl alcohol	UG/KG	ND ND	350	NA NA		NA NA		NA NA	
Biphenyl	UG/KG	ND ND	180	NA NA		NA NA			
Bis(2-chloroethoxy) methane	UG/KG	ND ND	180	NA NA		NA NA		NA NA	
	UG/KG	l .	180			1		NA NA	
Bis(2-chloroethyl) ether		ND		NA NA		NA NA		NA	
2,2'-0xybis(1-Chloropropane)	UG/KG	ND	180	NA NA		NA NA		NA NA	
Bis(2-ethylhexyl) phthalate	UG/KG	ND	180	NA NA		NA NA		NA	
4-Bromophenyl phenyl ether	UG/KG	ND	180	NA NA		NA		NA	
Butyl benzyl phthalate	UG/KG	ND	180	NA NA	,	NA		NA	
Caprolactam	UG/KG	ND	180	NA		NA		NA	
4-Chloroaniline	UG/KG	ND	180	NA 		NA		NA	
4-Chloro-3-methylphenol	UG/KG	ND	180	NA		NA	!	NA NA	
2-Chloronaphthalene	UG/KG	ND	180	NA		NA		NA	1
2-Chlorophenol	UG/KG	ND	180	NA	*	NA		NA	
4-Chlorophenyl phenyl ether	UG/KG	ND	180	NA		NA		NA	
Carbazole	UG/KG	ND	180	NA NA	,	NA		NA	
Chrysene	UG/KG	ND	180	NA NA		NA NA		NA	
Dibenzo(a,h)anthracene	UG/KG	ND	180	NA		NA NA		NA	
Dibenzofuran	UG/KG	ND	180	NA		NA		NA	
Di-n-butyl phthalate	UG/KG	ND	180	NA		NA NA		NA	
3,3'-Dichlorobenzidine	UG/KG	ND	180	NA		NA NA		NA	
2,4-Dichlorophenol	UG/KG	ND	180	NA		NA NA		NA	1
Diethyl phthalate	UG/KG	ND	180	NA		NA NA		NA	1
2,4-Dimethylphenol	UG/KG	ND	180	NA		NA NA		NA	
Dimethyl phthalate	UG/KG	ND	180	NA		NA		NA	
4,6-Dinitro-2-methylphenol	UG/KG	ND	350	NA		NA NA		NA	
2,4-Dinitrophenol	UG/KG	ND	350	NA		NA		NA	
2,4-Dinitrotoluene	UG/KG	ND	180	NA		NA		NA	
2,6-Dinitrotoluene	UG/KG	· ND	180	NA		NA		NA	1
Di-n-octyl phthalate	UG/KG	16 BJ	180	NA		NA		NA	
Fluoranthene	ug/kg	ND	180	NA NA		NA		NA	1

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID Sample Date		TP-6 (6-8) A07-6329 06/05/2007	A7632906						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Fluorene Hexachlorobenzene Hexachlorobenzene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocthane Indeno(1,2,3-cd)pyrene Isophorone 2-Methylnaphthalene 2-Methylphenol 4-Methylphenol Naphthalene 2-Nitroaniline 3-Nitroaniline 4-Nitroaniline Nitrobenzene 2-Nitrophenol 4-Nitrosodiphenylamine N-nitrosodiphenylamine Pentachlorophenol Phenanthrene Phenol Pyrene 2,4,5-Trichlorophenol	UG/KG UG/KG	ND ND ND ND ND ND ND ND ND ND ND ND ND N	180 180 180 180 180 180 180 180 180 350 350 350 180 180 350 180 180	NA NA NA NA NA NA NA NA NA NA NA NA NA N		NA NA NA NA NA NA NA NA NA NA NA NA NA N		NA NA NA NA NA NA NA NA NA NA NA NA NA N	
2,4,6-Trichlorophenol IS/SURROGATE(S)	UG/KG	ND	180	NA	,	NA		NA NA	
1,4-Dichlorobenzene-D4 Naphthalene-D8 Acenaphthene-D10 Phenanthrene-D10 Chrysene-D12 Perylene-D12 Nitrobenzene-D5 2-Fluorobiphenyl p-Terphenyl-d14 Phenol-D5 2-Fluorophenol 2,4,6-Tribromophenol	% % % % % % % % % % % % % % % % % % %	101 101 101 100 102 122 58 59 66 59 53 76	50-200 50-200 50-200 50-200 50-200 50-200 35-113 43-119 51-125 36-116 30-107 46-129	NA NA NA NA NA NA NA NA NA NA		NA NA NA NA NA NA NA NA NA NA NA NA NA N		NA NA NA NA NA NA NA NA NA NA NA NA NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOLATILE ORGANICS

Analyte Acenaphthene Acenaphthylene Acetophenone Anthracene Benzaldehyde Benzo(a)anthracene Benzo(b)fluoranthene Benzo(shi)perylene Benzo(a)pyrene Bis(2-chloroethoxy) methane Bis(2-chloroethyl) ether Bis(2-chloroethyl) phthalate Caprolactam 4-Chloroantline 4-Chloroantline 4-Chloroantline 4-Chloroaphenyl phenyl ether Bibloophenyl phenyl ether Caprolactam 4-Chloroaphenyl phenyl ether Caprolactam 4-Chloroaphenyl phenyl ether Caprolactam 4-Chloroaphenyl phenyl ether Caprolactam 5-Chloroaphthalene Caprolactam 6-Chloroaphthalene Caprolactam 6-Chloroaphthalene Caprolactam 6-Chloroaphthalene Caprolactam 6-Chloroaphthalene Caprolactam 6-Chloroaphthalene Caprolactam 6-Chlorobenol Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran	Sample Value ND ND ND ND ND ND ND ND ND ND ND ND ND	Reporting Limit 170 170 170 170 170 170 170 170 170 17	Sample Value ND ND ND ND ND ND ND ND ND ND ND ND ND	Reporting Limit 430 430 430 430 430 430 430 430 430 43	Sample Value NA NA NA NA NA NA NA NA NA NA	Reporting Limit	Sample Value NA NA NA NA NA NA NA NA	Reporting Limit
Acenaphthylene Acetophenone Anthracene Anthrazine Benzaldehyde Benzo(a)anthracene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(a)pyrene Bis(2-chloroethoxy) methane Bis(2-chloroethyl) ether Bis(2-chloroethyl) ether Bis(2-chlylexyl) phthalate Bis(2-chlylexyl) phthalate Bis(2-chloroethyl) ether Bis(2-chloroethyl) ether Bis(2-chloroethyl) ether Bis(2-chloroethyl) ether Bis(2-chloropropane) Bis(2-chloropropane) Bis(2-chloropropane) Bis(2-chloropropane) Bis(2-chloropropane) Bis(2-chloropropane) Bis(2-chlorophenyl ether Bis(2-chlorophenyl ether Bis(2-chlorophenol Bis(3-chlorophenol Bis(3-chlorophenol Bis(3-chlorophenol Bis(3-chlorophenol Bis(3-chlorophenol Bis(3-chlorophenol	ND ND ND ND ND ND ND ND ND ND ND ND ND N	170 170 170 170 170 170 170 170 170 170	ND ND ND ND ND ND ND ND ND ND ND ND	430 430 430 430 430 430 430 430 430	NA NA NA NA NA NA NA		NA NA NA NA NA NA	
Acetophenone Anthracene Artazine Benzaldehyde Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Benzo(a)pyrene Bis(2-chloroethoxy) methane Bis(2-chloroethyl) ether Bis(2-ethylhexyl) phthalate Bis(2-ethylhexyl) phthalate Bis(2-ethylhexyl) phthalate Bis(2-chloroethoxy) methane Bis(2-chloroethyl) ether Bis(2-chloropropane) Bis(2-ethylhexyl) phthalate Bis(2-chlorophenyl phenyl ether Bis(2-ethylhexyl) phthalate Bis(2-hlorophenol Bis(2-ethylhexyl) phthalate Bis(2-chlorophenyl phenyl ether Bis(2-ethylhexyl) phthalate Bis(2-chlorophenol Bis(2-ethylhexyl) phthalate Bis(2-chlorophenol Bis(2-ethylhexyl) phthalate Bis(2-	ND ND ND ND ND ND ND ND ND ND ND ND ND N	170 170 170 170 170 170 170 170 170 170	ND ND ND ND ND ND ND ND ND ND ND	430 430 430 430 430 430 430 430	NA NA NA NA NA NA NA		NA NA NA NA NA	
Anthracene Atrazine Genzaldehyde Genzaldehyde Genzo(a)anthracene Genzo(b)fluoranthene Genzo(ghi)perylene Genzo(a)pyrene Genzo	ND ND ND ND ND ND ND ND ND ND ND ND ND N	170 170 170 170 170 170 170 170 170 170	ND ND ND ND ND ND ND ND ND ND	430 430 430 430 430 430 430 430	NA NA NA NA NA NA		NA NA NA NA	
Anthracene Atrazine Benzaldehyde Benzaldehyde Benzo(a)anthracene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(a)pyrene Benzo(a)pyrene Bis(2-chloroethoxy) methane Bis(2-chloroethyl) ether 2,2'-Oxybis(1-Chloropropane) Bis(2-ethylhexyl) phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate 4-Chloroaniline 4-Chloroaniline 4-Chlorophenol Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Di-n-butyl phthalate 2,4-Dimethylphenol Di-thyl phthalate Di-thyl	ND ND ND ND ND ND ND ND ND	170 170 170 170 170 170 170 170 170	ND ND ND ND ND ND ND	430 430 430 430 430 430 430	NA NA NA NA NA		NA NA NA	
Atrazine Benzaldehyde Benzaldehyde Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(d)preylene Benzo(a)pyrene Bis(2-chloroethoxy) methane Bis(2-chloroethyl) ether C2,2'-Oxybis(1-Chloropropane) Bis(2-ethylhexyl) phthalate C4-Bromophenyl phenyl ether Butyl benzyl phthalate C4-Chloroaniline C4-Chloroaniline C4-Chloroaniline C4-Chlorophenol C2-Chlorophenol C3-Chlorophenol C4-Chlorophenol C4-Chlorophenol C5-Chlorophenol C6-Chlorophenol C7-Chlorophenol C8-Chlorophenol C9-Chlorophenol C9-Chloro	ND ND ND ND ND ND ND ND	170 170 170 170 170 170 170 170	ND ND ND ND ND ND	430 430 430 430 430 430	NA NA NA NA		NA NA NA	
Genzo(a)anthracene Genzo(b)fluoranthene Genzo(k)fluoranthene Genzo(k)fluoranthene Genzo(ghi)perylene Genzo(a)pyrene Giphenyl Gis(2-chloroethoxy) methane Gis(2-chloroethyl) ether Giz(2-chloroethyl) ether Giz(2-chloroethyl) phthalate Giz(2-chloroethyl) phthalate Giz(2-chloroethyl) phthalate Giz(2-chloroethyl) phthalate Giz(2-chloroethyl) phthalate Giz(2-chloroethyl) phthalate Giz(2-chloroethyl) phthalate Giz(2-chloroethyl) phthalate Giz(2-chloroethyl) phthalate Giz(2-chloroethyl) phthalate Giz(2-chloroethyl) phthalate Giz(3-chloroethyl) phthalate Giz(4-chloroethyl) ghthalate Giz(4-chloroethy	ND ND ND ND ND ND ND	170 170 170 170 170 170 170	ND ND ND ND ND	430 430 430 430 430	NA NA NA NA		NA NA NA	
Genzo(a)anthracene Genzo(b)fluoranthene Genzo(k)fluoranthene Genzo(k)fluoranthene Genzo(ghi)perylene Genzo(a)pyrene Giphenyl Gis(2-chloroethoxy) methane Gis(2-chloroethyl) ether Giz(2-chloroethyl) ether Giz(2-chloroethyl) phthalate Giz(2-chloroethyl) phthalate Giz(2-chloroethyl) phthalate Giz(2-chloroethyl) phthalate Giz(2-chloroethyl) phthalate Giz(2-chloroethyl) phthalate Giz(2-chloroethyl) phthalate Giz(2-chloroethyl) phthalate Giz(2-chloroethyl) phthalate Giz(2-chloroethyl) phthalate Giz(2-chloroethyl) phthalate Giz(3-chloroethyl) phthalate Giz(4-chloroethyl) ghthalate Giz(4-chloroethy	ND ND ND ND ND ND ND	170 170 170 170 170 170	ND ND ND ND ND	430 430 430 430 430	NA NA NA NA		NA NA	
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Benzo(a)pyrene Bijc(2-chloroethoxy) methane Bis(2-chloroethyl) ether Bis(2-chloroethyl) ether Bis(2-chloroethyl) phthalate Bis(2-chloroethyl) phthalate Bis(2-chloroethyl) ether Bis(2-chloroethyl) ether Bis(2-chloropropane) Bis(2-ethylhexyl) phthalate Bis(2-ethylhexyl) phthalate Bis(2-ethylhexyl) phthalate Bis(2-ethylhexyl) phthalate Bis(2-ethylhexyl) phthalate Bis(2-chlorophenyl phenyl ether Bis(2-chloronaphthalate Bis(2-chlorophenol Bis(2-chlorophenol Bis(2-chlorophenol Bis(3-in-in-in-in-in-in-in-in-in-in-in-in-in-	ND ND ND ND ND ND	170 170 170 170 170 170	ND ND ND ND ND	430 430 430 430	NA NA NA		NA	
Benzo(k)fluoranthene Benzo(ghi)perylene Benzo(a)pyrene Bis(2-chloroethoxy) methane Bis(2-chloroethyl) ether Bis(2-chloroethyl) ether Bis(2-chloroethyl) ether Bis(2-ethylhexyl) phthalate Gaprolactam Garbarolactam	ND ND ND ND ND	170 170 170 170 170	ND ND ND ND	430 430 430	NA NA			
Benzo(ghi)perylene Benzo(a)pyrene Biphenyl Bis(2-chloroethoxy) methane Bis(2-chloroethyl) ether C2,2'-Oxybis(1-Chloropropane) Bis(2-ethylhexyl) phthalate C4-Bromophenyl phenyl ether Butyl benzyl phthalate C4-Chloroaniline C4-Chloroaniline C4-Chloronaphthalene C2-Chloronaphthalene C2-Chlorophenol C4-Chlorophenyl phenyl ether C3,3'-Dichlorobenzidine C2,4-Dimethylphenol C3,4-Dimethylphenol C4-Chlorophenol C6-C6-C6-C6-C6-C6-C6-C6-C6-C6-C6-C6-C6-C	ND ND ND ND ND	170 170 170 170	ND ND ND	430 430	NA		NA NA	
Benzo(a)pyrene Bis(2-chloroethoxy) methane Bis(2-chloroethyl) ether C2,2'-Oxybis(1-Chloropropane) Bis(2-ethylhexyl) phthalate C4-Enomophenyl phenyl ether C4-Chloroaniline C4-Chloroaniline C4-Chlorophenol C2-Chlorophenol C4-Chlorophenol C4-Chlorophenol C5-Chlorophenol C6-Chlorophenol C6-Chlorophenol C7-Chlorophenol C8-Chlorophenol C9-Chlorophenol C9	ND ND ND ND	170 170 170	ND ND	430			NA NA	
Biphenyl Bis(2-chloroethoxy) methane Bis(2-chloroethyl) ether 2,2'-Oxybis(1-Chloropropane) Bis(2-ethylhexyl) phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate 4-Chloroaniline 4-Chloroaniline 4-Chloroaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether Borbenzole Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Di-n-butyl phthalate 2,4-Dichlorophenol Diethyl phthalate 2,4-Dichlorophenol Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Dieksome Diethyl phthalate Diethyl phthalate Dieksome Diethyl phthalate Dieksome Diethyl phthalate Dieksome	ND ND ND	170 170	ND		N A		NA NA	
Bis(2-chloroethoxy) methane Bis(2-chloroethyl) ether 2,2'-Oxybis(1-Chloropropane) Bis(2-ethylhexyl) phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate 4-Chloroaniline 4-Chloroaniline 4-Chloroaphthalene 2-Chlorophenol 4-Chlorophenol 5-Chlorophenol 6-Chlorophenyl phenyl ether Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Di-n-butyl phthalate 3,3'-Dichlorobenzidine Diethyl phthalate 2,4-Dimethylphenol DieKG Diethyl phthalate 2,4-Dimethylphenol DIGKG UG/KG UG/KG UG/KG UG/KG UG/KG	ND ND	170		. 700	NA NA		NA NA	
Bis(2-chloroethyl) ether 2,2'-Oxybis(1-Chloropropane) Bis(2-ethylhexyl) phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate 4-Chloroaniline 4-Chloroanethylphenol 2-Chlorophenol 4-Chlorophenyl phenyl ether Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran Dien-butyl phthalate 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate Cy/KG Diethyl phthalate Cy/KG Diethyl phthalate Cy/KG DiefKG DiefKG	ND		י ווע	430	NA NA		NA NA	
2,2'-Oxybis(1-Chloropropane) Bis(2-ethylhexyl) phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate 4-Chloroaniline 4-Chloroaphthalene 2-Chlorophenol 4-Chlorophenol 5-Chlorophenol 6-Chlorophenol 6-Chlorophenol 7-Chlorophenol 7-Chlorophenol 8-Chlorophenol 8-Chlorophenol 9-Chlorophenol			ND	430	NA NA		NA NA	
Bis(2-ethylhexyl) phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate 4-Chloroaniline 4-Chloroanethylphenol 2-Chlorophenol 4-Chlorophenol 4-Chlorophenol 4-Chlorophenol 5-Chlorophenol 6-Chlorophenol 6-Chlorophenyl phenyl ether Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Di-n-butyl phthalate 3,3'-Dichlorobenzidine 2,4-Dimethylphenol Diethyl phthalate Cy,4-Dimethylphenol Die/KG Diethyl phthalate Die/KG Diethyl phthalate Die/KG Diethyl phthalate Die/KG Diethyl phthalate Die/KG Diethyl phthalate Die/KG Diethyl phthalate Die/KG Diethyl phthalate Die/KG Die/KG	ND.	170	ND ND	430	NA NA			
4-Bromophenyl phenyl ether Butyl benzyl phthalate Caprolactam 4-Chloroaniline 4-Chloro-3-methylphenol 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenol 4-Chlorophenol 5-Chlorophenol 6-Chlorophenol 6-Chlorophenyl phenyl ether Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Di-n-butyl phthalate 3,3'-Dichlorobenzidine 2,4-Dimethylphenol Diethyl phthalate Colorophenol Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate	ND	170	ND ND	430	NA NA		NA NA	
Butyl benzyl phthalate Caprolactam 4-Chloroaniline 4-Chloro-3-methylphenol 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Di-n-butyl phthalate 3,3'-Dichlorobenzidine 2,4-Dimethylphenol UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	ND ND	170	ND	430			NA NA	
Caprolactam 4-Chloroaniline 4-Chloro-3-methylphenol 2-Chlorophenol 4-Chlorophenol 4-Chlorophenol 4-Chlorophenyl phenyl ether Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Di-n-butyl phthalate Di-n-butyl phthalate 2,4-Dichlorophenol Diethyl phthalate Cyke Ug/KG Ug/KG Ug/KG Ug/KG Ug/KG Ug/KG Ug/KG Ug/KG Ug/KG Ug/KG Ug/KG Ug/KG		170			NA		NA NA	
4-Chloroaniline 4-Chloro-3-methylphenol 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenol 4-Chlorophenyl phenyl ether Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Di-n-butyl phthalate 3,3'-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol UG/KG	ND	4	ND	430	NA		NA	
4-Chloro-3-methylphenol 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenol 4-Chlorophenyl phenyl ether Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Di-n-butyl phthalate 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate Chrysene Dibenzofuran Dienzofuran Di-n-butyl phthalate Chrysene Dibenzofuran Dienzofuran Die	ND	170	ND	430	NA		NA 	
2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Di-n-butyl phthalate 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate Cyd-KG Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate DieKG Diethyl phthalate DieKG	ND	170	ND	430	NA		NA NA	
2-Chlorophenol 4-Chlorophenyl phenyl ether Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Di-n-butyl phthalate 2,4-Dichlorophenol Diethyl phthalate Cyd-KG Diethyl phthalate Dichlorophenol Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate DiekKG Diethyl phthalate DiekKG	ND	170	ND	430	NA		NA NA	
4-Chlorophenyl phenyl ether UG/KG UG/KG Carbazole Chrysene UG/KG	ND	170	ND	430	NA		NA NA	
Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Di-n-butyl phthalate 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	ND ·	170	ND	430	NA		NA NA	
Chrysene UG/KG Dibenzo(a,h)anthracene UG/KG Dibenzofuran UG/KG Di-n-butyl phthalate UG/KG 3,3'-Dichlorobenzidine UG/KG C2,4-Dichlorophenol UG/KG Diethyl phthalate UG/KG C2,4-Dimethylphenol UG/KG	, ND	170	ND	430	NA		NA NA	
Dibenzo(a,h)anthracene Dibenzofuran Di-n-butyl phthalate Di-h-bichlorobenzidine Di-h-bichlorophenol Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethylphenol UG/KG UG/KG UG/KG	ND	170	ND	430	NA		NA NA	
Dibenzofuran Di-n-butyl phthalate 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 06/K6 UG/K6 UG/K6 UG/K6 UG/K6	ND	170	ND ·	430	NA		NA NA	
Di-n-butyl phthalate 3,3'-Dichlorobenzidine 4,4-Dichlorophenol 5,4-Dichlorophenol 6,4-Dimethylphenol 7,4-Dimethylphenol 8,6-Dimethylphenol 9,6-Dimethylphenol 9,6-Dimethylphenol	ND	170	ND	430	NA		NA	
3,3'-Dichlorobenzidine UG/KG 2,4-Dichlorophenol UG/KG Diethyl phthalate UG/KG 2,4-Dimethylphenol UG/KG	ND	170	ND	430	NA		NA	
2,4-Dichlorophenol UG/KG Diethyl phthalate UG/KG 2,4-Dimethylphenol UG/KG	ND	170	ND	430	NA		NA	
Diethyl phthalate UG/KG 2,4-Dimethylphenol UG/KG	ND	170	ND	430	NA		NA NA	
2,4-Dimethylphenol UG/KG	ND	170	ND	430	NA		NA NA	
	ND	170	ND	430	NA ·		NA NA	
	ND	170	ND	430	NA		NA	
Dimethyl phthalate UG/KG	ND	170	ND	430	NA		NA NA	
4,6-Dinitro-2-methylphenol UG/KG	ND	330	ND	830	NA		NA NA	
2,4-Dinitrophenol UG/KG	ND	330	ND	830	NA.		NA NA	
2,4-Dinitrotoluene UG/KG	ND	170	ND	430	NA.		NA NA	
2,6-Dinitrotoluene UG/KG	ND	170	ND	430	NA		NA NA	
Di-n-octyl phthalate UG/KG	16 BJ	170	.18 BJ	430	NA NA		NA NA	
Fluoranthene UG/KG	ND ND	170	ND ND	430	NA NA		NA NA	
Fluorene UG/KG		170	ND ND	430	NA NA		NA NA	
Hexachlorobenzene UG/KG		170	ND ND	430			[
Hexachlorobutadiene UG/KG	ND ND	170	ND ND	430	NA NA		NA NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		GSB-10(10-12) A07-6476 06/07/2007	A7647605	GSB-11(12-14) A07-6476 06/07/2007	A7647606				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Hexachlorocyclopentadiene	UG/KG	ND	170	ND	430	NA		NA	
Hexachloroethane	UG/KG	ND	170	ND	430	NA		NA	
Indeno(1,2,3-cd)pyrene	UG/KG	ND	170	ND ·	430	NA		NA .	
Isophorone	UG/KG	ND	170	ND	430	NA		NA	
2-Methylnaphthalene	UG/KG	ND	170	ND	430	NA		NA	
2-Methylphenol	UG/KG	ND	170	ND	430	NA		NA	
4-Methylphenol	UG/KG	ND	170	ND	430	NA		NA	
Naphthalene	UG/KG	ND	170	ND	430	NA		NA	
2-Nitroaniline	UG/KG	ND	330	ND	830	NA NA		NA	
3-Nitroaniline	UG/KG	ND	330	ND	830	NA NA		NA	
4-Nitroaniline	ug/kg	ND	330	ND	830	NA NA	·	NA	
Nitrobenzene	UG/KG	ND	170	ND	430	NA		NA	
2-Nitrophenol	UG/KG	ND	170	ND	430	NA NA		NA	
4-Nitrophenol	υg΄/κg	ND	330	ND	830	NA NA		NA	
N-nitrosodiphenylamine	ug/kg	ND	170	ND	430	NA NA		NA	
N-Nitroso-Di-n-propylamine	UG/KG	ND	170	ND ·	430	NA NA		NA	
Pentachlorophenol	UG/KG	ND	330	ND	830	NA		NA	
Phenanthrene	UG/KG	ND	170	ND	430	NA		NA	
Phenol	UG/KG	ND	170	ND	430	NA		NA	
Pyrene	UG/KG	ND	170	ND	430	NA		NA	
2,4,5-Trichlorophenol	UG/KG	ND .	170	· ND	430	NA NA		NA	
2,4,6-Trichlorophenol	UG/KG	ND	170	ND	430	NA NA		NA NA	
IS/SURROGATE(S)									
1,4-Dichlorobenzene-D4	%	107	50-200	111	50-200	NA		NA	
Naphthalene-D8	%	111	50-200	109	50-200	NA		NA	
Acenaphthene-D10	%	112	50-200	112	50-200	NA		NA NA	
Phenanthrene-D10	%	110	50-200	110	50-200	NA NA		NA NA	
Chrysene-D12	%	106	50-200	106	50-200	NA		NA NA	
Perylene-D12	%	126	50-200	126	50-200	NA		NA NA	
Nitrobenzene-D5	1%	74	35-113	78	35-113	NA NA		NA	
2-Fluorobiphenyl	%	77	43-119	80	43-119	NA		NA NA	
p-Terphenyl-d14	%	96	51-125	95	51-125	NA		NA NA	
Phenol-D5	%	76	36-116	76	36-116	NA	1	NA	
2-Fluorophenol	%	65	30-107	65	30-107	NA		NA NA	
2,4,6-Tribromophenol	1%	90	46-129	92	46-129	NA		NA NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client ID Job No Lab Sample Date	ID	GSB-12(12-14) A07-6476 06/07/2007	A7647607	GSB-13(10-12) A07-6476 06/07/2007	A7647608	GSB-14(14-16) A07-6476 06/07/2007	A7647609	GSB-3 (10-12) A07-6329 06/05/2007	A7632909
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	ND ND ND ND ND	17 17 17 17 17 17	ND ND ND ND ND	17 17 17 17 17 17	ND ND ND ND ND ND	17 17 17 17 17 17	ND ND ND ND ND ND	16 16 16 16 16
SURROGATE(S) Tetrachloro-m-xylene Decachlorobiphenyl	% %	82 82	35-134 34-148	90 91	35-134 34-148	92 86	35-134 34-148	ND 88 83	35-134 34-148

Client ID Job No Lab ID Sample Date		GSB-4 (8-10) A07-6329 06/05/2007	A7632910	GSB-5(12-14) A07-6476 06/07/2007	A7647602	GSB-6 (10-12) A07-6329 06/05/2007	A7632911	GSB-7 (10-12) A07-6329 06/05/2007	A7632912
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Aroclor 1016	UG/KG	ND	17	ND	17	ND	17	ND	17
Aroclor 1221	UG/KG	ND	17	ND .	17	ND	17	ND	17
Aroclor 1232	UG/KG	ND	17	ND	17	ND	17	ND	17
Aroclor 1242	UG/KG	ND	17	ND	17	ND	17	ND	17
Aroclor 1248	UG/KG	ND	17	ND -	17	ND	17	ND	17
Aroclor 1254	UG/KG	ND	17	ND	17	ND	17	ND I	17
Aroclor 1260 —————SURROGATE(S)———	UG/KG	ND .	17	ND	17	ND	17	5.4 J	17
Tetrachloro-m-xylene	%	90	35-134	92	35-134	83	35-134	96	35-134
Decachlorobiphenyl	%	83	34-148	98	34-148	74	34-148	80	34-148

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client ID Job No Lab ID Sample Date		GSB-8(12-14) A07-6476 06/07/2007	A7647603	GSB-9(7-9) A07-6476 06/07/2007	A7647604	MW-1 (8-10) A07-6476 06/06/2007	A7647601	MW-2(10-12) A07-6476 06/07/2007	A7647610
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Aroclor 1016	UG/KG	ND	16	ND	17	ND	17	ND	16
Aroclor 1221	UG/KG	ND	16	ND	17	ND	17	ND	16
Aroclor 1232	UG/KG	ND	16	ND	17	ND	17	ND	16
Aroclor 1242	UG/KG	ND	16	ND ND	17	ND	17	ND	16
Aroclor 1248	ug/kg	ND	16	ND	17	ND	17	ND	16
Aroclor 1254	ug/kg	ND .	16	ND	17	ND	17	ND	16
Aroclor 1260	UG/KG	ND	16	ND	17	ND	17	ND	16
SURROGATE(S)——— Tetrachloro-m-xylene	9/	79	35-134	90	35-134	79	35-134	89	35-134
Decachlorobiphenyl	\ ^{''} %	84	34-148	92	34-148	84	34-148	90	34-148

Client ID Job No Lab ID Sample Date		MW-2(30-32) A07-6476 06/07/2007	A7647611	MW-3(10-12) A07-6476 06/08/2007	A7647612	MW-4(8-10) A07-6476 06/08/2007	A7647613	TP-1 (10-12) A07-6329 06/04/2007	A7632901
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Aroclor 1016	UG/KG	ND	18	ND	17	ND	17	ND	18
Aroclor 1221	UG/KG	ND	18	ND	17	ND	17	ND	18
Aroclor 1232	UG/KG	ND	18	ND	17	ND	17	ND	18
Aroclor 1242	UG/KG	ND	18	ND	17	ND	17	ND	18
Aroclor 1248	UG/KG	6.8 J	18	ND	17	ND	17	ND .	18
Aroclor 1254	UG/KG	ND	18	ND	17	ND	17	ND	18
Aroclor 1260	UG/KG	ND	18	ND.	17	ND	17	ND	18
SURROGATE(S)	9/	90	35-134	85	35-134	86	35-134	98	35-134
Tetrachloro-m-xylene Decachlorobiphenyl	/°	80 111	35-134 34-148	88	34-148	- 88	34-148	84	34-148

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client ID Job No Lab II Sample Date)	TP-2 (10-12) A07-6329 06/04/2007	A7632902	TP-3 (8-10) A07-6329 06/04/2007	A7632903	TP-4 (10-12) A07-6329 06/04/2007	A7632904	TP-5 (3-4) A07-6329 06/05/2007	A7632905
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 ————SURROGATE(S)	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	ND ND ND ND ND ND	17 17 17 17 17 17 17	ND ND ND ND ND ND	18 18 18 18 18 18	ND ND ND ND ND ND	16 16 16 16 16 16	ND ND ND ND ND ND	17 17 17 17 17 17
fetrachloro-m-xylene Decachlorobiphenyl	% %	94 82	35-134 34-148	86 88	35-134 34-148	85 82	35-134 34-148	103 90	35-134 34-148

Client ID Job No Lab ID Sample Date		TP-6 (6-8) A07-6329 06/05/2007	A7632906						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting
roclor 1016 roclor 1221 roclor 1232 roclor 1242 roclor 1248 roclor 1254 roclor 1260	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	ND ND ND ND ND ND	17 17 17 17 17 17 17	NA NA NA NA NA NA		NA NA NA NA NA		NA NA NA NA NA	
etrachloro-m-xylene ecachlorobiphenyl	% %	94 84	35-134 34-148	NA NA		NA NA		NA NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA -S-PP METALS SW8463/6010/7470

Client ID Job No L Sample Date	_ab ID	GSB-12(12-14) A07-6476 06/07/2007	A7647607	GSB-13(10-12) A07-6476 06/07/2007	A7647608	GSB-14(14-16) A07-6476 06/07/2007	A7647609	GSB-3 (10-12) A07-6329 06/05/2007	A7632909
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Antimony - Total	MG/KG	ND	14.9	ND	15.4	· ND	15.3	ND	15.1
Arsenic - Total	MG/KG	ND	2.0	ND	2.0	ND	2.0	ND	2.0
Beryllium - Total	MG/KG	ND	0.20	ND	0.20	ND	0.20	0.71	0.20
Cadmium - Total	MG/KG	ND	0.20	ND	0.20	ND .	0.20	ND ND	0.20
Chromium - Total	MG/KG	4.0	0.50	8.2	0.51	7.2	0.51	3.0	0.50
Copper - Total	MG/KG	4.4	0.99	7.4	1.0	6.6	1.0	2.8	1.0
Lead - Total	MG/KG	1.3	0.99	2.1	1.0	5.2	1.0	1.9	1.0
Mercury - Total	MG/KG	ND	0.021	ND	0.022	ND	0.022	ND	0.019
Nickel - Total	MG/KG	3.3	0.50	11.4	0.51	4.4	0.51	3.4	0.50
Selenium - Total	MG/KG	ND	4.0	ND	4.1	ND	4.1	ND	4.0
Silver - Total	MG/KG	ND	0.50	ND	0.51	ND	0.51	ND	0.50
Thallium - Total	MG/KG	ND	6.0	ND	6.1	ND	6.1	ND	6.0
Zinc - Total	MG/KG	10.2	2.0	15.6	2.0	16.9	2.0	10.1	2.0

Client ID Job No Lab ID Sample Date		GSB-4 (8-10) A07-6329 06/05/2007	A7632910	GSB-5(12-14) A07-6476 06/07/2007	A7647602	GSB-6 (10-12) A07-6329 06/05/2007	A7632911	GSB-7 (10-12) A07-6329 06/05/2007	A7632912
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Antimony - Total	MG/KG	ND	15.0	ND	16.2	ND	15.2	ND	15.1
Arsenic - Total	MG/KG	3.3	2.0	ND	2.2	ND I	2.0	3.6	2.0
Beryllium - Total	MG/KG	ND	0.20	ND	0.22	ND	0.20	0.20	0.20
Cadmium - Total	MG/KG	ND	0.20	ND	0.22	ND	0.20	ND	0.20
Chromium - Total	MG/KG	3.1	0.50	4.6	0.54	4.3	0.51	43.7	0.50
Copper - Total	MG/KG	3.5	1.0	4.8	1.1	4.4	1.0	8.4	1.0
Lead - Total	MG/KG	2.2	1.0	1.7	1.1	1.5	1.0	2.6	1.0
Mercury - Total	MG/KG	ND	0.022	ND	0.019	ND	0.022	ND	0.022
Nickel - Total	MG/KG	3.8	0.50	4.1	0.54	3.8	0.51	5.3	0.50
Selenium - Total	MG/KG	ND	4.0	ND	4.3	ND	4.1	ND ND	4.0
Silver - Total	MG/KG	ND ND	0.50	ND	0.54	ND	0.51	ND ND	0.50
Thallium - Total	MG/KG	ND	6.0	ND	6.5	ND ND	6.1	ND ND	6.0
Zinc - Total	MG/KG	13.6	2.0	10.5	2.2	10.7	2.0	16.6	2.0

Client ID Job No Lab I Sample Date	D	GSB-8(12-14) A07-6476 06/07/2007	A7647603	GSB-9(7-9) A07-6476 06/07/2007	A7647604	MW-1 (8-10) A07-6476 06/06/2007	A7647601	MW-2(10-12) A07-6476 06/07/2007	A7647610
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Antimony - Total	MG/KG	ND	15.4	ND	15.2	ND	15.0	ND	14.8
Arsenic - Total	MG/KG	ND	2.0	ND	2.0	2.3	2.0	ND	2.0
Beryllium - Total	MG/KG	ND	0.20	ND	0.20	0.20	0.20	ND	0.20
Cadmium - Total	MG/KG	ND	0.20	ND	0.20	ND	0.20	ND	0.20
Chromium - Total	MG/KG	4.2	0.51	5.0	0.51	3.1	0.50	7.1	0.49
Copper - Total	MG/KG	2.9	1.0	5.4	1.0	4.1	1.0	4.0	0.99
_ead - Total	MG/KG	1.2	1.0	1.6	1.0	2.8	1.0	2.5	0.99
Mercury - Total	MG/KG	ND	0.021	ND	0.021	ND	0.023	ND	0.021
lickel - Total	MG/KG	3.2	0.51	3.8	0.51	5.2	0.50	3.9	0.49
Selenium - Total	MG/KG	ND	4.1	ND	4.0	ND	4.0	ND	4.0
Silver - Total	MG/KG	ND	0.51	ND	0.51	ND	0.50	ND	0.49
Thallium - Total	MG/KG	ND	6.1	ND	6.1	ND	6.0	ND	5.9
Zinc - Total	MG/KG	9.2	2.0	10	2.0	14.6	2.0	12.8	2.0

Client ID Job No Lab II Sample Date		MW-2(30-32) A07-6476 06/07/2007	A7647611	MW-3(10-12) A07-6476 06/08/2007	A7647612	MW-4(8-10) A07-6476 06/08/2007	A7647613	TP-1 (10-12) A07-6329 06/04/2007	A7632901
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Antimony - Total	MG/KG	ND	15.3	ND	14.5	ND	15.5	ND	16.4
Arsenic - Total	MG/KG	2.7	2.0	ND	1.9	3.6	2.1	3.4	2.2
Beryllium - Total	MG/KG	0.32	0.20	0.33	0.19	0.29	0.21	0.33	0.22
Cadmium - Total	MG/KG	ND	0.20	ND	0.19	ND	0.21	ND	0.22
Chromium - Total	MG/KG	17.7	0.51	5.3	0.48	4.0	0.52	5.4	0.55
Copper - Total	MG/KG	12.8	1.0	5.7	0.96	7.7	1.0	9.6	1.1
Lead - Total	MG/KG	3.4	1.0	2.5	0.96	1.8	1.0	3.4	1.1
Mercury - Total	MG/KG	ND	0.021	ND	0.020	ND	0.023	ND	0.022
Nickel - Total	MG/KG	14.8	0.51	5.5	0.48	5.4	0.52	4.4	0.55
Selenium - Total	MG/KG	ND	4.1	ND	3.8	ND	4.1	ND ND	4.4
Silver - Total	MG/KG	ND	0.51	ND	0.48	ND	0.52	ND	0.55
Thallium - Total	MG/KG	ND	6.1	ND	5.8	ND	6.2	ND ND	6.6
Zinc - Total	MG/KG	32.8	2.0	18.0	1.9	14.9	2.1	17.8	2.2

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA -S-PP METALS SW8463/6010/7470

Client ID Job No Sample Date	Lab ID		TP-2 (10-12) A07-6329 06/04/2007	A7632902	TP-3 (8-10) A07-6329 06/04/2007	A7632903	TP-4 (10-12) A07-6329 06/04/2007	A7632904	TP-5 (3-4) A07-6329 06/05/2007	A7632905
Analyte		Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Antimony - Total		MG/KG	ND	15.3	ND	17.1	ND	15.3	ND	15.1
Arsenic - Total		MG/KG	ND	2.0	2.6	2.3	2.0	2.0	2.6	2.0
Beryllium - Total		MG/KG	ND	0.20	0.48	0.23	ND ND	0.20	0.25	0.20
Cadmium - Total		MG/KG	ND	0.20	ND	0.23	ND ND	0.20	ND	0.20
Chromium - Total		MG/KG	3.5	0.51	6.4	0.57	5.9	0.51	21.4	0.50
Copper - Total		MG/KG	3.8	1.0	5.6	1.1	15.2	1.0	9.2	1.0
Lead - Total		MG/KG	1.3	1.0	11.1	1.1	1.8	1.0	7.8	1.0
Mercury - Total		MG/KG	ND	0.021	ND	0.023	ND	0.021	ND	0.021
Nickel - Total		MG/KG	2.7	0.51	4.7	0.57	5.7	0.51	6.2	0.50
Selenium - Total		MG/KG	ND	4.1	ND	4.6	ND	4.1	ND	4.0
Silver - Total		MG/KG	ND	0.51	ND	0.57	ND	0.51	ND	0.50
Thallium - Total	1	MG/KG	ND	6.1	ND	6.8	ND	6.1	ND	6.0
Zinc - Total		MG/KG	7.6	2.0	25.8	2.3	13.6	2.0	28.7	2.0

Client ID Job No Lab ID Sample Date		TP-6 (6-8) A07-6329 06/05/2007	A7632906						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Antimony - Total	MG/KG	ND	15.2	NA		NA		NA NA	
Arsenic - Total	MG/KG	ND	2.0	NA		NA		NA	
Beryllium - Total	MG/KG	0.24	0.20	NA		NA		NA	
Cadmium - Total	MG/KG	ND	0.20	NA		NA		NA	
Chromium - Total	MG/KG	7.0	0.50	NA		NA		NA NA	
Copper - Total	MG/KG	4.1	1.0	NA		NA		NA NA	İ
Lead - Total	MG/KG	3.1	1.0	NA		NA		NA NA	
Mercury - Total	MG/KG	ND	0.022	NA		NA		NA .	
Nickel - Total	MG/KG	4.0	0.50	NA		NA		NA NA	
Selenium - Total	MG/KG	ND	4.0	NA		NA		NA NA	
Silver - Total	MG/KG	ND	0.50	NA	1	NA		NA NA	
Thallium - Total	MG/KG	ND	6.1	NA		NA		NA NA	
Zinc - Total	MG/KG	14.3	2.0	NA		NA		NA NA	

Chronology and QC Summary Package

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA-METHOD 8260 - TCL VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		MEOH BLANK 06 A07-6476 06/07/2007	/14/07 A7647614	VBLK46 A07-6329	A7B0902902	VBLK47 A07-6329	A7B0912102	VBLK48 A07-6476	A7B0916702
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/KG	ND	610	ND	25	ND	25	ND	25
Benzene	ug/kg	ND	120	ND	5	ND	5	ND	5
Bromodichloromethane	ug/kg	ND	120	ND	5	ND .	5	ND ND	5
Bromoform	UG/KG	ND	120	ND	5	ND	5	ND	5
Bromomethane	UG/KG	ND	120	ND	5	ND	. 5	ND	5
2-Butanone	ug/kg	110 J	610	ND	25	ND	25	ND	25
Carbon Disulfide	UG/KG	ND	120	ND	5	ND	5	ND	5
Carbon Tetrachloride	UG/KG	ND	120	ND	5	ND	. 5	ND	5
Chlorobenzene	UG/KG	ND	120	ND	5	ND	5	ND	5
Chloroethane	UG/KG	ND	120	ND	5	ND	5	ND	5
Chloroform	UG/KG	ND	120	l ND	5	ND	5	ND	5
Chloromethane	UG/KG	ND	120	l ND	5	ND	5	ND	5
Cyclohexane	UG/KG	ND	120	ND	5	ND .	5	ND	5
1,2-Dibromoethane	UG/KG	ND	120	ND	5	ND	5	ND	5
Dibromochloromethane	UG/KG	ND	120	ND	5	ND	5	ND	5
1,2-Dibromo-3-chloropropane	UG/KG	ND	120	ND	5	ND	5	ND	5
1,2-Dichlorobenzene	UG/KG	ND	120	ND	5	ND	5	ND	5
1,3-Dichlorobenzene	UG/KG	ND	120	ND	5	ND	5	ND	5
1,4-Dichlorobenzene	UG/KG	ND ND	120	ND ND	5	ND	5	ND	5
Dichlorodifluoromethane	UG/KG	ND	120	ND	5	ND	5	ND .	5
1,1-Dichloroethane	UG/KG	ND ND	120	ND	5	ND	5	ND	5
1,2-Dichloroethane	UG/KG	ND ND	120	ND	5	ND	5	ND	5
1,1-Dichloroethene	UG/KG	ND ND	120	ND ND	5	ND	5	ND	5
cis-1,2-Dichloroethene	UG/KG	ND ND	120	ND ND	5	ND	5	ND	5
trans-1,2-Dichloroethene	UG/KG	ND ND	120	ND ND	5	ND ND	5	ND	5
1,2-Dichloropropane	UG/KG	ND	120	ND ND	5	ND ND	5	ND	5
cis-1,3-Dichloropropene	UG/KG	ND	120	ND	5	ND	5	ND	5
	UG/KG	ND ND	120	ND ND	5	ND	5	ND	5
trans-1,3-Dichloropropene Ethylbenzene	UG/KG	ND ND	120	ND	5	ND	5	ND	5
2-Hexanone	UG/KG	ND ND	610	ND ND	25	ND ND	25	ND	25
Isopropylbenzene	UG/KG	ND ND	120	ND	5	ND ND	5	ND	5
Methyl acetate	UG/KG	ND	120	ND	1 5	ND ND	5	ND	5
Methylcyclohexane	UG/KG	ND ND	120	ND	5	ND	5	ND	5
Methylene chloride	UG/KG	ND ND	120	2 J	5	ND	5	2 J	5
, ,	UG/KG	ND ND	610	ND ND	25	ND	25	ND 2 3	25
4-Methyl-2-pentanone		1	120	ND ND	5	ND ND	5	ND ND	5
Methyl-t-Butyl Ether (MTBE)	UG/KG	ND ND	120	ND ND	5	ND ND	5	ND ND	5
Styrene	UG/KG	ND ND	120	ND ND	5	ND ND	5	ND ND	5
1,1,2,2-Tetrachloroethane	UG/KG			1	5	ND ND	5	l .	5
Tetrachloroethene	UG/KG	ND ND	120	ND ND	5	l	5	ND	5
Toluene	UG/KG	ND	120	ND		ND		ND	5
1,2,4-Trichlorobenzene	UG/KG	ND	120	ND	5	ND	5	ND ND	5
1,1,1-Trichloroethane	UG/KG	ND	120	ND	5	ND	5	ND	1
1,1,2-Trichloroethane	UG/KG	ND	[120	ND	5	ND ND	5	ND	5

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA-METHOD 8260 - TCL VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		MEOH BLANK 06, A07-6476 06/07/2007	/14/07 A7647614	VBLK46 A07-6329	A7B0902902	VBLK47 A07-6329	A7B0912102	VBLK48 A07-6476	А7ВО916702
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
	ug/kg ug/kg ug/kg ug/kg ug/kg	ND ND ND ND	120 120 120 240 360	ND ND ND ND	5 5 5 10 15	ND ND ND ND	5 5 5 10 15	ND ND ND ND	5 5 5 10 15
IS/SURROGATE(S)————————————————————————————————————	% % % % %	90 91 77 102 89 113	50-200 50-200 50-200 71-125 72-126 64-126	96 96 94 92 86 94	50-200 50-200 50-200 71-125 72-126 64-126	95 100 87 94 88 105	50-200 50-200 50-200 71-125 72-126 64-126	96 88 92 95 95	50-200 50-200 50-200 71-125 72-126 64-126

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA-METHOD 8260 - TCL VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		VBLK93 A07-6476	A7B0933504	VLBK50 A07-6329	A7B0925002				· .
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/KG	ND	25	ND	25	NA		NA	
Benzene	UG/KG	ND	5	ND	5	NA		NA	
Bromodichloromethane	UG/KG	ND	5	ND	5	NA		NA	
Bromoform	UG/KG	ND	5	ND	5	NA		NA	
Bromomethane	ug/kg	ND	5	ND	5	NA		NA	
2-Butanone	ug/kg	ND	25	ND	25	NA		NA	
Carbon Disulfide	UG/KG	ND	5	ND	5	NA		NA NA	
Carbon Tetrachloride	ug/kg	ND	5	ND	5	NA		NA NA	
Chlorobenzene	UG/KG	ND	5	ND	5	NA		NA	
Chloroethane	UG/KG	ND	5	ND	5	NA		NA	
Chloroform	UG/KG	ND	5	ND	5	NA		NA	
Chloromethane	UG/KG	ND	5	ND	5	NA		NA	
Cyclohexane	UG/KG	ND	5	ND	5	NA		NA	
1,2-Dibromoethane	UG/KG	ND	5	ND	5	NA		NA NA	
Dibromochloromethane	UG/KG	ND	5	ND	5	NA .		NA	
1,2-Dibromo-3-chloropropane	UG/KG	ND	5	ND	5	NA NA		NA ·	
1,2-Dichlorobenzene	UG/KG	ND	5	ND	5	NA NA		NA NA	
1,3-Dichlorobenzene	UG/KG	ND	5	ND	5	NA NA		NA NA	
1,4-Dichlorobenzene	UG/KG	ND	5	ND	5	NA		NA NA	
Dichlorodifluoromethane	UG/KG	ND	5	ND	5	NA NA		NA	
1.1-Dichloroethane	UG/KG	ND	5	ND ND	5	NA NA		NA.	
1,2-Dichloroethane	UG/KG	ND ND	5	ND	5	NA		NA NA	
1,1-Dichloroethene	UG/KG	ND	5	ND	5	NA		NA	
cis-1,2-Dichloroethene	UG/KG	ND ND	5	ND	5	NA		NA NA	
trans-1,2-Dichloroethene	UG/KG	ND	5	ND	5	NA NA		NA NA	
1,2-Dichloropropane	UG/KG	ND	5	ND	5	NA		NA NA	
cis-1,3-Dichloropropene	UG/KG	ND	5	ND ND	5	NA NA		NA NA	
trans-1,3-Dichloropropene	UG/KG	ND ND	5	ND	5	NA NA		NA NA	
Ethylbenzene	UG/KG	ND ND	5	ND ND	5	NA NA		NA NA	
•	UG/KG	ND ND	25	ND ND	25	NA NA		NA NA	
2-Hexanone	UG/KG	ND ND	5	ND	5	NA NA		NA NA	
Isopropylbenzene	UG/KG	ND	5	ND ND	5	NA NA		NA NA	
Methyl acetate	UG/KG	ND ND	5	ND ND	5	NA NA		NA NA	
Methylcyclohexane	UG/KG	ND ND	5	ND 2 j	5	NA NA		NA NA	
Methylene chloride	UG/KG	ND ND	25	ND ND	25	NA NA		NA NA	
4-Methyl-2-pentanone	UG/KG UG/KG	ND ND	5	ND ND	5	NA NA		NA NA	
Methyl-t-Butyl Ether (MTBE)			5	ND ND	5	NA NA		NA NA	
Styrene	UG/KG	ND ND	5	ND ND	5	NA NA		NA NA	
1,1,2,2-Tetrachloroethane	UG/KG	ND ND	5		5	NA NA		NA NA	
Tetrachloroethene	UG/KG	ND	5	ND ND	5	NA NA		NA NA	
Toluene	UG/KG	ND		ND ND	1				
1,2,4-Trichlorobenzene	UG/KG	ND	5	ND	5	NA NA		NA NA	
1,1,1-Trichloroethane	UG/KG	ND	5	ND	5	NA NA		NA NA	
1,1,2-Trichloroethane	UG/KG	[ND	5	(ND	5	NA NA	ļ	NA NA	ļ

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA-METHOD 8260 - TCL VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		VBLK93 A07-6476	A7B0933504	VLBK50 A07-6329	A7B0925002				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
1,1,2-Trichloro-1,2,2-trifluor	UG/KG	ND	5	ND	5	NA		NA	
richlorofluoromethane	UG/KG	ND	5	ND	5	NA		NA	
richloroethene	UG/KG	ND	5	ND	5	NA		NA	
'inyl chloride	UG/KG	ND	10	ND	10	NA		NA	
otal Xylenes	UG/KG	ND	15	ND	15	NA	ĺ	NA	
=====IS/SURROGATE(S)======				inio:					
hlorobenzene-D5	%	89	50-200	87	50-200	NA		NA	
,4-Difluorobenzene	%	91	50-200	88	50-200	NA		NA	
,4-Dichlorobenzene-D4	%	74	50-200	85	50-200	NA		NA	
oluene-D8	%	103	71-125	100	71-125	NA		NA	
-Bromofluorobenzene	%	89	72-126	96	72-126	NA		NA	
,2-Dichloroethane-D4	%	113	64-126	103	64-126	NA `		NA	

Client ID Job No Lab ID Sample Date		GSB-3 (10-12) A07-6329 06/05/2007	A7632909MS	GSB-3 (10-12) A07-6329 06/05/2007	A76329098D	MSB46 A07-6329	A7B0902901	MSB47 A07-6329	A7B0912101
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/KG	ND	25	ND	25	240	25	ND	25
Benzene	UG/KG	50	5	56	5	50	5	60	5
Bromodichloromethane	UG/KG	ND	5	ND	5	50	5	ND	5
Bromoform	UG/KG	ND	5	ND	5	52	5	ND	5
Bromomethane	UG/KG	ND	5	ND I	5	54	5	ND	5
2-Butanone	UG/KG	ND I	25	ND I	25	240	25	ND	25
Carbon Disulfide	UG/KG	2 J	5	2 J	5	46	5	ND	5
Carbon Tetrachloride	UG/KG	ND D	5	ND ND	5	53	5	ND	5
Chlorobenzene	UG/KG	48	5	54	5	49	5	57	5
Chloroethane	UG/KG	ND ND	5	ND ND	5	51	5	ND	5
Chloroform	UG/KG	ND ND	. 5	ND ND	5	49	5	ND	5
Chloromethane	UG/KG	ND	5	ND ND	5	52	5	ND ND	5
Cyclohexane	UG/KG	ND	5	ND ND	5	46	5	ND	5
1,2-Dibromoethane	UG/KG	ND ND	5	ND ND	5	48	5	ND ND	5
Dibromochloromethane	UG/KG	ND ND	5	ND ND	5	52	5	ND ND	5
1,2-Dibromo-3-chloropropane	UG/KG	ND ND	5	ND ND	5	44	5	ND ND	5
	UG/KG	ND ND	5	ND ND	5	50	5	ND ND	5
1,2-Dichlorobenzene	UG/KG	ND ND	5	ND ND	5	50	5	ND:	5
1,3-Dichlorobenzene		ND ND	5	ND ND	5	50	5	ND ND	5
1,4-Dichlorobenzene	UG/KG UG/KG	ND ND	. 5	ND ND	5	59	5	ND ND	5
Dichlorodifluoromethane			5	ND ND	5	50	5	ND ND	5
1,1-Dichloroethane	UG/KG	ND	5		5	50	5	ND ND	5
1,2-Dichloroethane	UG/KG	ND	5	ND 59	5	58	5	68	5
1,1-Dichloroethene	UG/KG	53	5		5	49	5	ND	5
cis-1,2-Dichloroethene	UG/KG	ND	5	ND ND	5 5		5		5
trans-1,2-Dichloroethene	UG/KG	ND	_	ND ND	5 5	52	1	ND	5
1,2-Dichloropropane	UG/KG	ND	5	ND ND	_	49	5	ND	
cis-1,3-Dichloropropene	UG/KG	ND	5	ND	5_	50	5	ND	5
trans-1,3-Dichloropropene	UG/KG	ND	5	ND	5	51	5	ND	5
Ethylbenzene	ug/kg	ND	5	ND	5	51	5	ND	5
?-Hexanone	UG/KG	ND	25	ND	25	250	25	ND	25
Isopropylbenzene	UG/KG	ND	5	ND	5	46	5	ND	5
Methyl acetate	UG/KG	ND	5	ND	5	41	5	ND	5
1ethylcyclohexane	UG/KG	ND	5	ND	5	48	5	ND	5
Methylene chloride	UG/KG	14 B	5	16 B	5	47 B	5	2 J	5
i-Methyl-2-pentanone	UG/KG	ND	25	ND	25	250	25	ND	25
Methyl-t-Butyl Ether (MTBE)	UG/KG	ND	5	ND ND	5	49	5	ND	5
Styrene	UG/KG	ND	5	ND	5	50	5	ND	5
1,1,2,2-Tetrachloroethane	UG/KG	ND	5	ND	-5	49	5	ND	5
Tetrachloroethene	UG/KG	ND	5	ND	5	50	5	ND	5
Toluene	UG/KG	48	5	54	5	50	5	57	5
1,2,4-Trichlorobenzene	UG/KG	ND	5	ND	5	50	5	ND	5
1,1,1-Trichloroethane	UG/KG	ND	5	ND	5	52	5	ND	5
1,1,2-Trichloroethane	ug/kg	ND ND	5	ND	5	49	5	ND ND	5

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA-METHOD 8260 - TCL VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		GSB-3 (10-12) A07-6329 06/05/2007	A7632909MS	GSB-3 (10-12) A07-6329 06/05/2007	A7632909SD	MSB46 A07-6329	A7B0902901	MSB47 A07-6329	A7B0912101
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
1,1,2-Trichloro-1,2,2-trifluor		ND	5	ND .	5	45	5	ND	5
	UG/KG UG/KG	1 J 48	5	1 J 52	5	53 51	5	ND EO	2
	UG/KG	ND ND	10	ND	10	54	10	58	10
•	UG/KG	ND ND	15	ND	15	150	15	ND ND	15
Chlorobenzene-D5	1%	103	50-200	98	50-200	96	50-200	90	50-200
1,4-Difluorobenzene	%	102	50-200	94	50-200	96	50-200	94	50-200
1,4-Dichlorobenzene-D4	%	103	50-200	100	50-200	98	50-200	85	50-200
Toluene-D8	1%	101	71-125	100	71-125	88	71-125	99	71-125
p-Bromofluorobenzene	%	100	72-126	100	72-126	84	72-126	98	72-126
1,2-Dichloroethane-D4	%	90	64-126	78	64-126	88	64-126	112	64-126

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA-METHOD 8260 - TCL VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		MSB48 A07-6476	A7B0916701	MSB50 A07-6329	A7B0925001	MSB93 A07-6476	А7ВО933503		
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
cetone	UG/KG	260	25	260	25	ND	25	NA	
enzene	UG/KG	55	5	49	5	26	5	NA	
romodichloromethane	UG/KG	56	5	52	5	ND	5	NA	
romoform	UG/KG	55	5	52	5	ND	5	NA	
romomethane	ug/kg	58	5	54	5	ND	5	NA	
-Butanone	UG/KG	260	25	270	25	ND	25	NA	
arbon Disulfide	UG/KG	48	5	50	5	ND	5	NA	
arbon Tetrachloride	UG/KG	61	5	54	5	ND	5	NA	
hlorobenzene	UG/KG	54	5	50	5	24	5	NA	
hloroethane	UG/KG	53	5	53	5	ND	5	NA	
hloroform	UG/KG	56	5	51	5	ND	5	NA	
hloromethane	UG/KG	55	5	59	5	ND	5	NA	
yclohexane	UG/KG	51	5	52	5	ND	5	NA	
,2-Dibromoethane	UG/KG	51	5	49	5	ND	5	NA	
ibromochloromethane	UG/KG	55	5	51	5	ND	5	NA	
	UG/KG	50	5	50	5	ND	5	NA	
,2-Dibromo-3-chloropropane	UG/KG	52	5	48	5	ND ND	5	NA NA	
,2-Dichlorobenzene	UG/KG	52 52	5	47	5	ND	5	NA NA	
,3-Dichlorobenzene		52 53	5	48	1 5	ND	5	NA NA	
,4-Dichlorobenzene	UG/KG	აა 65	5	76	5	ND ND	5	NA NA	
ichlorodifluoromethane	UG/KG		_		5		5	NA NA	
,1-Dichloroethane	UG/KG	54	5	50	5	ND	5	NA NA	
,2-Dichloroethane	UG/KG	55	5	50	l .	ND 70	1		
,1-Dichloroethene	UG/KG	61	5	50	5	30	5	NA	
is-1,2-Dichloroethene	UG/KG	53	5	50	5	ND	5	NA	
rans-1,2-Dichloroethene	UG/KG	58	5	50	5	ND	5	NA	
,2-Dichloropropane	UG/KG	53	5	50	5	ND	5	NA	
is-1,3-Dichloropropene	UG/KG	54	5	51	5	ND	5	NA	
rans-1,3-Dichloropropene	UG/KG	53	5	50	5	ND	5	NA	
thylbenzene	UG/KG	55	5	51	5	ND	5	NA	Ì
!-Hexanone	UG/KG	260	25	270	25	ND	25	NA	
sopropylbenzene	UG/KG	46	5	47	5	ND	5	NA	
lethyl acetate	UG/KG	41	5	64	5	ND	5	NA	1
le thy l cyc lohexane	ug/kg	54	5	53	5	ND	5	NA	
ethylene chloride	UG/KG	64 B	5	44 B	5	ND	. 5	NA	
-Methyl-2-pentanone	UG/KG	260	25	260	25	ND	25	NA	
Methyl-t-Butyl Ether (MTBE)	UG/KG	52	5	50	5	ND	5	NA	
tyrene	υg΄/κg	54	5	51	5	ND	5	NA	1
,1,2,2-Tetrachloroethane	UG/KG	49	5	47	5	ND	5	NA	
Tetrachloroethene	UG/KG	54	5	50	5	ND	5	NA	
oluene	UG/KG	53	5	49	5	24	5	NA	
,2,4-Trichlorobenzene	UG/KG	58	5	51	5	ND ND	5	NA	
1,1,1-Trichloroethane	UG/KG	59	5	54	5	ND	5	NA	
1,1,2-Trichloroethane	UG/KG	54	5	49	5	ND ND	5	NA NA	1

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA-METHOD 8260 - TCL VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		MSB48 A07-6476	A7B0916701	MSB50 A07-6329	A7B0925001	MSB93 A07-6476	A7B0933503		
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
	UG/KG	51 62	5 5	53 60	5 5	ND ND	5 5	NA NA	
Vinyl chloride	UG/KG UG/KG UG/KG	57 56 ND	5 10 15	51 57 150	5 10 15	26 ND ND	5 10 15	NA NA NA	
IS/SURROGATE(S)————————————————————————————————————	% % %	104 103 107	50-200 50-200 50-200	103 102 107	50-200 50-200 50-200	93 94 78	50-200 50-200 50-200	NA NA NA	
Toluene-D8 D-Bromofluorobenzene 1,2-Dichloroethane-D4	% % %	94 95 96	71-125 72-126 64-126	89 90 92	71-125 72-126 64-126	102 90 111	71-125 72-126 64-126	NA NA NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID		SBLK A07-6329	A7B0900402	SBLK A07-6329	А7В0901802	SBLK A07-6329	A7B0919602	SBLK A07-6476	A7B0919702
Sample Date	1		1		1				T
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
N.N-Dimethyl formamide	UG/KG	ND	640	ND	650	ND	660	ND	660
Acenaphthene	UG/KG	ND	160	ND	170	ND	170	ND	170
Acenaphthylene	ug/kg	ND	160	ND	170	ND	170	ND	170
Acetophenone	UG/KG	ND	160	ND	170	ND	170	ND	170
Anthracene	UG/KG	ND	160	ND	170	ND	170	ND	170
Atrazine	UG/KG	ND	160	ND	170	ND	170	ND	170
Benzaldehyde	UG/KG	ND	160	ND	170	ND	170	ND	170
Benzo(a)anthracene	UG/KG	ND	160	ND	170	ND	170	ND	170
Benzo(b)fluoranthene	UG/KG	ND	160	ND	170	ND	170	ND	170
Benzo(k)fluoranthene	UG/KG	ND	160	ND	170	ND .	170	ND	170
Benzo(ghi)perylene	ug/kg	ND	160	ND	170	ND	170	ND	170
Benzo(a)pyrene	UG/KG	ND	160	ND	170	ND	170	ND	170
Benzoic acid	UG/KG	ND	4700	ND	4700	ND	4800	ND	4800
Benzyl alcohol	UG/KG	ND	320	ND	320	ND	330	ND	330
Biphenyl	UG/KG	ND	160	ND	170	ND	170	ND	170
Bis(2-chloroethoxy) methane	UG/KG	ND	160	ND	170	ND	170	ND	170
Bis(2-chloroethyl) ether	UG/KG	ND	160	ND	170	ND	170	ND	170
2,2'-Oxybis(1-Chloropropane)	UG/KG	ND	160	ND	170	ND	170	ND	170
Bis(2-ethylhexyl) phthalate	UG/KG	97 J	160	l ND	170	ND	170	l ND	170
4-Bromophenyl phenyl ether	UG/KG	ND	160	ND	170	ND	170	ND	170
Butyl benzyl phthalate	UG/KG	ND .	160	ND	170	ND	170	ND	170
Caprolactam	UG/KG	ND	160	ND	170	ND	170	ND ND	170
4-Chloroaniline	UG/KG	ND ND	160	ND ND	170	ND	170	l ND	170
4-Chloro-3-methylphenol	UG/KG	ND ND	160	ND ND	170	ND	170	ND ND	170
2-Chloronaphthalene	UG/KG	ND	160	ND	170	ND	170	ND	170
2-Chlorophenol	UG/KG	ND	160	ND	170	ND	170	ND	170
4-Chlorophenyl phenyl ether	UG/KG	ND	160	ND	170	ND	170	ND	170
Carbazole	UG/KG	ND ND	160	ND ND	170	ND	170	ND	170
Chrysene	UG/KG	ND ND	160	ND ND	170	ND ND	170	ND	170
Dibenzo(a,h)anthracene	UG/KG	ND ND	160	ND ND	170	ND ND	170	ND	170
Dibenzofuran	UG/KG	ND ND	160	ND	170	ND	170	ND	170
Di-n-butyl phthalate	UG/KG	ND ND	160	ND	170	ND	170	ND	170
3,3'-Dichlorobenzidine	UG/KG	ND ND	160	ND ND	170	ND	170	ND ND	170
•	UG/KG	ND ND	160	ND ND	170	ND ND	170	ND	170
2,4-Dichlorophenol	UG/KG	ND ND	160	ND	170	ND ND	170	ND ND	170
Diethyl phthalate	UG/KG	ND ND	160	ND ND	170	ND	170	ND	170
2,4-Dimethylphenol	UG/KG		160	ND ND	170	ND	170	ND ND	170
Dimethyl phthalate	UG/KG	ND ND	320	ND ND	320	ND ND	330	ND ND	330
4,6-Dinitro-2-methylphenol	1 ".	1	320	ND ND	320	ND ND	330	ND	330
2,4-Dinitrophenol	UG/KG	ND ND	160	ND ND	170	ND ND	170	ND ND	170
2,4-Dinitrotoluene	UG/KG	ND ND		ND ND	170	ND ND	170	ND ND	170
2,6-Dinitrotoluene	UG/KG	ND	160	1				17 J	170
Di-n-octyl phthalate	UG/KG	ND	160	10 J	170	13 J	170		1
Fluoranthene	UG/KG	ND	160	ND	170	ND	170	ND	170

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID Sample Date		SBLK A07-6329	A7B0900402	SBLK A07-6329	A7B0901802	SBLK A07-6329	A7B0919602	SBLK A07-6476	A7B0919702
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone 2-Methylnaphthalene 2-Methylphenol 4-Methylphenol Naphthalene 2-Nitroaniline 3-Nitroaniline Nitrobenzene 2-Nitrophenol 4-Nitrophenol N-nitrosodiphenylamine N-nitroso-Di-n-propylamine Pentachlorophenol Phenanthrene Phenol Pyrene 2,4,5-Trichlorophenol	UG/KG UG/KG	ND ND ND ND ND ND ND ND ND ND ND ND ND N	160 160 160 160 160 160 160 160 160 320 320 320 160 160 320 160 160 160	ND ND ND ND ND ND ND ND ND ND ND ND ND N	170 170 170 170 170 170 170 170 170 170	ND ND ND ND ND ND ND ND ND ND ND ND ND N	170 170 170 170 170 170 170 170 170 170	ND ND ND ND ND ND ND ND ND ND ND ND ND N	170 170 170 170 170 170 170 170 170 170
2,4,6-Trichlorophenol IS/SURROGATE(S)	UG/KG	ND	160	ND	170	ND	170	ND	170
1,4-Dichlorobenzene-D4 Naphthalene-D8 Acenaphthene-D10 Phenanthrene-D10 Chrysene-D12 Perylene-D12 Nitrobenzene-D5 2-Fluorobiphenyl p-Terphenyl-d14 Phenol-D5 2-Fluorophenol 2,4,6-Tribromophenol	% % % % % % % % % % % % % % % % % % %	115 112 115 113 113 112 74 75 97 72 63 102	50-200 50-200 50-200 50-200 50-200 50-200 35-113 43-119 51-125 36-116 30-107 46-129	107 108 110 107 110 136 61 63 74 64 57	50-200 50-200 50-200 50-200 50-200 50-200 35-113 43-119 51-125 36-116 30-107 46-129	112 112 113 112 109 108 78 78 84 78 71	50-200 50-200 50-200 50-200 50-200 50-200 35-113 43-119 51-125 36-116 30-107 46-129	92 92 94 90 88 89 59 60 81 59 52 78	50-200 50-200 50-200 50-200 50-200 50-200 35-113 43-119 51-125 36-116 30-107 46-129

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date	·	SBLK A07-6476	A7B0919702						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acenaphthene	UG/KG	ND	170	NA		NA		NA	1
Acenaphthylene	UG/KG	ND	170	NA		NA NA		NA	
Acetophenone	UG/KG	ND	170	NA		NA		NA	
Anthracene	UG/KG	ND	170	NA .		NA NA		NA	
Atrazine	UG/KG	ND	170	NA		NA I		NA	
Benzaldehyde	UG/KG	ND	170	NA		NA		NA	
Benzo(a)anthracene	UG/KG	ND	170	NA NA		NA		NA	
Benzo(b)fluoranthene	UG/KG	ND	170	NA		NA NA		NA	
Benzo(k)fluoranthene	UG/KG	ND ND	170	NA		NA NA		NA	
Benzo(ghi)perylene	UG/KG	ND ND	170	NA NA		NA NA		NA	
Benzo(a)pyrene	UG/KG	ND ND	170	NA NA		NA NA		NA	
	UG/KG	ND ND	170	NA NA		NA NA		NA	
Biphenyl	UG/KG	ND ND	170	NA NA		NA NA		NA	
Bis(2-chloroethoxy) methane		ND ND	170	NA NA		NA NA		NA NA	
Bis(2-chloroethyl) ether	UG/KG		170	NA NA		NA NA		NA NA	
2,2'-Oxybis(1-Chloropropane)	UG/KG	ND	170	NA NA		NA NA		NA NA	
Bis(2-ethylhexyl) phthalate	UG/KG	ND				1		NA NA	1
4-Bromophenyl phenyl ether	UG/KG	ND	170	NA NA		NA NA		NA NA	
Butyl benzyl phthalate	ug/kg	ND	170	NA		NA NA			
Caprolactam	UG/KG	ND	170	NA NA		NA NA		NA NA	
4-Chloroaniline	UG/KG	ND	170	NA		NA	'	NA NA	
4-Chloro-3-methylphenol	UG/KG	ND	170	NA NA		NA		NA NA	
2-Chloronaphthalene	UG/KG	ND	170	NA NA		NA		NA	
2-Chlorophenol	UG/KG	ND	170	NA		NA		NA	İ
4-Chlorophenyl phenyl ether	UG/KG	ND	170	NA		NA		NA	
Carbazole	UG/KG	ND	170	NA		NA NA		NA NA	
Chrysene	UG/KG	ND	170	NA		NA .		NA	
Dibenzo(a,h)anthracene	UG/KG	ND	170	NA		NA		NA	
Dibenzofuran	UG/KG	ND	170	NA NA		NA		NA NA	
Di-n-butyl phthalate	UG/KG	ND	170	NA		NA		NA NA	
3,3'-Dichlorobenzidine	ug/kg	ND	170	NA NA		NA		NA NA	
2,4-Dichlorophenol	ug/kg	ND	170	NA NA		NA ·		NA	
Diethyl phthalate	UG/KG	ND	170	NA NA		NA		NA	1
2,4-Dimethylphenol	UG/KG	ND	170	NA NA		NA NA		NA	
Dimethyl phthalate	UG/KG	ND	170	NA		NA		NA NA	-
4,6-Dinitro-2-methylphenol	UG/KG	ND ND	330	NA NA		NA NA		NA	
2,4-Dinitrophenol	UG/KG	ND ND	330	NA NA		NA .		NA NA	
2,4-Dinitrotoluene	UG/KG	ND ND	170	NA		NA NA		NA NA	
2,4-Dinitrototuene	UG/KG	ND	170	NA NA		NA		NA NA	
•	UG/KG	17 J	170	NA NA		NA NA		NA NA	
Di-n-octyl phthalate			170	NA NA		NA NA		NA NA	
Fluoranthene	UG/KG	ND	170	NA NA		NA NA		NA NA	
Fluorene	UG/KG	ND				1	1	1	
Hexachlorobenzene	UG/KG	ND	170	NA NA	1	NA NA		NA NA	
Hexachlorobutadiene	UG/KG	ND	170	NA NA	l .	NA NA	Į.	NA NA	,

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		SBLK A07-6476	A7B0919702						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Hexachlorocyclopentadiene	UG/KG	ND	170	NA NA		NA NA		NA NA	
Hexachloroethane	UG/KG	ND	170	NA NA		NA		NA	
Indeno(1,2,3-cd)pyrene	UG/KG	ND	170	l NA		NA NA		NA	
Isophorone	UG/KG	ND	170	NA NA		NA.		NA	
2-Methylnaphthalene	UG/KG	ND	170	NA NA		NA NA		NA	
2-Methylphenol	UG/KG	ND	170	NA NA		NA NA		NA NA	
4-Methylphenol	UG/KG	ND	170	NA.		NA NA		NA NA	
Naphthalene	UG/KG	ND	170	NA NA		NA NA		NA NA	
2-Nitroaniline	UG/KG	ND	330	NA NA		NA NA		NA NA	
3-Nitroaniline	UG/KG	ND	330	NA		NA NA		NA NA	
4-Nitroaniline	UG/KG	ND	330	NA		NA NA		NA NA	
Nitrobenzene	UG/KG	ND	170	NA NA		NA NA		NA NA	
2-Nitrophenol	UG/KG	ND	170	NA		NA NA		NA NA	
4-Nitrophenol	UG/KG	ND	330	NA		NA NA		NA NA	
N-nitrosodiphenylamine	UG/KG	ND	170	NA		NA NA		NA NA	
N-Nitroso-Di-n-propylamine	UG/KG	ND	170	NA		NA NA		NA NA	
Pentachlorophenol	UG/KG	ND	330	NA		NA NA		NA NA	
Phenanthrene	UG/KG	ND	170	NA		NA		NA NA	
Phenol	UG/KG	ND	170	NA NA		NA NA		NA NA	
Pyrene	UG/KG	ND	170	NA		NA NA		NA NA	
2,4,5-Trichlorophenol	UG/KG	ND	170	NA		NA NA		NA NA	
2,4,6-Trichlorophenol	UG/KG	ND	170	NA NA		NA NA		NA NA	
IS/SURROGATE(S)						11/2		I IVA	
1,4-Dichlorobenzene-D4	[%	92	50-200	Í NA	ŀ	NA NA	}	NA NA	Í
Naphthalene-D8	1%	92	50-200	NA NA		NA NA		NA	
Acenaphthene-D10	1%	94	50-200	NA NA		NA NA		NA	
Phenanthrene-D10	1%	90	50-200	NA NA		NA NA		NA NA	
Chrysene-D12	1%	88	50-200	NA NA		NA NA		NA NA	
Perylene-D12	%	89	50-200	NA		NA NA		NA NA	
Nitrobenzene-D5	1%	59	35-113	NA		NA NA		NA NA	
2-Fluorobiphenyl	%	60	43-119	NA		NA NA		NA NA	
p-Terphenyl-d14	1%	81	51-125	NA NA		NA NA		NA NA	
Phenol-D5	%	59	36-116	NA NA		NA NA		NA NA	
2-Fluorophenol	1%	52	30-107	NA NA		NA NA		NA NA	
2,4,6-Tribromophenol	1%	78	46-129	NA NA		NA NA		NA NA	

METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE TENTATIVELY IDENTIFIED COMPOUNDS

56/125

Client No.

				SBLK		
Lab Name:	STL Buffalo	Contract:			.,	
Lab Code:	<u>RECNY</u> Case No.	.: SAS No.:	SDG No.: <u>6</u>	329		
Matrix: ((soil/water) <u>SOIL</u>		Lab Sampl	e ID: <u>A7B090</u>	0402	
Sample wt	:/vol: <u>30.73</u>	<u>3</u> (g/mL) <u>G</u>	Lab File	ID: <u>W16611</u>	.RR	_
Level:	(low/med) <u>LOW</u>		Date Samp	/Recv:		
% Moistur	re: decant	ted: (Y/N) <u>N</u>	Date Extr	acted: <u>06/11/</u>	<u> 2007</u>	
Concentra	ated Extract Volume	e: <u>1000</u> (uL)	Date Anal	yzed: <u>06/13/</u>	<u>2007</u>	
Injection	n Volume:1.00	(uL)	Dilution	Factor: <u>1.</u>	00	
GPC Clear	nup: (Y/N) N	рн:				
Number TI	Cs found: _0		CONCENTRATI (ug/L or u	ON UNITS: g/Kg) <u>UG/KG</u>	!	
	CAS NO.	Compound Name	RT	Est. Conc.	Q	

CAS NO.	Compound Name	RT	Est. Conc.	Q

METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE TENTATIVELY IDENTIFIED COMPOUNDS

57/125

Client No.

				SBLK
Lab Name: STL Buffal	<u>o</u> Contract	: :	l	
Lab Code: <u>RECNY</u> (ase No.: SAS	No.:	SDG No.: <u>6329</u>	
Matrix: (soil/water)	SOIL		Lab Sample ID:	A7B0901802
Sample wt/vol:	<u>30.47</u> (g/mL) <u>G</u>		Lab File ID:	W16624.RR
Level: (low/med)	LOW		Date Samp/Recv:	
% Moisture:	decanted: (Y/N) N		Date Extracted:	06/11/2007

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 06/13/2007

Injection Volume: ____1.00 (uL) Dilution Factor: ____1.00

GPC Cleanup: (Y/N) N pH: ____

CONCENTRATION UNITS:

Number TICs found: 8 (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1.	UNKNOWN BENZENE DERIVATIVE	12.69	140	J
2.	UNKNOWN BENZENE DERIVATIVE	12.89	410	J
3.	UNKNOWN NAPHTHALENE DERIVATI	12.99	250	J
4.	UNKNOWN NAPHTHALENE DERIVATI	13.08	520	J
5.	UNKNOWN NAPHTHALENE DERIVATI	13.18	390	J
6.	UNKNOWN	13.24	260	J
7.	UNKNOWN NAPHTHALENE DERIVATI	13.28	190	J
8.	UNKNOWN BENZENE DERIVATIVE	13.72	160	J

METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE TENTATIVELY IDENTIFIED COMPOUNDS

58/125

Client No.

				SBLK	
Lab Name:	STL Buffalo	Contract:			
Lab Code:	RECNY Case No	.: SAS No.:	SDG No.: <u>6329</u>		
Matrix: ((soil/water) <u>SOIL</u>		Lab Sample ID:	<u>A7B091</u>	9602
Sample wt	:/vol: <u>30.1</u>	0 (g/mL) <u>G</u>	Lab File ID:	<u>W16754</u>	.RR
Level:	(low/med) <u>LOW</u>		Date Samp/Recv	:	
% Moistur	re: decan	ted: (Y/N) <u>N</u>	Date Extracted	: 06/13/	2007
Concentra	ated Extract Volum	e: <u>1000</u> (uL)	Date Analyzed:	06/18/	2007
Injection	n Volume:1.00	(uL)	Dilution Facto	r: <u> 1.</u>	00
GPC Clear	nup: (Y/N) <u>N</u>	pH:			
Number Tl	ICs found: 0		CONCENIRATION UN (ug/L or ug/Kg)		<u>-</u>
	CAS NO.	Compound Name	RT Est	. Conc.	Q

METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE TENTATIVELY IDENTIFIED COMPOUNDS

59/125

Client No.

I ah Nama	. CTT Duffalo	Contr	rage .			SBLK		
Tan Nalle:	: <u>STL Buffalo</u>	COLICI	.act:					
Lab Code:	: <u>RECNY</u> Case No	.: 8	BAS No.:	SDG No.: 6	5329			
Matrix:	(soil/water) <u>SOIL</u>			Lab Sampl	le ID:	A7B0919	<u> 9702</u>	
Sample wt	t/vol: <u>30.0</u>	<u>4</u> (g/mL) <u>G</u>		Lab File	ID:	<u>W16759.</u>	.RR	
Level:	(low/med) <u>LOW</u>			Date Samp	o/Recv:			
% Moistur	re: decant	ted: (Y/N) <u>N</u>	Ī	Date Extr	acted:	06/13/2	2007	
Concentra	ated Extract Volume	∋: <u>1000</u> (uL	1)	Date Anal	lyzed:	06/18/2	<u>2007</u>	
Injection	n Volume:1.00	(uL)		Dilution	Factor:	1.0	<u>)0</u>	
GPC Clear	nup: (Y/N) N	pH:	_					
Number Ti	ICs found: 0			CONCENTRATI (ug/L or u			-	
	CAS NO.	Comp	ound Name	RT	Est.	Conc.	Q	
		T						

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID Sample Date		MW-1 (8-10) A07-6476 O6/06/2007	A7647601MS	MW-1 (8-10) A07-6476 O6/06/2007	A7647601SD	Matrix Spike E A07-6329	Blank A7B0900401	Matrix Spike E A07-6329	8 lank A7B0901801
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
N,N-Dimethyl formamide	UG/KG	ND	690	ND	680	ND	640	ND	650
Acenaphthene	UG/KG	2900	180	3000	170	2900	170	1700	170
cenaphthylene	UG/KG	ND	180	ND	170	2900	170	ND	170
cetophenone	UG/KG	ND	180	ND	170	2500	170	ND	170
inthracene	UG/KG	ND	180	ND	170	3000	170	9 J	170
Atrazine	UG/KG	ND	180	ND	170	3200	170	ND	170
enzaldehyde	ug/kg	ND	180	ND	170	1800	170	ND	170
enzo(a)anthracene	ug/kg	ND	180	ND	170	3200	170	12 J	170
enzo(b)fluoranthene	ug/kg	ND	180	ND	170	3300	170	10 J	170
Benzo(k)fluoranthene	ug/kg	ND	180	ND	170	2900	170	ND	170
Benzo(ghi)perylene	UG/KG	ND	180	ND	170	3100	170	ND	170
Benzo(a)pyrene	UG/KG	ND	180	ND	170	3000	170	7 J	170
Benzoic acid	UG/KG	ND	5000	ND	4900	7900	4700	ND	4700
Benzyl alcohol	UG/KG	ND	350	ND	340	2700	320	ND	320
Biphenyl	UG/KG	ND	180	ND	170	2800	170	ND	170
Bis(2-chloroethoxy) methane	UG/KG	ND	180	ND	170	2600	170	ŇD	170
Bis(2-chloroethyl) ether	UG/KG	ND ND	180	ND	170	2200	170	ND	170
2,2'-0xybis(1-Chloropropane)	UG/KG	ND ND	180	ND .	170	2700	170	ND	170
Bis(2-ethylhexyl) phthalate	UG/KG	ND	180	ND	170	3400 B	170	ND	170
4-Bromophenyl phenyl ether	UG/KG	ND ND	180	ND ND	170	3100	170	ND	170
Butyl benzyl phthalate	UG/KG	ND	180	ND	170	3200	170	ND	170
Caprolactam	UG/KG	ND ND	180	ND	170	2600	170	ND	170
•	UG/KG	ND	180	ND ND	170	2800	170	ND	170
4-Chloroaniline	UG/KG	3000	180	3000	170	3100	170	1800	170
4-Chloro-3-methylphenol	1	ND	180	ND	170	2900	170	ND ND	170
2-Chloronaphthalene	UG/KG UG/KG	2400	180	2600	170	2300	170	1400	170
2-Chlorophenol	1 7.		180	ND	170	3000	170	ND	170
4-Chlorophenyl phenyl ether	UG/KG	ND ND	180	ND ND	170	3000	170	ND ND	170
Carbazole	UG/KG	ND	180	ND	170	3200	170	9 J	170
Chrysene	UG/KG	ND			170	3100	170	ND ND	170
ibenzo(a,h)anthracene	UG/KG	ND	180	ND	170	2900	170	ND ND	170
Dibenzofuran	UG/KG	ND	180	ND	170	3100	170	ND ND	170
oi-n-butyl phthalate	UG/KG	ND	180	ND	170	3000	170	ND ND	170
3,3'-Dichlorobenzidine	UG/KG	ND	180	ND	170	2800	170	ND ND	170
2,4-Dichlorophenol	UG/KG	ND	180	ND					170
Piethyl phthalate	UG/KG	ND	180	ND	170	3200	170	ND	1
2,4-Dimethylphenol	UG/KG	ND	180	ND	170	2900	170	ND	170
imethyl phthalate	UG/KG	ND	180	ND	170	3100	170	ND	170
4,6-Dinitro-2-methylphenol	ug/kg	ND	350	ND	340	3400	320	ND	320
2,4-Dinitrophenol	ug/kg	ND	350	ND	340	3100	320	ND	320
2,4-Dinitrotoluene	UG/KG	3200	180	3200	170	3200	170	1800	170
2,6-Dinitrotoluene	UG/KG	ND	180	ND	170	3200	170	ND	170
Di-n-octyl phthalate	UG/KG	11 BJ	180	11 BJ	170	3200	170	9 BJ	170
Fluoranthene	UG/KG	ND	180	ND	170	3000	170	29 J	170

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID Sample Date		MW-1 (8-10) A07-6476 06/06/2007	A7647601MS	MW-1 (8-10) A07-6476 06/06/2007	A7647601SD	Matrix Spike A07-6329	Blank A7B0900401	Matrix Spike	Blank A7B0901801
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Fluorene	UG/KG	ND	180	ND	170	3000	170	ND	170
Hexachlorobenzene	UG/KG	ND	180	- ND	170	3200	170	ND	170
Hexachlorobutadiene	UG/KG	ND	180	ND	170	2500	170	ND	170
Hexachlorocyclopentadiene	UG/KG	ND	180	ND	170	2800	170	ND	170
Hexachloroethane	UG/KG	ND	180	ND	170	2200	170	ND	170
Indeno(1,2,3-cd)pyrene	UG/KG	ND	180	ND	170	3100	170	ND	170
Isophorone	UG/KG	ND	180	ND	170	2800	170	ND	170
2-Methylnaphthalene	υg/κg	ND	180	ND	170	2600	170	ND	170
2-Methylphenol	UG/KG	ND	180	ND	170	2600	170	ND	170
4-Methylphenol	UG/KG	ND	180	ND	170	2700	170	ND	170
Naphthalene	UG/KG	ND	180	ND	170	2500	170	ND	170
2-Nitroaniline	UG/KG	ND	350	ND	340	3300	320	ND ND	320
3-Nitroaniline	UG/KG	ND	350	ND	340	3000	320	ND ND	320
4-Nitroaniline	UG/KG	ND	350	ND	340	3000	320	ND	320
Nitrobenzene	UG/KG	ND	180	ND	170	2600	170	ND ND	170
2-Nitrophenol	UG/KG	ND	180	ND	170	2600	170	ND ND	170
4-Nitrophenol	UG/KG	3100	350	2900	340	3300	320	1900	320
N-nitrosodiphenylamine	UG/KG	ND ND	180	ND	170	2600	170	ND	170
N-Nitroso-Di-n-propylamine	UG/KG	2800	180	2900	170	2700	170	1600	170
Pentachlorophenol	UG/KG	2800	350	2900	340	3200	320	1800	320
Phenanthrene	UG/KG	ND ND	180	ND ND	170	3000	170	36 J	170
Phenol	UG/KG	2400	180	2500	170	2500	170	1400	170
Pyrene	UG/KG	3300	180	3200	170	3100	170	1900	170
2,4,5-Trichlorophenol	UG/KG	ND	180	ND ND	170	3200	170	ND	170
2,4,6-Trichlorophenol	UG/KG	ND	180	ND	170	3200	170	ND ND	170
IS/SURROGATE(S)									
1,4-Dichlorobenzene-D4	[%	115	50-200	112	50-200	116	50-200	96	50-200
Naphthalene-D8	1%	117	50-200	113	50-200	114	50-200	95	50-200
Acenaph thene-D10	1%	117	50-200	112	50-200	115	50-200	96	50-200
Phenanthrene-D10	%	115	50-200	110	50-200	114	50-200	95	50-200
Chrysene-D12	1%	108	50-200	104	50-200	114	50-200	96	50-200
Perylene-D12	1%	117	50-200	110	50-200	115	50-200	120	50-200
Nitrobenzene-D5	1%	78	35-113	87	35-113	82	35-113	50	35-113
2-Fluorobiphenyl	1%	82	43-119	88	43-119	89	43-119	52	43-119
p-Terphenyl-d14	%	102	51-125	100	51-125	98	51-125	57	51-125
Phenol-D5	%	79	36-116	85	36-116	80	36-116	50	36-116
2-Fluorophenol	%	68	30-107	74	30-107	67	30-107	45	30-107
2,4,6-Tribromophenol	%	103	46-129	105	46-129	112	46-129	67	46-129

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID Sample Date		Matrix Spike Blank A07-6329 A7B0919601		Matrix Spike Blank A07-6476 A7B0919701					
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
N,N-Dimethyl formamide	UG/KG	ND	650	ND	660	NA		NA	1
Acenaphthene	UG/KG	2800	170	2200	170	NA		NA	
Acenaphthylene	UG/KG	2800	170	ND	170	NA		NA	
Acetophenone	UG/KG	2600	170	ND	170	NA		NA	
Anthracene	UG/KG	2900	170	ND	170	NA		NA	
Atrazine	UG/KG	2900	170	ND	170	NA ·	, ·	NA	
Benzaldehyde	UG/KG	2100	170	ND	170	NA		NA	
Benzo(a)anthracene	ug/kg	3000	170	ND	170	NA		NA	
Benzo(b)fluoranthene	ug/kg	3100	170	ND	170	NA		NA	
Benzo(k)fluoranthene	UG/KG	2800	170	ND	170	NA		NA .	
Benzo(ghi)perylene	UG/KG	2900	170	ND	170	NA		NA	
Benzo(a)pyrene	UG/KG	2800	170	ND	170	NA		NA	
Benzoic acid	UG/KG	4700	4700	ND	4800	NA NA		NA	
Benzyl alcohol	UG/KG	2700	330	ND	330	NA NA		NA	
Biphenyl	UG/KG	2700	170	ND	170	NA		NA	
Bis(2-chloroethoxy) methane	UG/KG	2700	170	ND	170	NA.		NA	
Bis(2-chloroethyl) ether	UG/KG	2500	170	ND	170	NA		NA	
2,2'-0xybis(1-Chloropropane)	UG/KG	3000	170	ND	170	NA NA		NA	
Bis(2-ethylhexyl) phthalate	UG/KG	3100	170	ND ND	170	NA NA		NA.	
4-Bromophenyl phenyl ether	UG/KG	3000	170	ND	170	NA		NA NA	
Butyl benzyl phthalate	UG/KG	2900	170	ND	170	NA NA		NA	
Caprolactam	UG/KG	2200	170	ND	170	NA		NA NA	
caprotactam 4-Chloroaniline	UG/KG	2700	170	ND	170	NA	İ	NA.	
	UG/KG	2800	170	2300	170	NA NA	'	NA NA	
4-Chloro-3-methylphenol	1 '. 1	2800	170 170	ND	170	NA NA		NA	
2-Chloronaphthalene	UG/KG		170	1800	170	NA NA		NA NA	
2-Chlorophenol	UG/KG	2500			170	NA NA		NA NA	
4-Chlorophenyl phenyl ether	UG/KG	2800	170	ND	170	NA NA		NA NA	
Carbazole	UG/KG	2900	170	ND	170	NA NA		NA NA	
Chrysene	UG/KG	3000	170	ND				NA NA	
Dibenzo(a,h)anthracene	UG/KG	2900	170	ND	170	NA NA		NA NA	
Dibenzofuran	UG/KG	2700	170	ND	170	NA NA			
Di-n-butyl phthalate	UG/KG	2900	170	ND	170	NA NA		NA NA	
3,3'-Dichlorobenzidine	UG/KG	3000	170	ND	170	NA NA		NA NA	
2,4-Dichlorophenol	UG/KG	2800	170	ND	170	NA NA		NA NA	
Diethyl phthalate	UG/KG	2900	170	ND	170	NA NA		NA NA	
2,4-Dimethylphenol	UG/KG	2600	170	ND	170	NA NA		NA NA	
Dimethyl phthalate	UG/KG	2900	170	ND	170	NA NA		NA	
4,6-Dinitro-2-methylphenol	UG/KG	3100	330	ND	330	NA		NA	
2,4-Dinitrophenol	UG/KG	2200	330	ND	330	NA		NA NA	
2,4-Dinitrotoluene	UG/KG	3000	170	2600	170	NA		NA NA	
2,6-Dinitrotoluene	UG/KG	3000	170	ND	170	NA		NA	
Di-n-octyl phthalate	ug/kg	3000 B	170	12 BJ	170	NA NA		NA	1
Fluoranthene	ug/kg	2900	170	ND	170	NA		NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID Sample Date		Matrix Spike Blank A07-6329 A7B0919601		Matrix Spike Blank A07-6476 A7B0919701					•
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Fluorene	UG/KG	2800	170	ND	170	NA		NA	
Hexachlorobenzene	UG/KG	3000	170	ND	170	NA		NA	
Hexachlorobutadiene	UG/KG	2800	170	ND	170	NA		NA	
Hexachlorocyclopentadiene	UG/KG	2400	170	ND	170	NA		NA	
Hexachloroethane	UG/KG	2600	170	ND	170	NA		NA	
Indeno(1,2,3-cd)pyrene	UG/KG	2900	170	ND	170	NA		NA	
Isophorone	UG/KG	2700	170	ND	170	NA		NA	
2-Methylnaphthalene	UG/KG	2600	170	ND	170	NA NA	1	NA	
2-Methylphenol	UG/KG	2700	170	ND	170	NA	1	NA	
4-Methylphenol	UG/KG	2700	170	ND	170	NA NA		NA	
Naphthalene	UG/KG	2600	170	ND	170	NA .		NA	
2-Nitroaniline	UG/KG	3000	330	ND	330	NA		NA	}
3-Nitroaniline	UG/KG	2800	330	ND	330	NA NA		NA	
4-Nitroaniline	UG/KG	2800	330	ND	330	NA NA		NA	
Nitrobenzene	UG/KG	2700	170	ND	170	NA		NA	
2-Nitrophenol	UG/KG	2700	170	ND	170	NA NA		NA	
4-Nitrophenol	UG/KG	2700	330	2500	330	NA		NA NA	
N-nitrosodiphenylamine	UG/KG	2400	170	ND ND	170	NA NA		NA NA	
N-Nitroso-Di-n-propylamine	UG/KG	2700	170	2100	170	NA NA		NA NA	
Pentachlorophenol	UG/KG	2600	330	2300	330	NA NA		NA NA	
Phenanthrene	UG/KG	2900	170	ND	170	NA NA		NA NA	
Phenol	UG/KG	2600	170	1800	170	NA NA	1	NA NA	
Pyrene	UG/KG	2900	170	2600	170	NA NA		NA NA	
2,4,5-Trichlorophenol	UG/KG	2900	170	ND	170	NA NA		NA NA	
2,4,6-Trichlorophenol	UG/KG	2800	170	ND ND	170	NA NA		NA NA	
IS/SURROGATE(S)	100/K6	2000	170	עא	170	IVA		NA	
1,4-Dichlorobenzene-D4	1%	98	50-200	116	50-200	NA NA		NA NA	
Naphthalene-D8	/%	99	50-200	117	50-200	NA NA			
Acenaphthene-D10	%	100	50-200 50-200	116	50-200	NA NA	'	NA NA	
Phenanthrene-D10	\\ \%	96	50-200 50-200	115	50-200	NA NA		****	
Chrysene-D12	%	93	50-200 50-200	110	50-200			NA NA	
Chrysene=D12 Perylene=D12	\\\\\\	95 96	50-200 50-200	110	50-200 50-200	NA NA]	NA NA	
Nitrobenzene-D5	%	85	35-113	61	35-200 35-113	NA NA		NA NA	1
2-Fluorobiphenyl	% %	83	43-119	66	43-113	1		NA NA	
, ,	%		51-125	84		NA NA		NA NA	
p-Terphenyl-d14 Phenol-D5		90	31-125 36-116	84 60	51-125	NA NA		NA NA	
	%	83			36-116	NA NA		NA	
2-Fluorophenol	%	76	30-107	51	30-107	NA ***		NA	
2,4,6-Tribromophenol	(%	97	46-129	87	46-129	NA NA		NA NA	1

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		Matrix Spike B A07-6476	lank A7B0919701						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acenaphthene	UG/KG	2200	170	NA		NA		NA	
Acenaphthylene	UG/KG	ND	170	NA		NA		NA	
Acetophenone	UG/KG	ND	170	NA		NA -		NA	
Inthracene	UG/KG	ND	170	NA		NA		NA	
Atrazine	lug/kg	ND	170	NA		NA		NA	
Benzaldehyde	ug/kg	ND	170	NA		NA		NA	
Benzo(a)anthracene	ug/kg	ND	170	NA		NA		NA	
Benzo(b)fluoranthene	UG/KG	ND	170	NA		NA		NA	
Benzo(k)fluoranthene	UG/KG	ND	170	NA		NA		NA	
Benzo(ghi)perylene	UG/KG	ND	170	NA		NA		NA	
Benzo(a)pyrene	UG/KG	ND	170	NA		NA		NA	
Biphenyl	UG/KG	ND	170	NA		NA		NA	
Bis(2-chloroethoxy) methane	UG/KG	ND	170	NA		NA NA		NA	
Bis(2-chloroethyl) ether	UG/KG	ND	170	NA.	· ·	NA NA		NA	
2,2'-0xybis(1-Chloropropane)	UG/KG	ND	170	NA NA		NA		NA	
Bis(2-ethylhexyl) phthalate	UG/KG	ND	170	NA		NA		NA	
4-Bromophenyl phenyl ether	UG/KG	ND	170	NA NA		NA		NA	
Butyl benzyl phthalate	UG/KG	ND	170	NA NA		NA		NA	
	UG/KG	ND ND	170	NA NA		NA NA		NA	
Caprolactam	UG/KG	ND ND	170	NA NA		NA NA		NA NA	
4-Chloroaniline	UG/KG	2300	170	NA NA		NA NA		NA NA	
4-Chloro-3-methylphenol			170	NA NA		NA NA		NA NA	
2-Chloronaphthalene	UG/KG	ND				NA NA		NA NA	
2-Chlorophenol	UG/KG	1800	170	NA				NA NA	
4-Chlorophenyl phenyl ether	UG/KG	ND	170	NA		NA NA			
Carbazole	UG/KG	ND	170	NA		NA NA		NA NA	
Chrysene	ug/kg	ND	170	NA		NA NA		NA	
Dibenzo(a,h)anthracene	UG/KG	ND	170	NA		NA		NA	
Dibenzofuran	UG/KG	ND	170	NA		NA NA		NA	
oi-n-butyl phthalate	UG/KG	ND	170	NA		NA		NA	
3,3'-Dichlorobenzidine	UG/KG	ND	170	NA		NA NA		NA	
2,4-Dichlorophenol	UG/KG	ND	170	NA		NA		NA	
Diethyl phthalate	UG/KG	ND	170	NA		NA		NA	
2,4-Dimethylphenol	UG/KG	ND	170	NA		NA NA		NA	
Dimethyl phthalate	UG/KG	ND	170	NA		NA		NA	
4,6-Dinitro-2-methylphenol	UG/KG	ND	330	NA	1	NA NA		NA	
2,4-Dinitrophenol	UG/KG	ND	330	NA		NA NA		NA	
2,4-Dinitrotoluene	UG/KG	2600	170	NA	*	NA NA		NA	
2,6-Dinitrotoluene	UG/KG	ND	170	NA		NA		NA NA	
Di-n-octyl phthalate	ug/kg	12 BJ	170	NA		NA		NA	
Fluoranthene	UG/KG	ND	170	NA		NA		NA	
Fluorene	UG/KG	ND	170	NA	1	NA	1	NA	
Hexachlorobenzene	UG/KG	ND	170	NA		NA NA		NA	
Hexachlorobutadiene	UG/KG	ND	170	NA	1	NA NA		NA	1

Client ID Job No Lab ID Sample Date		Matrix Spike E A07-6476	Blank A7B0919701						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Hexachlorocyclopentadiene	UG/KG	ND	170	NA		NA		NA NA	
Hexachloroethane	UG/KG	ND	170	NA		NA NA		NA NA	
Indeno(1,2,3-cd)pyrene	UG/KG	ND	170	NA		NA NA		NA NA	
Isophorone	UG/KG	ND	170	NA		NA		NA NA	
2-Methylnaphthalene	UG/KG	ND	170	NA		NA NA		NA	
2-Methylphenol	UG/KG	ND	170	NA		NA NA		NA NA	
4-Methylphenol	UG/KG	ND	170	NA		NA	· ·	NA NA	
Naphthalene	UG/KG	ND	170	NA		NA		NA NA	
2-Nitroaniline	UG/KG	ND	330	NA		NA NA		NA NA	
3-Nitroaniline	UG/KG	ND	330	NA		NA NA		NA NA	
4-Nitroaniline	UG/KG	ND	330	NA		NA NA		NA NA	
Nitrobenzene	UG/KG	ND	170	NA		NA NA		NA NA	
2-Nitrophenol	UG/KG	ND	170	NA		NA NA		NA NA	
4-Nitrophenol	UG/KG	2500	330	NA		NA NA		NA NA	İ
N-nitrosodiphenylamine	UG/KG	ND	170	NA		NA.		NA	
N-Nitroso-Di-n-propylamine	UG/KG	2100	170	NA.		NA		NA	
Pentachlorophenol	υg/κg	2300	330	NA		NA.		NA NA	
Phenanthrene	UG/KG	ND	170	NA		NA		NA	
Phenol	UG/KG	1800	170	NA		NA.		NA NA	
Pyrene	υg/κg	2600	170	NA		NA.		NA NA	
2,4,5-Trichlorophenol	UG/KG	ND	170	NA		NA NA		NA	
2,4,6-Trichlorophenol IS/SURROGATE(S)	UG/KG	ND	170	NA NA		NA		NA NA	
1,4-Dichlorobenzene-D4	1%	116	50-200	NA NA		NA NA	ĺ	NA	
Naphthalene-D8	%	117	50-200	NA.		NA.		NA NA	
Acenaphthene-D10	1%	116	50-200	NA NA		NA NA		NA NA	
Phenanthrene-D10	%	115	50-200	NA NA		NA NA		NA NA	
Chrysene-D12	%	110	50-200	NA NA		NA NA		NA NA	
Perylene-D12	%	116	50-200	NA.		NA.		NA NA	
Nitrobenzene-D5	%	61	35-113	NA		NA NA		NA NA	
2-Fluorobiphenyl	1%	66	43-119	NA NA		NA		NA NA	
p-Terphenyl-d14	1%	84	51-125	NA		NA NA		NA NA	
Phenol-D5	1%	60	36-116	NA NA		NA NA		NA NA	
2-Fluorophenol	1%	51	30-107	NA NA		NA NA		NA NA	
2,4,6-Tribromophenol	1%	87	46-129	NA NA		NA NA		NA NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client ID Job No Lab ID Sample Date		Method Blank A07-6329	а7в0901602	Method Blank A07-6476	A7B0916402	Method Blank A07-6476	A7B0920102		
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Aroclor 1016	UG/KG	ND	16	ND	17	ND	16	NA	1
Aroclor 1221	UG/KG	ND	16	ND	17	ND	16	NA	
Aroclor 1232	UG/KG	ND	16	ND	17	ND	16	NA	
Aroclor 1242	UG/KG	ND	16	ND.	17	ND	16	NA	
Aroclor 1248	UG/KG	ND	16	ND	17	ND	16	NA	
Aroclor 1254	ug/kg	ND	16	ND	17	ND	16	NA	
Aroclor 1260 SURROGATE(S)	UG/KG	ND	16	ND	17	ND	16	NA	
Tetrachloro-m-xylene Decachlorobiphenyl	%	88 100	35-134 34-148	81 85	35-134 34-148	95 118	35-134 34-148	NA NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client ID Job No Lab ID Sample Date		Matrix Spike A07-6329	Blank A7B0901601	Matrix Spike A07-6476	Blank A7B0916401	Matrix Spike A07-6476	Blank A7B0920101	TP-2 (10-12) A07-6329 06/04/2007	A7632902MS
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Aroclor 1016	UG/KG	120	16	130	16	140	16	120	17
roclor 1221	UG/KG	ND	16	ND	16	ND	16	ND	17
roclor 1232	UG/KG	ND	16	ND	16	ND	16	ND	17
roclor 1242	UG/KG	ND	16	ND	16	ND	16	ND	17
roclor 1248	UG/KG	ND	16	ND	16	ND	16	ND	17
roclor 1254	UG/KG	ND	16	ND	16	ND	16	ND	17
roclor 1260	UG/KG	160	16	150	16	150	16	140	17
SURROGATE(S)									
etrachloro-m-xylene	%	103	35-134	92	35-134	94	35-134	100	35-134
ecachlorobiphenyl	1%	92	34-148	86	34-148	90	34-148	78	34-148

Client ID Job No Lab ID Sample Date	1	TP-2 (10-12) A07-6329 06/04/2007	A7632902SD						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Aroclor 1016	UG/KG	120	17	NA		NA		NA	
Aroclor 1221	UG/KG	ND	17	ΝA		NA		NA	
Aroclor 1232	UG/KG	ND	17	NA		NA		NA	
Aroclor 1242	UG/KG	ND	17	NA		NA		NA	
Aroclor 1248	UG/KG	ND	17	NA		NA		NA	
Aroclor 1254	UG/KG	ND	17	NA		NA		NA	
Aroclor 1260 SURROGATE(S)	UG/KG	140	17	NA		NA		NA	
Tetrachloro-m-xylene	1%	97	35-134	NA		NA		NA	
ecachlorobiphenyl	%	74	34-148	NA		NA		NA.	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA -S-PP METALS SW8463/6010/7470

Client ID Job No Lab Sample Date	ID	Method Blank A07-6329	А7ВО9ОО7О2	Method Blank A07-6329	A7B0903702	Method Blank A07-6476	A7B0921902	Method Blank A07-6476	A7B0947102
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Mercury - Total	MG/KG	ND	0.020	NA		ND	0.020	NA	
Antimony - Total	MG/KG	NA		ND	15.0	NA NA		ND	15.0
Arsenic - Total	MG/KG	NA		ND	2.0	NA		ND	2.0
Beryllium - Total	MG/KG	NA		ND	0.20	NA NA		ND	0.20
Cadmium - Total	MG/KG	NA NA		ND	0.20	NA		ND	0.20
Chromium - Total	MG/KG	NA		ND	0.50	NA		ND	0.50
Selenium - Total	MG/KG	NA NA		ND	4.0	NA .		ND	4.0
Silver - Total	MG/KG	NA		ND	0.50	NA NA		ND	0.50
Thallium - Total	MG/KG	NA NA		ND	6.0	NA NA		ND	6.0
Zinc - Total	MG/KG	NA		ND	2.0	NA .		ND	2.0
Copper - Total	MG/KG	NA		ND	1.0	NA		ND	1.0
Lead - Total	MG/KG	NA		ND	1.0	NA	,	ND	1.0
Nickel - Total	MG/KG	NA NA		ND	0.50	\ NA		ND	0.50

Client ID Job No Sample Date	Lab ID	LCS A07-6329	A7B0900701	LCS A07-6476	A7B0921901	LCS CLP Soils A07-6329	A7B0903701	LCS CLP Soils A07-6476	A7B0947101
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Antimony - Total	MG/KG	NA		NA NA		147	15.0	116	14.9
Arsenic - Total	MG/KG	NA NA		NA		167	2.0	168	2.0
Cadmium - Total	MG/KG	NA NA		NA		67.8	0.20	64.2	0.20
Chromium - Total	MG/KG	NA NA		NA		115	0.50	113	0.50
Selenium - Total	MG/KG	NA NA		NA		92.7	4.0	93.6	4.0
Silver - Total	MG/KG	NA		NA		141	0.50	140	0.50
Zinc - Total	MG/KG	NA		NA		129	2.0	131	2.0
Beryllium - Total	MG/KG	NA		NA		59.5	0.20	61.3	0.20
Copper - Total	MG/KG	NA NA		NA		83.0	1.0	83.5	1.0
Lead - Total	MG/KG	NA NA		NA		89.8	1.0	90.0	1.0
Mercury - Total	MG/KG	3.6	0.23	4.3	0.23	NA NA		NA	
Nickel - Total	MG/KG	NA		NA		183	0.50	185	0.50
Thallium - Total	MG/KG	NA		NA		124	6.0	114	6.0

Client ID Job No Lab Sample Date) ID	MW-1 (8-10) A07-6476 O6/06/2007	A7647601MS	MW-1 (8-10) A07-6476 06/06/2007	A7647601SD	TP-1 (10-12) A07-6329 06/04/2007	A7632901MS	TP-1 (10-12) A07-6329 06/04/2007	A7632901SD
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Antimony - Total	MG/KG	38.6	15.7	40.0	15.8	39.2	16.4	38.1	16.0
Arsenic - Total	MG/KG	40.4	2.1	41.9	2.1	42.9	2.2	41.8	2.1
Beryllium - Total	MG/KG	41.5	0.21	42.6	0.21	40.7	0.22	39.8	0.21
Cadmium - Total	MG/KG	38.6	0.21	39.6	0.21	38.6	0.22	37.8	0.21
Chromium - Total	MG/KG	41.6	0.52	42.9	0.52	42.9	0.55	42.5	0.53
Copper - Total	MG/KG	45.2	1.0	54.1	1.0	51.6	1.1	51.5	1.1
Lead - Total	MG/KG	41.7	1.0	42.5	1.0	42.5	1.1	41.6	1.1
Mercury - Total	MG/KG	NA		NA		0.31	0.022	0.31	0.022
Nickel - Total	MG/KG	44.2	0.52	46.1	0.52	43.1	0.55	43.0	0.53
Selenium - Total	MG/KG	39.6	4.2	41.1	4.2	39.7	4.4	38.3	4.3
Silver - Total	MG/KG	10.2	0.52	10.4	0.52	10.4	0.55	10.1	0.53
Thallium - Total	MG/KG	39.4	6.3	40.6	6.3	40.6	6.6	39.3	6.4
Zinc - Total	MG/KG	53.0	2.1	53.9	2.1	56.2	2.2	56.2	2.1

Client Sample ID: GSB-3 (10-12)

GSB-3 (10-12)

GSB-3 (10-12)

Lab Sample ID: A7632909

A7632909MS

A7632909SD

			Conce	ntration			%	Recover	y İ			
Analyte	Units of Measure	Sample	Matrix Spike	Spike Duplicate	Spike A MS	mount MSD	MS	MSD	Avg	% RPD	QC LI RPD	MITS REC.
DELTA-METHOD 8260 - TCL VOLATILE ORGANIC							 					
1.1-Dichloroethene	ug/kg	0	52.7	58.7	49.9	49.8	106	118	112	11	22.0	70-142
Trichloroethene	ug/kg	0	48.0	52.1	49.9	49.8	96	105	101	9	24.0	79-121
Benzene	UG/KG	0	50.1	55.9	49.9	49.8	100	112	106			78-122
Toluene	UG/KG	0	47.8	54.5	49.9	49.8	96	109	103		1	74-123
Chlorobenzene	ug/kg	0	48.5	54.4	49.9	49.8	97	109	103	12	25.0	79-118
							1	<u> </u>			1	

Client Sample ID: VBLK46
Lab Sample ID: A7B0902902

MSB46 A7B0902901

		Concent			
Analyte	Units of Measure	Blank Spike	Spike Amount	% Recovery Blank Spike	QC LIMITS
DELTA-METHOD 8260 - TCL VOLATIL	E ORGANIC				
1,1-Dichloroethene	UG/KG	57.9	50.0	116	70-142
Trichloroethene	UG/KG	51.1	50.0	102	79-12
Benzene	UG/KG	50.4	50.0	101	78-122
Toluene	UG/KG	49.8	50.0	100	74-123
Chlorobenzene	UG/KG	49.0	50.0	98	79-118

Client Sample ID: VBLK47 Lab Sample ID: A7B0912102 MSB47 A7B0912101

Concentration % Recovery QC Units of Blank Spike Measure Spike Amount Blank Spike LIMITS Analyte DELTA-METHOD 8260 - TCL VOLATILE ORGANIC UG/KG UG/KG 67.7 50.0 136 70-142 1,1-Dichloroethene 79-121 117 58.3 50.0 Trichloroethene 78-122 UG/KG 60.0 50.0 120 Benzene UG/KG 74-123 57.4 50.0 115 Toluene 115 79-118 Chlorobenzene UG/KG 57.3 50.0

Client Sample ID: VBLK48

MSB48 A7B0916701

Lab Sample ID: A7B0916702

		Concent			
Analyte	Units of Measure	Blank Spike	Spike Amount	% Recovery Blank Spike	QC LIMITS
DELTA-METHOD 8260 - TCL VOLATIL	E ORGANIC				
1,1-Dichloroethene	UG/KG	60.8	50.0	122	70-14
Trichloroethene	UG/KG	56.6	50.0	113	79-12
Benzene	UG/KG	54.8	50.0	110	78-12
Toluene	UG/KG	53.0	50.0	106	74-123
Chlorobenzene	UG/KG	53.5	50.0	107	79-118

Client Sample ID: VBLK93

MSB93 A7B0933503

Lab Sample ID: A7B0933504

		Concenti			
Analyte	Units of Measure	Blank Spike	Spike Amount	% Recovery Blank Spike	QC LIMITS
DELTA-METHOD 8260 - TCL VOLATILE ORG	GANIC				
1,1-Dichloroethene	UG/KG	30.1	25.0	121	70-142
Trichloroethene	UG/KG	25.6	25.0	102	79-121
Benzene	UG/KG	25.9	25.0	104	78-122
Toluene	UG/KG	24.0	25.0	96	74-123
Chlorobenzene	UG/KG	23.8	25.0	95	79-118

Client Sample ID: VLBK50 Lab Sample ID: A7B0925002 MSB50 A7B0925001

		Concent	'		
Analyte	Units of Measure	Blank Spike	Spike Amount	% Recovery Blank Spike	QC LIMITS
DELTA-METHOD 8260 - TCL VOLATILE ORGA	NIC				
1,1-Dichloroethene	UG/KG	49.9	50.0	100	70-14
Trichloroethene	UG/KG	51.4	50.0	103	79-12
Benzene	UG/KG	49.4	50.0	99	78-12
Toluene	UG/KG	49.3	50.0	99	74-12
Chlorobenzene	UG/KG	49.5	50.0	99	79-11

Client Sample ID: MW-1 (8-10) Lab Sample ID: A7647601 MW-1 (8-10) A7647601MS MW-1 (8-10) A7647601SD

Concentration % Recovery % QC LIMITS Spike Amount Units of Matrix Spike Spike Duplicate MS MSD MS MSD Avg RPD RPD REC. Measure Sample Analyte METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FOR UG/KG 2515 3497 3411 68 74 71 8 25.0 36-110 0 2391 Phenol 38-104 69 77 73 11 26.0 2627 3497 3411 UG/KG 0 2424 2-Chlorophenol 85 83 5 20.0 46-120 UG/KG 0 2825 2907 3497 3411 81 N-Nitroso-Di-n-propylamine 89 88 3 20.0 49-125 UG/KG 3024 3497 3411 86 0 3019 4-Chloro-3-methylphenol 7 85 53-119 82 88 16.0 UG/KG 0 2885 3011 3497 3411 Acenaphthene ug/KG 3139 2944 3497 3411 90 86 88 25.0 44-137 0 4-Nitrophenol 93 93 0 19.0 55-125 3160 3497 3411 93 UG/KG 0 3250 2,4-Dinitrotoluene 83 2 27.0 33-136 UG/KG 0 2855 2874 3497 3411 82 84 Pentachlorophenol 95 94 95 1 25.0 51-133 3411 UG/KG 0 3329 3196 3497 Pyrene

Client Sample ID: SBLK

Matrix Spike Blank

Lab Sample ID: A7B0900402

A7B0900401

		Concen	tration		
Analyte	Units of Measure	Blank Spike	Spike Amount	% Recovery Blank Spike	QC LIMITS
METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FOR					
Phenol	UG/KG	2487	3256	76	36-110
2-Chlorophenol	UG/KG	2321	3256	71	38-104
N-Nitroso-Di-n-propylamine	UG/KG	2747	3256	84	46-120
4-Chloro-3-methylphenol	UG/KG	3108	3256	95	49-125
Acenaphthene	UG/KG	2926	3256	90	53-119
4-Nitrophenol	UG/KG	3300	3256	101	44-137
2,4-Dinitrotoluene	UG/KG	3215	3256	99	55-125
Pentachlorophenol	UG/KG	3255	3256	100	33-136
Pyrene	UG/KG	3068	3256	94	51-133
			1		

Client Sample ID: SBLK

Matrix Spike Blank A7B0901801

Lab Sample ID: A7B0901802

Analyte		Concentration			
	Units of Measure	Blank Spike	Spike Amount	% Recovery Blank Spike	QC LIMITS
METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FOR		-			
Phenol	UG/KG	1403	3273	42	36-110
2-Chlorophenol	UG/KG	1459	3273	44	38-104
N-Nitroso-Di-n-propylamine	UG/KG	1645	3273	50	46-120
4-Chloro-3-methylphenol	UG/KG	1808	3273	55	49-125
Acenaphthene	UG/KG	1746	3273	53	53-119
4-Nitrophenol	UG/KG	1939	3273	59	44-137
2,4-Dinitrotoluene	UG/KG	1792	3273	55	55-125
Pentachlorophenol	UG/KG	1817	3273	56	33-136
Pyrene	UG/KG	1897	3273	58	51-133

Client Sample ID: SBLK

Matrix Spike Blank

Lab Sample ID: A7B0919602

A7B0919601

Analyte		Concentration			
	Units of Measure	Blank Spike	Spike Amount	% Recovery Blank Spike	QC LIMITS
METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FOR	₹				
Phenol	UG/KG	2619	3293	80	36-110
2-Chlorophenol	UG/KG	2537	3293	77	38-104
N-Nitroso-Di-n-propylamine	UG/KG	2744	3293	83	46-120
4-Chloro-3-methylphenol	UG/KG	2827	3293	86	49-12
Acenaphthene	UG/KG	2765	3293	84	53-119
4-Nitrophenol	UG/KG	2718	3293	82	44-137
2,4-Dinitrotoluene	UG/KG	2975	3293	90	55-12
Pentachlorophenol	UG/KG	2602	3293	79	33-136
Pyrene	UG/KG	2865	3293	87	51-133

Client Sample ID: SBLK

Matrix Spike Blank

Lab Sample ID: A7B0919702

	[[Concen	tration		
	Units of	Blank	Spike	% Recovery	QC
Analyte	Measure	Spike	Amount	Blank Spike	LIMITS
METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FOR					
Phenol	UG/KG	1759	3310	53	36-1
2-Chlorophenol	UG/KG	1820	3310	55	38-10
N-Nitroso-Di-n-propylamine	UG/KG	2098	3310	63	46-17
4-Chloro-3-methylphenol	UG/KG	2287	3310	69	49-1
Acenaphthene	UG/KG	2253	3310	68	53-1
4-Nitrophenol	UG/KG	2518	3310	76	44-1
2,4-Dinitrotoluene	UG/KG	2553	3310	77	55-1
Pentachlorophenol	UG/KG	2303	3310	70	33-1
Pyrene	UG/KG	2551	3310	77	51-1
METHOD 8270 - TCL SEMI-VOLATILE ORGANICS					
Phenol	UG/KG	1759	3310	53	36-1
2-Chlorophenol	UG/KG	1820	3310	55	38-1
N-Nitroso-Di-n-propylamine	UG/KG	2098	3310	63	46-1
4-Chloro-3-methylphenol	UG/KG	2287	3310	69	49-1
Acenaphthene	UG/KG	2253	3310	68	53-1
4-Nitrophenol	UG/KG	2518	3310	76	44-1
2,4-Dinitrotoluene	UG/KG	2553	3310	77	55-1
Pentachlorophenol	UG/KG	2303	3310	70	33-1
Pyrene	UG/KG	2551	3310	77	51-1

Client Sample ID: TP-2 (10-12) Lab Sample ID: A7632902 TP-2 (10-12) A7632902MS TP-2 (10-12) A7632902SD

Concentration % Recovery Units of Spike Amount % QC LIMITS Analyte Measure Sample Matrix Spike Spike Duplicate MS MS MSD RPD RPD Avg REC. DELTA - METHOD 8082 - POLYCHLORINATED BI Aroclor 1260 UG/KG 0 136 142 168 172 81 83 82 2 50.0 66-140 UG/KG Aroclor 1016 0 119 117 168 172 71 70 50.0 59-134 68 4

Client Sample ID: Method Blank

Matrix Spike Blank

Lab Sample ID: A7B0901602

		Concentration			
Analyte	Units of Measure	Blank Spike	Spike Amount	% Recovery Blank Spike	QC LIMITS
DELTA - METHOD 8082 - POLYCHLORINATED BI Aroclor 1260 Aroclor 1016	UG/KG UG/KG	164 117	165 165	100 71	66-140 59-134

Client Sample ID: Method Blank Lab Sample ID: A7B0916402 Matrix Spike Blank

		Concentration			
Analyte	Units of Measure	Blank Spike	Spike Amount	% Recovery Blank Spike	QC LIMITS
DELTA - METHOD 8082 - POLYCHLORINATED BI Aroclor 1260 Aroclor 1016	UG/KG UG/KG	153 127	162 162	94 78	66-140 59-134

Client Sample ID: Method Blank

Matrix Spike Blank

Lab Sample ID: A7B0920102

	1	Concentration			
Analyte	Units of Measure	Blank Spike	Spike Amount	% Recovery Blank Spike	QC LIMITS
DELTA - METHOD 8082 - POLYCHLORINATED BI Aroclor 1260 Aroclor 1016	UG/KG UG/KG	148 135	161 161	92 84	66-14 59-13

DELTA ENVIRONMENTAL CONSULTANTS, INC. DELTA -S-PP METALS SW8463/6010/7470

LABORATORY CONTROL SAMPLE

Soil LCS Source: ERA D052-540

Lab Samp ID: A7B0900701

UM: MG/KG

195: AN1464

Page: 1

Analyte	True	Found	С	Limits		%R
Mercury	3.9	3.6		2.6	5.2	92.3

DELTA ENVIRONMENTAL CONSULTANTS, INC. DELTA -S-PP METALS SW8463/6010/7470

LABORATORY CONTROL SAMPLE

Soil LCS Source: ERA D052-540

Lab Samp ID: A7B0903701

UM: MG/KG

1935: AN1464 Page: 2

Analyte	True	Found	С	Lin	mits	%R
Antimony	78.2	147		0.00	165	188.0
Arsenic	197	167		159	236	84.8
Beryllium	68.9	59.5		56.5	81.2	86.4
Cadmium	77.3	67.8		60.8	93.8	87.7
Chromium	129	115		104	154	89.1
Copper	94.6	83.0		76.6	113	87.7
Lead	106	89.8		86.6	125	84.7
Nickel	211	183		174	248	86.7
Selenium	104	92.7		80.5	127	89.1
Silver	155	141		103	207	91.0
Thallium	132	124		102	162	93.9
Zinc	150	129		119	181	86.0

DELTA ENVIRONMENTAL CONSULTANTS, INC. DELTA -S-PP METALS SW8463/6010/7470

LABORATORY CONTROL SAMPLE

Soil LCS Source: ERA D052-540

Lab Samp ID: A7B0921901

UM: MG/KG

87/125: AN1464

Analyte	True	Found	C	Lim	its	%R
Mercury	3.9	4.3		2.6	5.2	110.2

DELTA ENVIRONMENTAL CONSULTANTS, INC. DELTA -S-PP METALS SW8463/6010/7470

LABORATORY CONTROL SAMPLE

Soil LCS Source: ERA D052-540

Lab Samp ID: A7B0947101

UM: MG/KG

125: AN1464

Page: 4

148.3
85.3
89.0
83.0
87.6
88.3
84.9
87.7
90.0
90.3
86.4
87.3
2843587721

Client Sample ID: TP-1 (10-12) Lab Sample ID: A7632901 TP-1 (10-12) A7632901MS TP-1 (10-12) A7632901SD

Concentration % Recovery Units of Spike Amount % QC LIMITS Analyte Measure Sample Matrix Spike Spike Duplicate MS MSD MS RPD RPD REC. MSD Avg DELTA -S-PP METALS SW8463/6010/7470 TOTAL ANTIMONY MG/KG 0.274 39.21 38.08 43.80 42.62 89 0 75-125 89 20.0 MG/KG TOTAL ARSENIC 3.42 42.90 41.85 90 43.80 42.62 90 90 0 20.0 75-125 MG/KG TOTAL BERYLLIUM 0.329 40.71 39.80 43.80 42.62 92 93 93 1 20.0 75-125 MG/KG TOTAL CADMIUM 0.0109 38.60 37.79 43.80 42.62 88 89 89 1 20.0 75-125 MG/KG TOTAL CHROMIUM 5.45 42.90 42.53 43.80 42.62 86 87 87 1 20.0 75-125 TOTAL COPPER MG/KG 9.59 51.65 51.47 43.80 97 2 42.62 96 98 20.0 75-125 MG/KG TOTAL LEAD 3.45 42.50 41.58 43.80 42.62 89 89 89 0 20.0 75-125 MG/KG TOTAL MERCURY 0.00037 0.312 0.312 0.366 0.365 85 85 85 0 20.0 80-120 MG/KG TOTAL NICKEL 4.36 43.13 43.04 43.80 42.62 90 3 75-125 88 91 20.0 MG/KG TOTAL SELENIUM 0 39.66 38.31 43.80 42.62 90 90 90 0 20.0 75-125 MG/KG 0.0768 TOTAL SILVER 10.38 94 10.09 10.95 10.65 94 94 0 20.0 75-125 TOTAL THALLIUM MG/KG 0.384 40.61 39.29 43.80 92 91 92 42.62 1 20.0 75-125 TOTAL ZINC MG/KG 17.82 56.24 56.18 43.80 42.62 88 90 89 2 20.0 75-125

DELTA ENVIRONMENTAL CONSULTANTS, INC. SAMPLE CHRONOLOGY

Rept: ANO374 Page: 1

Client Sample ID		GSB-10(10-12)	GSB-11(12-14)	GSB-12(12-14)	GSB-13(10-12)
Job No & Lab Sample ID		A07-6476 A7647605	A07-6476 A7647606	A07-6476 A7647607	A07-6476 A7647608
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	06/05/2007 11:00	06/07/2007 12:45	06/07/2007 13:00	06/07/2007 14:00	06/07/2007 14:10
	06/07/2007 08:45	06/09/2007 09:00	06/09/2007 09:00	06/09/2007 09:00	06/09/2007 09:00
	06/11/2007 12:58	06/12/2007 17:15	06/12/2007 17:46	06/12/2007 18:17	06/12/2007 18:48
	-	-	-	-	-
	YES	YES	YES	YES	YES
	SOIL LOW	SOIL LOW	SOIL LOW	SOIL LOW	SOIL LOW
	1.0	1.0	1.0	1.0	1.0
	5.08 GRAMS	5.06 GRAMS	5.01 GRAMS	5.07 GRAMS	5.02 GRAMS
	97.04	97.62	39.22	97.65	98.79

DELTA ENVIRONMENTAL CONSULTANTS, INC. SAMPLE CHRONOLOGY

Rept: ANO374 Page: 2

Client Sample ID	GSB-14(14-16)	GSB-2 (16-18)	GSB-3 (10-12)	GSB-4 (8-10)	GSB-5(12-14)
Job No & Lab Sample ID	A07-6476 A7647609	A07-6329 A7632908	A07-6329 A7632909	A07-6329 A7632910	A07-6476 A7647602
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met?	06/07/2007 16:05	06/05/2007 11:15	06/05/2007 11:50	06/05/2007 12:20	06/07/2007 14:30
	06/09/2007 09:00	06/07/2007 08:45	06/07/2007 08:45	06/07/2007 08:45	06/09/2007 09:00
	06/12/2007 19:19	06/11/2007 13:29	06/13/2007 11:00	06/11/2007 14:30	06/12/2007 15:41
Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	YES	YES	YES	YES	YES
	SOIL LOW				
	1.0	1.0	1.0	1.0	1.0
	5.15 GRAMS	5.2 GRAMS	5.09 GRAMS	5.12 GRAMS	5.22 GRAMS
	95.68	95.82	99.15	98.32	95.43

DELTA ENVIRONMENTAL CONSULTANTS, INC. SAMPLE CHRONOLOGY

Rept: ANO374 Page: 3

Client Sample ID Job No & Lab Sample ID		GSB-7 (10-12) A07-6329 A7632912	GSB-8(12-14) A07-6476 A7647603	GSB-9(7-9) A07-6476 A7647604	MW-1 (8-10) A07-6476 A7647601
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met?	06/05/2007 14:00 06/07/2007 08:45 06/11/2007 15:01 - YES	06/05/2007 15:45 06/07/2007 08:45 06/11/2007 15:30 - YES SOIL LOW	06/07/2007 09:45 06/09/2007 09:00 06/12/2007 16:12 - YES SOIL LOW	06/07/2007 10:15 06/09/2007 09:00 06/12/2007 16:44 - YES SOIL LOW	06/06/2007 12:30 06/09/2007 09:00 06/12/2007 15:10 - YES SOIL LOW
Sample Matrix Dilution Factor Sample wt/vol % Dry	SOIL LOW 1.0 5.18 GRAMS 94.81	1.0 5.13 GRAMS 97.85	1.0 5.14 GRAMS 99.45	1.0 5.07 GRAMS 98.87	1.0 5.1 GRAMS 95.04

DELTA ENVIRONMENTAL CONSULTANTS, INC. SAMPLE CHRONOLOGY

Rept: ANO374 Page: 4

Client Sample ID	MW-2(10-12)	MW-2(30-32)	MW-2(30-32)	MW-3(10-12)	MW-4(8-10)
Job No & Lab Sample ID	A07-6476 A7647610	A07-6476 A7647611	A07-6476 A7647611DL	A07-6476 A7647612	A07-6476 A7647613
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met?	06/07/2007 15:15	06/07/2007 15:30	06/07/2007 15:30	06/08/2007 09:15	06/08/2007 13:15
	06/09/2007 09:00	06/09/2007 09:00	06/09/2007 09:00	06/09/2007 09:00	06/09/2007 09:00
	06/12/2007 19:49	06/12/2007 20:20	06/14/2007 20:12	06/12/2007 20:51	06/12/2007 21:22
Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	YES	YES	YES	YES	YES
	SOIL LOW	SOIL LOW	SOIL MED	SOIL LOW	SOIL LOW
	1.0	1.0	1.0	1.0	1.0
	5.03 GRAMS	5.04 GRAMS	5.05 GRAMS	5.21 GRAMS	5.05 GRAMS
	97.63	89.92	89.92	97.79	93.74

DELTA ENVIRONMENTAL CONSULTANTS, INC. SAMPLE CHRONOLOGY

Rept: ANO374 Page:

5

Client Sample ID		TP-2 (10-12)	TP-3 (8-10)	TP-4 (10-12)	TP-5 (3-4)	
Job No & Lab Sample ID		A07-6329 A7632902	A07-6329 A7632903	A07-6329 A7632904	A07-6329 A7632905	
Sample Date	06/04/2007 09:50	06/04/2007 11:20	06/04/2007 12:55	06/04/2007 15:15	06/05/2007 10:20	
Received Date	06/07/2007 08:45	06/07/2007 08:45	06/07/2007 08:45	06/07/2007 08:45	06/07/2007 08:45	
Extraction Date Analysis Date Extraction HT Met?	06/10/2007 23:23 -	06/10/2007 23:53 -	06/11/2007 00:24 -	06/11/2007 00:55 -	06/11/2007 11:57	
Analytical HT Met?	YES	YES	YES	YES	YES	
Sample Matrix	SOIL LOW Dilution Factor	1.0	1.0	1.0	1.0	1.0
Sample wt/vol	5.11 GRAMS	5.13 GRAMS	5.07 GRAMS	5.14 GRAMS	5.0 GRAMS	
	86.00	95.17	85.08	98.52	96.49	

DELTA ENVIRONMENTAL CONSULTANTS, INC.

SAMPLE CHRONOLOGY

Rept: ANO374 Page: 6

Client Sample ID Job No & Lab Sample ID				
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	06/05/2007 12:05 06/07/2007 08:45 06/11/2007 12:28 - YES SOIL LOW 1.0 5.15 GRAMS 94.31			

DELTA ENVIRONMENTAL CONSULTANTS, INC. QC SAMPLE CHRONOLOGY

Rept: ANO374 Page: 7

Client Sample ID Job No & Lab Sample ID		GSB-3 (10-12) A07-6329 A7632909SD	MSB46 A07-6329 A7B0902901	MSB47 A07-6329 A7B0912101	MSB48 A07-6476 A7B0916701
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met?	06/05/2007 11:50 06/07/2007 08:45 06/13/2007 15:36	06/05/2007 11:50 06/07/2007 08:45 06/13/2007 16:07	06/10/2007 14:39 -	06/11/2007 10:25 -	06/12/2007 11:02 -
Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	YES SOIL LOW 1.0 5.05 GRAMS 99.15	YES SOIL LOW 1.0 5.06 GRAMS 99.15	SOIL LOW 1.0 5.0 GRAMS 100.00	SOIL LOW 1.0 5.0 GRAMS 100.00	SOIL LOW 1.0 5.0 GRAMS 100.00

DELTA ENVIRONMENTAL CONSULTANTS, INC.

QC SAMPLE CHRONOLOGY

Rept: ANO374 Page: 8

Client Sample ID Job No & Lab Sample ID		MSB93 A07-6476 A7B0933503		
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	06/13/2007 09:59 - - SOIL LOW 1.0 5.0 GRAMS 100.00	06/14/2007 10:36 - - SOIL LOW 1.0 5.0 GRAMS 100.00		

DELTA ENVIRONMENTAL CONSULTANTS, INC. QC SAMPLE CHRONOLOGY

Rept: ANO374 Page: 9

Client Sample ID		VBLK46	VBLK47	VBLK48	VBLK93
Job No & Lab Sample ID		A07-6329 A7B0902902	A07-6329 A7B0912102	A07-6476 A7B0916702	A07-6476 A7B0933504
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	06/07/2007 15:30 06/09/2007 09:00 06/14/2007 19:43 - YES SOIL MED 1.0 4.1 GRAMS	06/10/2007 15:10 - - SOIL LOW 1.0 5.0 GRAMS 100.00	06/11/2007 10:56 - - SOIL LOW 1.0 5.0 GRAMS 100.00	06/12/2007 11:33 - - - SOIL LOW 1.0 5.0 GRAMS 100.00	06/14/2007 11:04 - - SOIL LOW 1.0 5.0 GRAMS 100.00

DELTA ENVIRONMENTAL CONSULTANTS, INC.

QC SAMPLE CHRONOLOGY

Rept: ANO374 Page: 10

Client Sample ID Job No & Lab Sample ID			
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	06/13/2007 10:30 - - SOIL LOW 1.0 5.0 GRAMS 100.00		

DELTA ENVIRONMENTAL CONSULTANTS, INC. SAMPLE CHRONOLOGY

Rept: ANO374 Page: 1

METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client Sample ID		GSB-11(12-14)	GSB-12(12-14)	GSB-13(10-12)	GSB-14(14-16)
Job No & Lab Sample ID		A07-6476 A7647606	A07-6476 A7647607	A07-6476 A7647608	A07-6476 A7647609
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	NA	NA	06/07/2007 14:00 06/09/2007 09:00 06/13/2007 15:00 06/18/2007 17:48 YES YES SOIL LOW 1.0 30.78 GRAMS 97.65	06/07/2007 14:10 06/09/2007 09:00 06/13/2007 15:00 06/18/2007 18:12 YES YES SOIL LOW 1.0 30.95 GRAMS 98.79	06/07/2007 16:05 06/09/2007 09:00 06/13/2007 15:00 06/18/2007 18:37 YES YES SOIL LOW 1.0 30.53 GRAMS

METHOD 8270 - TCL SEMI-VOLATILE ORGANICS

Client Sample ID		GSB-11(12-14)	GSB-12(12-14)	GSB-13(10-12)	GSB-14(14-16)
Job No & Lab Sample ID		A07-6476 A7647606	A07-6476 A7647607	A07-6476 A7647608	A07-6476 A7647609
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	06/07/2007 12:45 06/09/2007 09:00 06/13/2007 15:00 06/18/2007 20:40 YES YES SOIL LOW 1.0 30.65 GRAMS	06/07/2007 13:00 06/09/2007 09:00 06/13/2007 15:00 06/18/2007 21:05 YES YES SOIL LOW 1.0 30.52 GRAMS 39.22	NA	NA	NA

DELTA ENVIRONMENTAL CONSULTANTS, INC.
SAMPLE CHRONOLOGY

Rept: ANO374 Page: 2

Client Sample ID	GSB-3 (10-12)	GSB-4 (8-10)	GSB-5(12-14)	GSB-6 (10-12)	GSB-7 (10-12)
Job No & Lab Sample ID	A07-6329 A7632909	A07-6329 A7632910	A07-6476 A7647602	A07-6329 A7632911	A07-6329 A7632912
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	06/05/2007 11:50	06/05/2007 12:20	06/07/2007 14:30	06/05/2007 14:00	06/05/2007 15:45
	06/07/2007 08:45	06/07/2007 08:45	06/09/2007 09:00	06/07/2007 08:45	06/07/2007 08:45
	06/11/2007 14:00	06/11/2007 14:00	06/13/2007 15:00	06/11/2007 14:00	06/11/2007 14:00
	06/13/2007 18:44	06/13/2007 19:09	06/18/2007 16:34	06/13/2007 19:34	06/13/2007 19:58
	YES	YES	YES	YES	YES
	YES	YES	YES	YES	YES
	SOIL LOW				
	1.0	1.0	1.0	1.0	1.0
	30.27 GRAMS	30.18 GRAMS	30.1 GRAMS	30.8 GRAMS	30.92 GRAMS
	99.27	95.40	95.43	94.53	97.61

DELTA ENVIRONMENTAL CONSULTANTS, INC. SAMPLE CHRONOLOGY

Rept: ANO374 Page: 3

Client Sample ID		GSB-9(7-9)	MW-1 (8-10)	MW-2(10-12)	MW-2(30-32)
Job No & Lab Sample ID		A07-6476 A7647604	A07-6476 A7647601	A07-6476 A7647610	A07-6476 A7647611
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	06/07/2007 09:45 06/09/2007 09:00 06/13/2007 15:00 06/18/2007 16:59 YES YES SOIL LOW 1.0 30.02 GRAMS	06/07/2007 10:15 06/09/2007 09:00 06/13/2007 15:00 06/18/2007 17:23 YES YES SOIL LOW 1.0 30.49 GRAMS 98.87	06/06/2007 12:30 06/09/2007 09:00 06/13/2007 15:00 06/18/2007 15:20 YES YES SOIL LOW 1.0 30.18 GRAMS 95.04	06/07/2007 15:15 06/09/2007 09:00 06/13/2007 15:00 06/18/2007 19:02 YES YES SOIL LOW 1.0 30.16 GRAMS 97.63	06/07/2007 15:30 06/09/2007 09:00 06/13/2007 15:00 06/18/2007 19:26 YES YES SOIL LOW 1.0 30.96 GRAMS 89.92

DELTA ENVIRONMENTAL CONSULTANTS, INC. SAMPLE CHRONOLOGY

Rept: ANO374 Page:

Client Sample ID		MW-4(8-10)	TP-1 (10-12)	TP-2 (10-12)	TP-3 (8-10)
Job No & Lab Sample ID		A07-6476 A7647613	A07-6329 A7632901	A07-6329 A7632902	A07-6329 A7632903
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	06/08/2007 09:15	06/08/2007 13:15	06/04/2007 09:50	06/04/2007 11:20	06/04/2007 12:55
	06/09/2007 09:00	06/09/2007 09:00	06/07/2007 08:45	06/07/2007 08:45	06/07/2007 08:45
	06/13/2007 15:00	06/13/2007 15:00	06/11/2007 10:00	06/11/2007 10:00	06/11/2007 10:00
	06/18/2007 19:51	06/18/2007 20:16	06/13/2007 12:35	06/13/2007 13:00	06/13/2007 13:25
	YES	YES	YES	YES	YES
	YES	YES	YES	YES	YES
	SOIL LOW	SOIL LOW	SOIL LOW	SOIL LOW	SOIL LOW
	1.0	1.0	1.0	1.0	1.0
	30.89 GRAMS	30.1 GRAMS	30.74 GRAMS	30.82 GRAMS	30.57 GRAMS
	97.79	93.74	90.23	96.23	87.60

DELTA ENVIRONMENTAL CONSULTANTS, INC.
SAMPLE CHRONOLOGY

Rept: ANO374 Page: 5

Client Sample ID Job No & Lab Sample ID		TP-5 (3-4) A07-6329 A7632905	TP-6 (6-8) A07-6329 A7632906	
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	06/04/2007 15:15 06/07/2007 08:45 06/11/2007 10:00 06/13/2007 13:49 YES YES SOIL LOW 1.0 30.82 GRAMS	06/05/2007 10:20 06/07/2007 08:45 06/13/2007 15:00 06/18/2007 13:17 YES YES SOIL LOW 5.0 30.54 GRAMS	06/05/2007 12:05 06/07/2007 08:45 06/11/2007 14:00 06/13/2007 18:20 YES YES SOIL LOW 1.0 30.02 GRAMS	

DELTA ENVIRONMENTAL CONSULTANTS, INC.

QC SAMPLE CHRONOLOGY

Rept: ANO374 Page: 6

Client Sample ID		MW-1 (8-10)	Matrix Spike Blank	Matrix Spike Blank	Matrix Spike Blank
Job No & Lab Sample ID		A07-6476 A7647601SD	A07-6329 A7B0900401	A07-6329 A7B0901801	A07-6329 A7B0919601
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	06/06/2007 12:30 06/09/2007 09:00 06/13/2007 15:00 06/18/2007 15:45 YES YES SOIL LOW 1.0 30.08 GRAMS 95.04	06/06/2007 12:30 06/09/2007 09:00 06/13/2007 15:00 06/18/2007 16:09 YES YES SOIL LOW 1.0 30.84 GRAMS 95.04	06/11/2007 10:00 06/13/2007 11:46 - - SOIL LOW 1.0 30.71 GRAMS 100.00	06/11/2007 14:00 06/13/2007 17:06 - - SOIL LOW 1.0 30.55 GRAMS 100.00	06/13/2007 15:00 06/18/2007 12:28 - - SOIL LOW 1.0 30.36 GRAMS 100.00

Rept: ANO374 Page:

METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client Sample ID Job No & Lab Sample ID			
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	06/13/2007 15:00 06/18/2007 14:31 - - SOIL LOW 1.0 30.21 GRAMS		

METHOD 8270 - TCL SEMI-VOLATILE ORGANICS

Client Sample ID Job No & Lab Sample ID			
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	06/13/2007 15:00 06/18/2007 14:31 - - SOIL LOW 1.0 30.21 GRAMS		

Rept: ANO374 Page: 8

METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client Sample ID	SBLK	SBLK	SBLK	SBLK	
Job No & Lab Sample ID	A07-6329 A7B0900402	A07-6329 A7B0901802	A07-6329 A7B0919602	A07-6476 A7B0919702	
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	06/11/2007 10:00 06/13/2007 12:11 - - SOIL LOW 1.0 30.73 GRAMS	06/11/2007 14:00 06/13/2007 17:31 - - SOIL LOW 1.0 30.47 GRAMS 100.00	06/13/2007 15:00 06/18/2007 12:53 - - SOIL LOW 1.0 30.1 GRAMS 100.00	06/13/2007 15:00 06/18/2007 14:56 - - SOIL LOW 1.0 30.04 GRAMS 100.00	

METHOD 8270 - TCL SEMI-VOLATILE ORGANICS

Client Sample ID Job No & Lab Sample ID		SBLK A07-6329 A7B0901802	SBLK A07-6329 A7B0919602	SBLK A07-6476 A7B0919702	
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	NA	NA	NA	06/13/2007 15:00 06/18/2007 14:56 SOIL LOW 1.0 30.04 GRAMS	

DELTA ENVIRONMENTAL CONSULTANTS, INC. SAMPLE CHRONOLOGY

Rept: ANO374 Page:

Client Sample ID		GSB-13(10-12)	GSB-14(14-16)	GSB-3 (10-12)	GSB-4 (8-10)
Job No & Lab Sample ID		A07-6476 A7647608	A07-6476 A7647609	A07-6329 A7632909	A07-6329 A7632910
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	06/07/2007 14:00 06/09/2007 09:00 06/13/2007 15:00 06/14/2007 17:16 YES YES SOIL LOW 1.0 30.1 GRAMS	06/07/2007 14:10 06/09/2007 09:00 06/13/2007 15:00 06/14/2007 17:32 YES YES SOIL LOW 1.0 30.42 GRAMS 98.79	06/07/2007 16:05 06/09/2007 09:00 06/13/2007 15:00 06/14/2007 17:48 YES YES SOIL LOW 1.0 30.69 GRAMS	06/05/2007 11:50 06/07/2007 08:45 06/11/2007 13:00 06/13/2007 16:51 YES YES SOIL LOW 1.0 30.7 GRAMS	06/05/2007 12:20 06/07/2007 08:45 06/11/2007 13:00 06/13/2007 17:07 YES YES SOIL LOW 1.0 30.81 GRAMS

DELTA ENVIRONMENTAL CONSULTANTS, INC. SAMPLE CHRONOLOGY

Rept: ANO374 Page: 2

Client Sample ID	GSB-5(12-14)	GSB-6 (10-12)	GSB-7 (10-12)	GSB-8(12-14)	GSB-9(7-9)
Job No & Lab Sample ID	A07-6476 A7647602	A07-6329 A7632911	A07-6329 A7632912	A07-6476 A7647603	A07-6476 A7647604
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	06/07/2007 14:30	06/05/2007 14:00	06/05/2007 15:45	06/07/2007 09:45	06/07/2007 10:15
	06/09/2007 09:00	06/07/2007 08:45	06/07/2007 08:45	06/09/2007 09:00	06/09/2007 09:00
	06/13/2007 15:00	06/11/2007 13:00	06/11/2007 13:00	06/13/2007 15:00	06/13/2007 15:00
	06/14/2007 16:27	06/13/2007 17:56	06/13/2007 18:12	06/14/2007 16:43	06/14/2007 16:59
	YES	YES	YES	YES	YES
	YES	YES	YES	YES	YES
	SOIL LOW				
	1.0	1.0	1.0	1.0	1.0
	30.04 GRAMS	30.65 GRAMS	30.56 GRAMS	30.44 GRAMS	30.08 GRAMS
	95.43	94.53	97.61	99.45	98.87

DELTA ENVIRONMENTAL CONSULTANTS, INC. SAMPLE CHRONOLOGY

Rept: ANO374 Page: 3

Client Sample ID		MW-2(10-12)	MW-2(30-32)	MW-3(10-12)	MW-4(8-10)
Job No & Lab Sample ID		A07-6476 A7647610	A07-6476 A7647611	A07-6476 A7647612	A07-6476 A7647613
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	06/06/2007 12:30	06/07/2007 15:15	06/07/2007 15:30	06/08/2007 09:15	06/08/2007 13:15
	06/09/2007 09:00	06/09/2007 09:00	06/09/2007 09:00	06/09/2007 09:00	06/09/2007 09:00
	06/13/2007 10:00	06/13/2007 15:00	06/13/2007 15:00	06/13/2007 15:00	06/13/2007 15:00
	06/15/2007 23:29	06/14/2007 18:04	06/14/2007 18:20	06/14/2007 18:36	06/14/2007 18:53
	YES	YES	YES	YES	YES
	YES	YES	YES	YES	YES
	SOIL LOW	SOIL LOW	SOIL LOW	SOIL LOW	SOIL LOW
	1.0	1.0	1.0	1.0	1.0
	30.76 GRAMS	30.87 GRAMS	30.41 GRAMS	30.72 GRAMS	30.9 GRAMS
	95.04	97.63	89.92	97.79	93.74

DELTA ENVIRONMENTAL CONSULTANTS, INC. SAMPLE CHRONOLOGY

Rept: ANO374 Page: 4

Client Sample ID		TP-2 (10-12)	TP-3 (8-10)	TP-4 (10-12)	TP-5 (3-4)
Job No & Lab Sample ID		A07-6329 A7632902	A07-6329 A7632903	A07-6329 A7632904	A07-6329 A7632905
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	06/04/2007 09:50 06/07/2007 08:45 06/11/2007 13:00 06/13/2007 14:41 YES YES SOIL LOW 1.0 30.89 GRAMS 90.23	06/04/2007 11:20 06/07/2007 08:45 06/11/2007 13:00 06/13/2007 14:57 YES YES SOIL LOW 1.0 30.56 GRAMS 96.23	06/04/2007 12:55 06/07/2007 08:45 06/11/2007 13:00 06/13/2007 15:46 YES YES SOIL LOW 1.0 30.92 GRAMS 87.60	06/04/2007 15:15 06/07/2007 08:45 06/11/2007 13:00 06/13/2007 16:02 YES YES SOIL LOW 1.0 30.79 GRAMS 98.71	06/05/2007 10:20 06/07/2007 08:45 06/11/2007 13:00 06/13/2007 16:19 YES YES SOIL LOW 1.0 30.19 GRAMS

DELTA ENVIRONMENTAL CONSULTANTS, INC. SAMPLE CHRONOLOGY

Rept: ANO374 Page:

5

Client Sample ID Job No & Lab Sample ID	1		
Sample Date Received Date Extraction Date Analysis Date	06/05/2007 12:05 06/07/2007 08:45 06/11/2007 13:00 06/13/2007 16:35		
Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor	YES YES SOIL LOW 1.0		
Sample wt/vol	30.81 GRAMS 94.86		

DELTA ENVIRONMENTAL CONSULTANTS, INC. QC SAMPLE CHRONOLOGY

Rept: ANO374 Page:

Client Sample ID		Matrix Spike Blank	Matrix Spike Blank	TP-2 (10-12)	TP-2 (10-12)
Job No & Lab Sample ID		A07-6476 A7B0916401	A07-6476 A7B0920101	A07-6329 A7632902MS	A07-6329 A7632902SD
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	06/11/2007 13:00 06/13/2007 10:23 - - SOIL LOW 1.0 30.23 GRAMS 100.00	06/13/2007 10:00 06/15/2007 22:18 - - SOIL LOW 1.0 30.78 GRAMS 100.00	06/13/2007 15:00 06/14/2007 13:12 - - SOIL LOW 1.0 30.98 GRAMS 100.00	06/04/2007 11:20 06/07/2007 08:45 06/11/2007 13:00 06/13/2007 15:14 YES YES SOIL LOW 1.0 30.79 GRAMS 96.23	06/04/2007 11:20 06/07/2007 08:45 06/11/2007 13:00 06/13/2007 15:30 YES YES SOIL LOW 1.0 30.11 GRAMS 96.23

DELTA ENVIRONMENTAL CONSULTANTS, INC. QC SAMPLE CHRONOLOGY

Rept: ANO374 Page: 7

Client Sample ID Job No & Lab Sample ID		Method Blank A07-6476 A7B0916402	Method Blank A07-6476 A7B0920102	
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	06/11/2007 13:00 06/13/2007 10:37 - - SOIL LOW 1.0 30.95 GRAMS	06/13/2007 10:00 06/15/2007 22:32 - - SOIL LOW 1.0 30.09 GRAMS	06/13/2007 15:00 06/14/2007 13:29 - - SOIL LOW 1.0 30.54 GRAMS 100.00	

Date: 06/22/2007 10:29:10 Jobno: A07-6476

DELTA ENVIRONMENTAL CONSULTANTS, INC.
SAMPLE CHRONOLOGY

ONMENTAL CONSULTANTS, INC. Rept: ANO369

Lab ID	Sample ID	Units	Analyte	Method	Dilution Factor	Sample Date	Receive Date	TCLP Date	тнт	Analysis Date	АНТ	Matrix
A7647607	GSB-12(12-14)	MG/KG	Antimony - Total	6010	1.00	06/07/2007 14:00	06/09 09:00	NA	NA	06/19 10:45	Yes	SOIL
		MG/KG	Arsenic - Total	6010		06/07/2007 14:00		NA	NA	06/19 10:45	Yes	SOIL
		MG/KG	Beryllium - Total	6010	1.00	06/07/2007 14:00	06/09 09:00	NA	NA	06/19 10:45	Yes	SOIL
		MG/KG	Cadmium - Total	6010	1.00	06/07/2007 14:00	06/09 09:00	NA	NA	06/19 10:45	Yes	SOIL
		MG/KG	Chromium - Total	6010	1.00	06/07/2007 14:00	06/09 09:00	NA	NA	06/19 10:45	Yes	SOIL
		MG/KG	Copper - Total	6010	1.00	06/07/2007 14:00	06/09 09:00	NA	NA	06/19 10:45	Yes	SOIL
		MG/KG	Lead - Total	6010		06/07/2007 14:00		NA	NA	06/19 10:45	Yes	SOIL
		MG/KG	Mercury - Total	7471	1.00	06/07/2007 14:00	06/09 09:00	NA	NA	06/14 11:32	Yes	SOIL
		MG/KG	Nickel - Total	6010	1.00	06/07/2007 14:00	06/09 09:00	NA	NA	06/19 10:45	Yes	SOIL
		MG/KG	Selenium - Total	6010	1.00	06/07/2007 14:00	06/09 09:00	NA	NA	06/19 10:45	Yes	SOIL
		MG/KG	Silver - Total	6010	1.00	06/07/2007 14:00	06/09 09:00	NA	NA	06/19 10:45	Yes	SOIL
		MG/KG	Thallium - Total	6010	1.00	06/07/2007 14:00	06/09 09:00	NA	NA	06/19 10:45	Yes	SOIL
		MG/KG	Zinc - Total	6010	1.00	06/07/2007 14:00	06/09 09:00	NA	NA	06/19 10:45	Yes	SOIL
A7647608	GSB-13(10-12)	MG/KG	Antimony - Total	6010		06/07/2007 14:10		NA	NA	06/19 10:51		
		MG/KG	Arsenic - Total	6010	1.00	06/07/2007 14:10	06/09 09:00	NA	NA	06/19 10:51	Yes	SOIL
		MG/KG	Beryllium - Total	6010		06/07/2007 14:10		NA	NA	06/19 10:51		
		MG/KG	Cadmium - Total	6010	1.00	06/07/2007 14:10	06/09 09:00	NA	NA	06/19 10:51		
		MG/KG	Chromium - Total	6010	1.00	06/07/2007 14:10	06/09 09:00	NA	NA	06/19 10:51		
		MG/KG	Copper - Total	6010		06/07/2007 14:10		NA	NA	06/19 10:51	Yes	SOIL
		MG/KG	Lead - Total	6010	1.00	06/07/2007 14:10	06/09 09:00	NA	NA	06/19 10:51	Yes	SOIL
†		MG/KG	Mercury - Total	7471	1.00	06/07/2007 14:10	06/09 09:00	NA	NA	06/14 11:34		
		MG/KG	Nickel - Total	6010		06/07/2007 14:10		NA	NA	06/19 10:51		
		MG/KG	Selenium - Total	6010		06/07/2007 14:10		NA	NA			SOIL
		MG/KG	Silver - Total	6010		06/07/2007 14:10	1 4	NA	NA	06/19 10:51		
		MG/KG	Thallium - Total	6010		06/07/2007 14:10		NA	NA	06/19 10:51		
		MG/KG	Zinc - Total	6010		06/07/2007 14:10		NA	NA	06/19 10:51		
A7647609	GSB-14(14-16)	MG/KG	Antimony - Total	6010	1.00	06/07/2007 16:05	06/09 09:00	NA	NA	06/19 10:56		
		MG/KG	Arsenic - Total	6010		06/07/2007 16:05		NA	NA	06/19 10:56		
		MG/KG	Beryllium - Total	6010		06/07/2007 16:05		NA	NA	06/19 10:56		
		MG/KG	Cadmium - Total	6010		06/07/2007 16:05		NA	NA	06/19 10:56		
		MG/KG	Chromium - Total	6010		06/07/2007 16:05		NA	NA	06/19 10:56	1	
		MG/KG	Copper - Total	6010	1.00	06/07/2007 16:05	06/09 09:00	NA	NA	06/19 10:56	1	
		MG/KG	Lead - Total	6010		06/07/2007 16:05		NA	NA	06/19 10:56		
		MG/KG	Mercury - Total	7471		06/07/2007 16:05		NA	NA	06/14 11:35		
		MG/KG	Nickel - Total	6010		06/07/2007 16:05		NA	NA	06/19 10:56		
		MG/KG	Selenium - Total	6010	1.00	06/07/2007 16:05	06/09 09:00	NA	NA	06/19 10:56		
		MG/KG	Silver - Total	6010		06/07/2007 16:05		NA	NA	06/19 10:56		
		MG/KG	Thallium - Total	6010		06/07/2007 16:05		NA	NA	06/19 10:56		
		MG/KG	Zinc - Total	6010		06/07/2007 16:05		NA	NA	06/19 10:56		
A7632909	GSB-3 (10-12)	MG/KG	Antimony - Total	6010		06/05/2007 11:50		NA	NA	06/12 18:04		
		MG/KG	Arsenic - Total	6010		06/05/2007 11:50		NA	NA	06/12 18:04		
		MG/KG	Beryllium - Total	6010		06/05/2007 11:50		NA	NA	06/12 18:04		
		MG/KG	Cadmium - Total	6010		06/05/2007 11:50		NA NA	NA	06/12 18:04		
		MG/KG	Chromium - Total	6010	1.00	06/05/2007 11:50	06/07 08:45	NA.	NA	06/12 18:04		
		MG/KG	Copper - Total	6010		06/05/2007 11:50		NA.	NA	06/12 18:04		
		MG/KG	Lead - Total	6010		06/05/2007 11:50		NA	NA	06/12 18:04		
		MG/KG	Mercury - Total	7471		06/05/2007 11:50		NA.	NA	06/11 15:18		
		MG/KG	Nickel - Total	6010		06/05/2007 11:50		NA NA	NA	06/12 18:04	Yes	SOLICE
L	L	1 .	1	1	1	1	1		1	1 ,	1	

AHT = Analysis Holding Time Met

THT = TCLP Holding Time Met

NA = Not Applicable

Date: 06/22/2007 10:29:10 Jobno: A07-6329

SAMPLE CHRONOLOGY

MG/KG Silver - Total 6010 1.00 06/05/2007 11:50 06/07 08:45 NA NA 06/12 1 MG/KG Thallium - Total 6010 1.00 06/05/2007 11:50 06/07 08:45 NA NA 06/12 1	18:04 Yes 18:04 Yes 18:04 Yes 18:04 Yes	es SOIL
MG/KG MG/K	18:04 Yes 18:04 Yes 18:04 Yes	es SOIL
New York New York	18:04 Yes 18:04 Yes	
A7632910 A7632910 BGB-4 (8-10) BGB-6 Antimony - Total BGD	18:04 Yes	es SOTI
A7632910 GSB-4 (8-10) MG/KG MG/KG Artimony - Total 6010 1.00 G6/G5/2007 12:20 G6/O7 08:45 NA NA 06/12 1 MG/KG MG/KG Bryllium - Total 6010 1.00 G6/G5/2007 12:20 G6/O7 08:45 NA NA 06/12 1 MG/KG Cadmium - Total 6010 1.00 G6/G5/2007 12:20 G6/O7 08:45 NA NA 06/12 1 MG/KG Cadmium - Total 6010 1.00 G6/G5/2007 12:20 G6/O7 08:45 NA NA 06/12 1 MG/KG MG/KG Cadmium - Total 6010 1.00 G6/G5/2007 12:20 G6/O7 08:45 NA NA 06/12 1 MG/KG Cadmium - Total 6010 1.00 G6/G5/2007 12:20 G6/O7 08:45 NA NA 06/12 1 MG/KG MG/KG Capper - Total 6010 1.00 G6/G5/2007 12:20 G6/O7 08:45 NA NA 06/12 1 MG/KG MG/K		1 4
Mg/KG		
M6/K6		
M6/KG		
M6/KG		
M6/KG		
M6/K6 M6/K6 Mercury - Total M6/K6 Mercury - Total M6/K6 M6/K6 Mickel - Total M6/K6		
M6/KG		
MG/KG		1 .
M6/KG Selenium - Total 6010 1.00 06/05/2007 12:20 06/07 08:45 NA NA 06/12 1.00 06/05/2007 12:20 06/0		
MG/KG	i i	l l
MG/KG		
MG/KG		
A7647602 GSB-5(12-14) MG/KG		
MG/KG		
MG/KG Beryllium - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Cadmium - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Chromium - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Copper - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Mercury - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Mercury - Total 7471 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Nickel - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Selenium - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Silver - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Thallium - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Zinc - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Zinc - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Antimony - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Antimony - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1		
MG/KG Cadmium - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Chromium - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Copper - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Mercury - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Nickel - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Selenium - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Silver - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Thallium - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Thallium - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Thallium - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Zinc - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Zinc - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Zinc - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Zinc - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Zinc - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Zinc - Total 6010 1.00 06/07/2007 14:00 06/07 08:45 NA NA 06/19 1		
MG/KG Chromium - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Copper - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Lead - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Mercury - Total 7471 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Nickel - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Selenium - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Silver - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Thallium - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Zinc - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Zinc - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Zinc - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Zinc - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Antimony - Total 6010 1.00 06/05/2007 14:00 06/07 08:45 NA NA 06/12 1		
MG/KG Copper - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Mercury - Total 7471 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Nickel - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Selenium - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Silver - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Thallium - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Thallium - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Thallium - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Thallium - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Zinc - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Zinc - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Zinc - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1		ľ
MG/KG		
MG/KG Mercury - Total 7471 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/14 1 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 1.0		l l
MG/KG Nickel - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Selenium - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Silver - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Thallium - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Zinc - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Zinc - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 MG/KG Antimony - Total 6010 1.00 06/05/2007 14:00 06/07 08:45 NA NA 06/12 1		
MG/KG Selenium - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 1.00 06/05/2007 14:00 06/07 08:45 NA NA 06/12 1		1
MG/KG Silver - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1.00 06/05/2007 14:00 06/07 08:45 NA NA 06/12 1.00 06/05/2007 06/07 08:45 NA NA 06/12 1.00 06/05/2007 06/07 08:45 NA NA 06/12 1.00 06/05/2007 06/07 08:45 06/07		
MG/KG Thallium - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 06/32911 GSB-6 (10-12) MG/KG Antimony - Total 6010 1.00 06/05/2007 14:00 06/07 08:45 NA NA 06/12 1		
MG/KG Zinc - Total 6010 1.00 06/07/2007 14:30 06/09 09:00 NA NA 06/19 1 A7632911 GSB-6 (10-12) MG/KG Antimony - Total 6010 1.00 06/05/2007 14:00 06/07 08:45 NA NA 06/12 1		1
A7632911 GSB-6 (10-12) MG/KG Antimony - Total 6010 1.00 06/05/2007 14:00 06/07 08:45 NA NA 06/12 1		1
	I .	i i
	18:14 Ye	
	18:14 Ye	
	18:14 Ye	es SOIL
	18:14 Ye	es SOIL
	18:14 Ye	es SOIL
	15:20 Ye	es SOIL
	18:14 Ye	es SOIL
MG/KG Selenium - Total 6010 1.00 06/05/2007 14:00 06/07 08:45 NA NA 06/12 1	18:14 Ye	es SOIL
MG/KG silver - Total 6010 1.00 06/05/2007 14:00 06/07 08:45 NA NA 06/12 1	18:14 Ye	es SOIL
MG/KG Thallium - Total 6010 1.00 06/05/2007 14:00 06/07 08:45 NA NA 06/12 1	18:14 Ye	es SOIL
MG/KG zinc - Total 6010 1.00 06/05/2007 14:00 06/07 08:45 NA NA 06/12 1	18:14 Ye	es SOIL
		es SOII
MG/KG Arsenic - Total 6010 1.00 06/05/2007 15:45 06/07 08:45 NA NA 06/12 1		es SOI 🥏
MG/KG Beryllium - Total 6010 1.00 06/05/2007 15:45 06/07 08:45 NA NA 06/12 1		es SOIL
		es SOII
MG/KG Chromium - Total 6010 1.00 06/05/2007 15:45 06/07 08:45 NA NA 06/12 1	18:20 Ye	res SOIL

AHT = Analysis Holding Time Met THT = TCLP Holding Time Met

NA = Not Applicable

STL Buffalo

Rept: ANO369

Date: 06/22/2007 10:29:10 Jobno: A07-6329

DELTA ENVIRONMENTAL CONSULTANTS, INC. SAMPLE CHRONOLOGY

Rept: ANO369

Dilution Sample Receive TCLP Analysis Lab ID Sample ID Units Analyte Method Factor Date THT Date Date Date AHT Matrix MG/KG A7632912 GSB-7 (10-12) Copper - Total 6010 1.00 06/05/2007 15:45 06/07 08:45 06/12 18:20 Yes SOIL NA MG/KG Lead - Total 6010 1.00 06/05/2007 15:45 06/07 08:45 NA NA 06/12 18:20 Yes SOIL MG/KG 7471 1.00 06/05/2007 15:45 06/07 08:45 Mercury - Total NΑ 06/11 15:25 Yes SOIL MG/KG Nickel - Total 6010 1.00 06/05/2007 15:45 06/07 08:45 06/12 18:20 Yes SOIL NA NA 1.00 06/05/2007 15:45 06/07 08:45 MG/KG Selenium - Total 6010 06/12 18:20 Yes SOIL NA NA MG/KG Silver - Total 6010 1.00 06/05/2007 15:45 06/07 08:45 06/12 18:20 Yes SOIL NA NA MG/KG Thallium - Total 6010 1.00 06/05/2007 15:45 06/07 08:45 NA NA 06/12 18:20 Yes SOIL MG/KG 6010 1.00 06/05/2007 15:45 06/07 08:45 Zinc - Total NΑ 06/12 18:20 Yes SOIL MG/KG 6010 A7647603 GSB-8(12-14) Antimony - Total 1.00 06/07/2007 09:45 06/09 09:00 06/19 10:21 Yes SOIL NA NA MG/KG Arsenic - Total 6010 1.00 06/07/2007 09:45 06/09 09:00 06/19 10:21 Yes SOIL NA NA MG/KG 6010 1.00 06/07/2007 09:45 06/09 09:00 Beryllium - Total NA NA 06/19 10:21 Yes SOIL MG/KG 1.00 06/07/2007 09:45 06/09 09:00 Cadmium - Total 6010 NΑ 06/19 10:21 Yes SOIL MG/KG Chromium - Total 6010 1.00 06/07/2007 09:45 06/09 09:00 06/19 10:21 Yes SOIL NA MG/KG Copper - Total 6010 1.00 06/07/2007 09:45 06/09 09:00 NΑ NA 06/19 10:21 Yes SOIL MG/KG Lead - Total 6010 1.00 06/07/2007 09:45 06/09 09:00 06/19 10:21 Yes SOIL NΑ NA 7471 MG/KG Mercury - Total 1.00 06/07/2007 09:45 06/09 09:00 06/14 11:29 Yes SOIL NA NA MG/KG 6010 Nickel - Total 1.00 06/07/2007 09:45 06/09 09:00 NA 06/19 10:21 Yes SOIL NA MG/KG Selenium - Total 6010 1.00 06/07/2007 09:45 06/09 09:00 06/19 10:21 Yes SOIL NΑ MG/KG Silver - Total 6010 1.00 06/07/2007 09:45 06/09 09:00 06/19 10:21 Yes SOIL NA NΑ MG/KG Thallium - Total 6010 1.00 06/07/2007 09:45 06/09 09:00 NA 06/19 10:21 Yes SOIL MG/KG Zinc - Total 6010 1.00 06/07/2007 09:45 06/09 09:00 NA |06/19 10:21|Yes|SOIL A7647604 GSB-9(7-9)MG/KG Antimony - Total 6010 1.00 06/07/2007 10:15 06/09 09:00 |06/19 10:38|Yes|SOIL NA MG/KG 6010 1.00 06/07/2007 10:15 06/09 09:00 Arsenic - Total NA 06/19 10:38 Yes SOIL MG/KG Beryllium - Total 6010 1.00 06/07/2007 10:15 06/09 09:00 NA NA MG/KG Cadmium - Total 6010 1.00 06/07/2007 10:15 06/09 09:00 06/19 10:38 Yes SOIL NA NA MG/KG Chromium - Total 6010 1.00 06/07/2007 10:15 06/09 09:00 NA NA |06/19 10:38|Yes|SOIL MG/KG Copper - Total 6010 1.00 06/07/2007 10:15 06/09 09:00 |06/19 10:38|Yes|SOIL NA MG/KG 6010 Lead - Total 1.00 06/07/2007 10:15 06/09 09:00 06/19 10:38 Yes SOIL NA MG/KG Mercury - Total 7471 1.00 06/07/2007 10:15 06/09 09:00 NA 06/14 11:30 Yes SOIL MG/KG Nickel - Total 6010 1.00 06/07/2007 10:15 06/09 09:00 06/19 10:38 Yes SOIL NΑ MG/KG Selenium - Total 6010 1.00 06/07/2007 10:15 06/09 09:00 06/19 10:38 Yes SOIL NΑ MG/KG Silver - Total 6010 1.00 06/07/2007 10:15 06/09 09:00 NA 06/19 10:38 Yes SOIL MG/KG Thallium - Total 6010 1.00 06/07/2007 10:15 06/09 09:00 06/19 10:38 Yes SOIL NA NA MG/KG Zinc - Total 6010 1.00 06/07/2007 10:15 06/09 09:00 NA 06/19 10:38 Yes SOIL A7647601 MW-1 (8-10) MG/KG 6010 1.00 06/06/2007 12:30 06/09 09:00 Antimony - Total NA NA 06/19 09:49 Yes SOIL MG/KG Arsenic - Total 6010 1.00 06/06/2007 12:30 06/09 09:00 06/19 09:49 Yes SOIL NA MG/KG Beryllium - Total 6010 1.00 06/06/2007 12:30 06/09 09:00 06/19 09:49 Yes SOIL NA NA MG/KG Cadmium - Total 6010 1.00 06/06/2007 12:30 06/09 09:00 06/19 09:49 Yes SOIL NA MG/KG Chromium - Total 6010 1.00 06/06/2007 12:30 06/09 09:00 NA 06/19 09:49 Yes SOIL MG/KG 6010 Copper - Total 1.00 06/06/2007 12:30 06/09 09:00 NA 06/19 09:49 Yes SOIL MG/KG Lead - Total 6010 1.00 06/06/2007 12:30 06/09 09:00 06/19 09:49 Yes SOIL NΑ MG/KG Mercury - Total 7471 1.00 06/06/2007 12:30 06/09 09:00 06/14 11:22 Yes SOIL NA NA 06/19 09:49 Yes SOIL MG/KG Nickel - Total 6010 1.00 06/06/2007 12:30 06/09 09:00 NA NA 6010 MG/KG Selenium - Total 1.00 06/06/2007 12:30 06/09 09:00 NA NA 06/19 09:49 Yes SOII MG/KG Silver - Total 6010 1.00 06/06/2007 12:30 06/09 09:00 06/19 09:49 Yes SOIL NA NA MG/KG 6010 Thallium - Total 1.00 06/06/2007 12:30 06/09 09:00 06/19 09:49 Yes SOIL NA NA MG/KG Zinc - Total 6010 1.00 06/06/2007 12:30 06/09 09:00 06/19 09:49 Yes SOII NA NA A7647610 MW-2(10-12) MG/KG Antimony - Total 6010 1.00 06/07/2007 15:15 06/09 09:00 06/19 11:02 Yes SOIL NA

AHT = Analysis Holding Time Met

THT = TCLP Holding Time Met

NA = Not Applicable

Date: 06/22/2007 10:29:10

Jobno: A07-6476

Dilution TCLP Analysis Sample Receive THT AHT | Matrix Date Date Date Lab ID Sample ID Units Analyte Method Factor Date 1.00 06/07/2007 15:15 06/09 09:00 06/19 11:02 Yes SOIL 6010 A7647610 MW-2(10-12) MG/KG Arsenic - Total NA 1.00 06/07/2007 15:15 06/09 09:00 06/19 11:02 Yes SOIL MG/KG Beryllium - Total 6010 NA NA 1.00 06/07/2007 15:15 06/09 09:00 06/19 11:02 Yes SOIL MG/KG 6010 NA NA Cadmium - Total 1.00 06/07/2007 15:15 06/09 09:00 06/19 11:02 Yes SOIL 6010 NA MG/KG Chromium - Total NA MG/KG 6010 1.00 06/07/2007 15:15 06/09 09:00 NA NA 06/19 11:02 Yes SOIL Copper - Total 1.00 06/07/2007 15:15 06/09 09:00 06/19 11:02 Yes SOIL 6010 NA NA MG/KG Lead - Total 1.00 06/07/2007 15:15 06/09 09:00 06/14 11:37 Yes SOIL MG/KG Mercury - Total 7471 NA NA 1.00 06/07/2007 15:15 06/09 09:00 06/19 11:02 Yes SOIL 6010 NA NA Nickel - Total MG/KG 06/19 11:02 Yes SOIL 1.00 06/07/2007 15:15 06/09 09:00 MG/KG Selenium - Total 6010 NΑ Silver - Total 6010 1.00 06/07/2007 15:15 06/09 09:00 NA NA 06/19 11:02 Yes SOIL MG/KG 1.00 06/07/2007 15:15 06/09 09:00 06/19 11:02 Yes SOIL 6010 NA MG/KG Thallium - Total NA 1.00 06/07/2007 15:15 06/09 09:00 06/19 11:02 Yes SOIL MG/KG Zinc - Total 6010 NA NA 6010 1.00 06/07/2007 15:30 06/09 09:00 06/19 11:07 Yes SOIL NΑ A7647611 MW-2(30-32)MG/KG Antimony - Total NA 06/19 11:07 Yes SOIL 6010 1.00 06 07 2007 15:30 06 09 09:00 MG/KG Arsenic - Total NA 6010 1.00 06/07/2007 15:30 06/09 09:00 06/19 11:07 Yes SOIL MG/KG Beryllium - Total NA 1.00 06/07/2007 15:30 06/09 09:00 06/19 11:07 Yes SOIL 6010 MG/KG Cadmium - Total NA MG/KG Chromium - Total 6010 1.00 06/07/2007 15:30 06/09 09:00 NΑ NA 06/19 11:07 Yes SOIL 1.00 06/07/2007 15:30 06/09 09:00 06/19 11:07 Yes SOIL 6010 MG/KG Copper - Total NA 1.00 06/07/2007 15:30 06/09 09:00 6010 06/19 11:07 Yes SOIL MG/KG Lead - Total NA Mercury - Total 7471 1.00 06/07/2007 15:30 06/09 09:00 NΑ NA 06/14 11:38 Yes SOIL MG/KG 1.00 06/07/2007 15:30 06/09 09:00 06/19 11:07 Yes SOIL 6010 MG/KG Nickel - Total NA NA 06/19 11:07 Yes SOIL MG/KG Selenium - Total 6010 1.00 06/07/2007 15:30 06/09 09:00 NA NA 1.00 06/07/2007 15:30 06/09 09:00 06/19 11:07 Yes SOIL 6010 MG/KG Silver - Total NA 1.00 06/07/2007 15:30 06/09 09:00 06/19 11:07 Yes SOIL 6010 MG/KG Thallium - Total NA 6010 1.00 06/07/2007 15:30 06/09 09:00 06/19 11:07 Yes SOIL MG/KG Zinc - Total NA 1.00 06/08/2007 09:15 06/09 09:00 06/19 11:12 Yes SOIL 6010 A7647612 MW-3(10-12) MG/KG Antimony - Total NΑ 1.00 06/08/2007 09:15 06/09 09:00 06/19 11:12 Yes SOIL MG/KG Arsenic - Total 6010 NA 1.00 06/08/2007 09:15 06/09 09:00 06/19 11:12 Yes SOIL 6010 MG/KG Beryllium - Total NA 06/19 11:12 Yes SOIL 6010 1.00 06/08/2007 09:15 06/09 09:00 MG/KG Cadmium - Total NA 6010 1.00 06/08/2007 09:15 06/09 09:00 NA NA 06/19 11:12 Yes SOIL MG/KG Chromium - Total 1.00 06/08/2007 09:15 06/09 09:00 06/19 11:12 Yes SOIL MG/KG 6010 NA NA Copper - Total 1.00 06/08/2007 09:15 06/09 09:00 06/19 11:12 Yes SOIL MG/KG Lead - Total 6010 NA NA 7471 1.00 06/08/2007 09:15 06/09 09:00 06/14 11:40 Yes SOIL NA MG/KG Mercury - Total NA 06/19 11:12 Yes SOIL MG/KG Nickel - Total 6010 1.00 06/08/2007 09:15 06/09 09:00 NA 6010 1.00 06/08/2007 09:15 06/09 09:00 06/19 11:12 Yes SOIL MG/KG Selenium - Total NA 06/19 11:12 Yes SOIL Silver - Total 6010 1.00 06 08 2007 09:15 06 09 09:00 NA MG/KG 1.00 06/08/2007 09:15 06/09 09:00 06/19 11:12 Yes SOIL MG/KG Thallium - Total 6010 NA 1.00 06/08/2007 09:15 06/09 09:00 06/19 11:12 Yes SOIL 6010 MG/KG Zinc - Total NΑ MG/KG 6010 1.00 06/08/2007 13:15 06/09 09:00 NA NA 06/19 11:18 Yes SOIL A7647613 MW-4(8-10) Antimony - Total MG/KG Arsenic - Total 6010 1.00 06/08/2007 13:15 06/09 09:00 NA NA 06/19 11:18 Yes SOIL 1.00 06/08/2007 13:15 06/09 09:00 06/19 11:18 Yes SOIL 6010 NA MG/KG Beryllium - Total NA 1.00 06/08/2007 13:15 06/09 09:00 MG/KG Cadmium - Total 6010 NΑ NA 06/19 11:18 Yes SOIL 6010 1.00 06/08/2007 13:15 06/09 09:00 06/19 11:18 Yes SOIL MG/KG Chromium - Total NΑ 6010 1.00 06/08/2007 13:15 06/09 09:00 سا 06/19 11:18 Yes SOI Copper - Total MG/KG NΑ NA 6010 1.00 06/08/2007 13:15 06/09 09:00 06/19 11:18 Yes SOIL MG/KG Lead - Total NA NA 06/14 11:41|Yes|SOII 7471 1.00 06/08/2007 13:15 06/09 09:00 MG/KG Mercury - Total NA NA 1.00 06/08/2007 13:15 06/09 09:00 06/19 11:18 Yes SOIL MG/KG Nickel - Total 6010 NA NA 1.00 06/08/2007 13:15 06/09 09:00 06/19 11:18 Yes SOIL 6010 NΑ MG/KG Selenium - Total

AHT = Analysis Holding Time Met
THT = TCLP Holding Time Met

NA = Not Applicable

Rept: ANO369

Date: 06/22/2007 10:29:10 Jobno: A07-6476

DELTA ENVIRONMENTAL CONSULTANTS, INC. SAMPLE CHRONOLOGY

Rept: ANO369

					Dilution	Sample	Receive	TCLP	T	Analysis	П	
Lab ID	Sample ID	Units	Analyte	Method	Factor	Date	Date	Date	THT	Date	THA	Matrix
A7647613	MW-4(8-10)	MG/KG	Silver - Total	6010	1.00	06/08/2007 13:15	06/09 09:00	NA	NA	06/19 11:18	Yes	SOIL
		MG/KG	Thallium - Total	6010		06/08/2007 13:15		NA	NA	06/19 11:18		
		MG/KG	Zinc - Total	6010		06/08/2007 13:15		NA	NA	06/19 11:18		
A7632901	TP-1 (10-12)	MG/KG	Antimony - Total	6010	1	06/04/2007 09:50		NA	NA	06/12 17:01		
		MG/KG	Arsenic - Total	6010		06/04/2007 09:50		NA.	NA	06/12 17:01	1 1	
		MG/KG	Beryllium - Total	6010		06/04/2007 09:50		NA	NA	06/12 17:01		
		MG/KG	Cadmium - Total	6010		06/04/2007 09:50		NA NA	NA	06/12 17:01		
ł		MG/KG	Chromium - Total	6010	1.00	06/04/2007 09:50	06/07 08:45	NA NA	NA	06/12 17:01		
		MG/KG	Copper - Total	6010		06/04/2007 09:50		NA NA	NA	06/12 17:01		
		MG/KG	Lead - Total	6010		06/04/2007 09:50		NA NA	NA	06/12 17:01		
		MG/KG	Mercury - Total	7471		06/04/2007 09:50		NA NA	NA	06/11 15:00		
		MG/KG	Nickel - Total	6010		06/04/2007 09:50		NA NA	NA	06/12 17:01		
		MG/KG	Selenium - Total	6010		06/04/2007 09:50		NA NA	NA	06/12 17:01		
		MG/KG	Silver - Total	6010		06/04/2007 09:50		NA NA	NA	06/12 17:01		
		MG/KG	Thallium - Total	6010		06/04/2007 09:50		NA NA	NA	06/12 17:01		
		MG/KG	Zinc - Total	6010		06/04/2007 09:50		NA NA	NA NA			
A7632902	TP-2 (10-12)	MG/KG	Antimony - Total	6010		06/04/2007 11:20				06/12 17:01		
711 032702	2 (10 12)	MG/KG	Arsenic - Total	6010	1.00	06/04/2007 11:20	06/07 08:45	NA NA	NA NA	06/12 17:39		
		MG/KG	Beryllium - Total	6010	1.00	06/04/2007 11:20	06/07 08:43	NA NA	1	06/12 17:39 06/12 17:39		
		MG/KG	Cadmium - Total	6010		06/04/2007 11:20			NA	1 4		
		MG/KG	Chromium - Total	6010		06/04/2007 11:20		NA NA	NA	06/12 17:39	1 1	
		MG/KG	Copper - Total	6010		06/04/2007 11:20		NA NA	NA	06/12 17:39	1 1	
		MG/KG	Lead - Total	6010	1.00	06/04/2007 11:20	00/07 00:45	NA	NA	06/12 17:39		
		MG/KG	Mercury - Total	7471	1.00	06/04/2007 11:20	06/07 08:45	NA	NA	06/12 17:39		
		MG/KG	Nickel - Total	6010		06/04/2007 11:20		NA	NA	06/11 15:10		
		MG/KG		6010		06/04/2007 11:20		NA	NA	06/12 17:39		
		MG/KG	Silver - Total	6010		06/04/2007 11:20		NA	NA	06/12 17:39		
		MG/KG	Thallium - Total	6010	1.00	06/04/2007 11:20	06/07 08:45	NA	NA	06/12 17:39		
İ		MG/KG	Zinc - Total	6010	1.00	06/04/2007 11:20	06/07 08:45	NA .	NA	06/12 17:39		
A7632903	TP-3 (8-10)	MG/KG	Antimony - Total	6010		06/04/2007 11:20		NA	NA	06/12 17:39		
77 032703	11 3 (0 10)	MG/KG	Arsenic - Total	6010	1.00	06/04/2007 12:55	06/07 08:45	NA	NA	06/12 17:44		
		MG/KG	Beryllium - Total	6010		06/04/2007 12:55		NA	NA	06/12 17:44		
İ		MG/KG	Cadmium - Total	6010		06/04/2007 12:55		NA	NA	06/12 17:44	1 1	
		MG/KG	Chromium - Total	6010	1.00	06/04/2007 12:55	06/07 08:45	NA	NA	06/12 17:44		
		MG/KG	Copper - Total	1	1.00	06/04/2007 12:55	06/07 08:45	NA	NA	06/12 17:44		
		MG/KG	Lead - Total	6010 6010	1.00	06/04/2007 12:55	06/07 08:45	NA	NA	06/12 17:44	1 1	
		MG/KG	Mercury - Total	7471		06/04/2007 12:55		NA	NA	06/12 17:44	1 1	
		MG/KG	Nickel - Total		1.00	06/04/2007 12:55	06/07 08:45	NA	NA	06/11 15:11		
		MG/KG	Selenium - Total	6010	1.00	06/04/2007 12:55	06/07 08:45	NA	NA	06/12 17:44		
1		MG/KG	Silver - Total	6010		06/04/2007 12:55		NA	NA	06/12 17:44		
		MG/KG		6010		06/04/2007 12:55		NA	NA	06/12 17:44		
			Thallium - Total	6010		06/04/2007 12:55		NA	NA	06/12 17:44		
A7632904	TP-4 (10-12)	MG/KG	Zinc - Total	6010		06/04/2007 12:55		NA	NA	06/12 17:44		
A7032704	115-4 (10-12)	MG/KG MG/KG	Antimony - Total	6010		06/04/2007 15:15		NA	NA	06/12 17:49		
			Arsenic - Total	6010		06/04/2007 15:15		NA	NA	06/12 17:49	Yes	SOI
		MG/KG	Beryllium - Total	6010	1.00	06/04/2007 15:15	06/07 08:45	NA	NA	06/12 17:49	Yes !	SOIL
		MG/KG	Cadmium - Total	6010		06/04/2007 15:15		NA	NA	06/12 17:49	Yes	SOI 🔼
		MG/KG	Chromium - Total	6010		06/04/2007 15:15		NA	NA	06/12 17:49		
	<u> </u>	MG/KG	Copper - Total	6010	1.00	06/04/2007 15:15	06/07 08:45	NA	NA	06/12 17:49	Yes	SOIL
			the control of the co	-	·	-	L			<u> </u>		

AHT = Analysis Holding Time Met

THT = TCLP Holding Time Met

NA = Not Applicable

Jobno: A07-6329

DELTA ENVIRONMENTAL CONSULTANTS, INC. SAMPLE CHRONOLOGY

6010

6010

6010

6010

6010

7471

6010

6010

6010

6010

6010

1.00 06/05/2007 12:05 06/07 08:45

1.00 06/05/2007 12:05 06/07 08:45

1.00 06/05/2007 12:05 06/07 08:45

1.00 06/05/2007 12:05 06/07 08:45

1.00 06/05/2007 12:05 06/07 08:45

1.00 06/05/2007 12:05 06/07 08:45

1.00 06/05/2007 12:05 06/07 08:45

1.00 06/05/2007 12:05 06/07 08:45

1.00 06/05/2007 12:05 06/07 08:45

1.00 06/05/2007 12:05 06/07 08:45

1.00 06/05/2007 12:05 06/07 08:45

Rept: ANO369

AHT Matrix

06/12 17:59 Yes SOIL

06/12 17:59 Yes SOIL

06/12 17:59 Yes SOIL

06/12 17:59 Yes SOIL

06/12 17:59 Yes SOIL

06/11 15:16 Yes SOIL

06/12 17:59 Yes SOIL

06/12 17:59 Yes SOIL

06/12 17:59 Yes SOIL

06/12 17:59 Yes SOIL

06/12 17:59 Yes SOIL

NΑ

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

Dilution Sample Receive TCLP Analysis Date THT Date Method Factor Date Date Lab ID Sample ID Units Analyte 1.00 06/04/2007 15:15 06/07 08:45 06/12 17:49 Yes SOIL 6010 NA A7632904 TP-4 (10-12) MG/KG Lead - Total 1.00 06/04/2007 15:15 06/07 08:45 06/11 15:13 Yes SOIL Mercury - Total 7471 NA MG/KG 1.00 06/04/2007 15:15 06/07 08:45 06/12 17:49 Yes SOIL 6010 NA MG/KG Nickel - Total 1.00 06/04/2007 15:15 06/07 08:45 06/12 17:49 Yes SOIL 6010 NA MG/KG Selenium - Total 06/12 17:49 Yes SOIL 6010 1.00 06/04/2007 15:15 06/07 08:45 NA MG/KG Silver - Total 1.00 06/04/2007 15:15 06/07 08:45 06/12 17:49 Yes SOIL 6010 NA MG/KG Thallium - Total 06/12 17:49 Yes SOIL 1.00 06/04/2007 15:15 06/07 08:45 MG/KG Zinc - Total 6010 NA 1.00 06/05/2007 10:20 06/07 08:45 06/12 17:54 Yes SOIL 6010 NA NA MG/KG Antimony - Total A7632905 TP-5 (3-4) 1.00 06/05/2007 10:20 06/07 08:45 06/12 17:54 Yes SOIL 6010 NA MG/KG Arsenic - Total 06/12 17:54 Yes SOIL MG/KG 6010 1.00 06/05/2007 10:20 06/07 08:45 NΑ Beryllium - Total 1.00 06/05/2007 10:20 06/07 08:45 06/12 17:54 Yes SOIL 6010 Cadmium - Total NA NA MG/KG 06/12 17:54 Yes SOIL 1.00 06/05/2007 10:20 06/07 08:45 MG/KG Chromium - Total 6010 NA NΑ 6010 1.00 06/05/2007 10:20 06/07 08:45 NA NA 06/12 17:54 Yes SOIL MG/KG Copper - Total 1.00 06/05/2007 10:20 06/07 08:45 06/12 17:54 Yes SOIL 6010 NA MG/KG Lead - Total NA 06/11 15:15 Yes SOIL MG/KG 7471 1.00 06/05/2007 10:20 06/07 08:45 NA Mercury - Total 1.00 06/05/2007 10:20 06/07 08:45 06/12 17:54 Yes SOIL 6010 NA NA MG/KG Nickel - Total 06/12 17:54 Yes SOIL 1.00 06/05/2007 10:20 06/07 08:45 MG/KG Selenium - Total 6010 NA 6010 1.00 06/05/2007 10:20 06/07 08:45 NA NA 06/12 17:54 Yes SOIL MG/KG |Silver - Total 1.00 06/05/2007 10:20 06/07 08:45 06/12 17:54 Yes SOIL 6010 NA MG/KG Thallium - Total MG/KG Zinc - Total 6010 1.00 06/05/2007 10:20 06/07 08:45 NΑ 06/12 17:54 Yes SOIL 6010 1.00 06/05/2007 12:05 06/07 08:45 06/12 17:59 Yes SOIL NA NA A7632906 TP-6 (6-8) MG/KG Antimony - Total 1.00 06/05/2007 12:05 06/07 08:45 06/12 17:59 Yes SOIL MG/KG Arsenic - Total 6010 NA

MG/KG

MG/KG

MG/KG

MG/KG

MG/KG

MG/KG

MG/KG

MG/KG

MG/KG

MG/KG

MG/KG

Beryllium - Total

Cadmium - Total

Copper - Total

Mercury - Total

Selenium - Total

Thallium - Total

Nickel - Total

Silver - Total

Zinc - Total

Lead - Total

Chromium - Total

Date: 06/22/2007 10:29:10 Jobno: A07-6476

DELTA ENVIRONMENTAL CONSULTANTS, INC. QC CHRONOLOGY

Rept: ANO369

Dilution Sample Receive TCLP Analysis Lab ID Sample ID Units Analyte Method Factor Date Date Date THT Date AHT Matrix A7647601MS MW-1 (8-10) MG/KG 1.00 06/06/2007 12:30 06/09 09:00 Antimony - Total 6010 06/19 10:05 Yes SOIL NA MG/KG Arsenic - Total 6010 1.00 06/06/2007 12:30 06/09 09:00 NA 06/19 10:05 Yes SOIL MG/KG Beryllium - Total 6010 1.00 06/06/2007 12:30 06/09 09:00 NA 06/19 10:05 Yes SOIL MG/KG Cadmium - Total 6010 1.00 06/06/2007 12:30 06/09 09:00 NA 06/19 10:05 Yes SOIL MG/KG Chromium - Total 6010 1.00 06/06/2007 12:30 06/09 09:00 06/19 10:05 Yes SOIL NA NA MG/KG 1.00 06/06/2007 12:30 06/09 09:00 Copper - Total 6010 NA 06/19 10:05 Yes SOIL MG/KG Lead - Total 6010 1.00 06/06/2007 12:30 06/09 09:00 06/19 10:05 Yes SOIL NA MG/KG Nickel - Total 6010 1.00 06/06/2007 12:30 06/09 09:00 06/19 10:05 Yes SOIL NA MG/KG Selenium - Total 6010 1.00 06/06/2007 12:30 06/09 09:00 06/19 10:05 Yes SOIL NA MG/KG Silver - Total 6010 1.00 06/06/2007 12:30 06/09 09:00 06/19 10:05 Yes SOIL NA MG/KG Thallium - Total 6010 1.00 06/06/2007 12:30 06/09 09:00 06/19 10:05 Yes SOIL NA MG/KG Zinc - Total 6010 1.00 06/06/2007 12:30 06/09 09:00 06/19 10:05 Yes SOIL NA A7647601SD MW-1 (8-10) MG/KG 6010 1.00 06/06/2007 12:30 06/09 09:00 Antimony - Total 06/19 10:10 Yes SOIL NA MG/KG Arsenic - Total 1.00 06/06/2007 12:30 06/09 09:00 6010 06/19 10:10 Yes SOIL NA NA MG/KG Beryllium - Total 6010 1.00 06/06/2007 12:30 06/09 09:00 06/19 10:10 Yes SOIL NA NA MG/KG Cadmium - Total 6010 1.00 06/06/2007 12:30 06/09 09:00 06/19 10:10 Yes SOIL NA MG/KG Chromium - Total 6010 1.00 06/06/2007 12:30 06/09 09:00 06/19 10:10 Yes SOIL NA MG/KG 6010 06/19 10:10 Yes SOIL Copper - Total 1.00 06/06/2007 12:30 06/09 09:00 NA MG/KG Lead - Total 6010 1.00 06/06/2007 12:30 06/09 09:00 06/19 10:10 Yes SOIL NA MG/KG Nickel - Total 6010 1.00 06/06/2007 12:30 06/09 09:00 06/19 10:10 Yes SOIL NA MG/KG 6010 Selenium - Total 1.00 06/06/2007 12:30 06/09 09:00 NA 06/19 10:10 Yes SOIL MG/KG Silver - Total 6010 1.00 06/06/2007 12:30 06/09 09:00 06/19 10:10 Yes SOIL NA MG/KG Thallium - Total 6010 1.00 06/06/2007 12:30 06/09 09:00 06/19 10:10 Yes SOIL NA NA MG/KG Zinc - Total 6010 1.00 06/06/2007 12:30 06/09 09:00 06/19 10:10 Yes SOIL NA NA A7632901MS TP-1 (10-12) MG/KG Antimony - Total 6010 1.00 06/04/2007 09:50 06/07 08:45 06/12 17:16 Yes SOIL NA MG/KG 6010 Arsenic - Total 1.00 06/04/2007 09:50 06/07 08:45 06/12 17:16 Yes SOIL NA MG/KG Beryllium - Total 6010 1.00 06/04/2007 09:50 06/07 08:45 06/12 17:16 Yes SOIL NA MG/KG Cadmium - Total 6010 1.00 06/04/2007 09:50 06/07 08:45 06/12 17:16 Yes SOIL NA MG/KG Chromium - Total 6010 1.00 06/04/2007 09:50 06/07 08:45 06/12 17:16 Yes SOIL NA MG/KG Copper - Total 6010 1.00 06/04/2007 09:50 06/07 08:45 NA 06/12 17:16 Yes SOIL MG/KG Lead - Total 6010 1.00 06/04/2007 09:50 06/07 08:45 NA 06/12 17:16 Yes SOIL MG/KG Mercury - Total 7471 1.00 06/04/2007 09:50 06/07 08:45 06/11 15:06 Yes SOIL NA MG/KG Nickel - Total 6010 1.00 06/04/2007 09:50 06/07 08:45 06/12 17:16 Yes SOIL NA MG/KG 1.00 06/04/2007 09:50 06/07 08:45 Selenium - Total 6010 06/12 17:16 Yes SOIL NA NA MG/KG 1.00 06/04/2007 09:50 06/07 08:45 Silver - Total 6010 06/12 17:16 Yes SOIL NA 1.00 06/04/2007 09:50 06/07 08:45 MG/KG Thallium - Total 6010 06/12 17:16 Yes SOIL NA MG/KG Zinc - Total 6010 1.00 06/04/2007 09:50 06/07 08:45 06/12 17:16 Yes SOIL NΑ A7632901SD TP-1 (10-12) MG/KG Antimony - Total 6010 1.00 06/04/2007 09:50 06/07 08:45 06/12 17:34 Yes SOIL NA MG/KG Arsenic - Total 6010 1.00 06/04/2007 09:50 06/07 08:45 NA 06/12 17:34 Yes SOIL MG/KG Beryllium - Total 6010 1.00 06/04/2007 09:50 06/07 08:45 06/12 17:34 Yes SOIL NA MG/KG Cadmium - Total 6010 1.00 06/04/2007 09:50 06/07 08:45 06/12 17:34 Yes SOIL NA MG/KG Chromium - Total 6010 1.00 06/04/2007 09:50 06/07 08:45 06/12 17:34 Yes SOIL NA NA MG/KG Copper - Total 6010 1.00 06/04/2007 09:50 06/07 08:45 06/12 17:34 Yes SOIL NA NA MG/KG 1.00 06/04/2007 09:50 06/07 08:45 Lead - Total 6010 06/12 17:34 Yes SOII NA NA MG/KG Mercury - Total 7471 1.00 06/04/2007 09:50 06/07 08:45 06/11 15:08 Yes SOIL NA MG/KG Nickel - Total 6010 1.00 06/04/2007 09:50 06/07 08:45 NA 06/12 17:34 Yes SOIL MG/KG 6010 Selenium - Total 1.00 06/04/2007 09:50 06/07 08:45 06/12 17:34 Yes SOIL NA NΑ MG/KG Silver - Total 6010 1.00 06/04/2007 09:50 06/07 08:45 NA 06/12 17:34 Yes SOIL

AHT = Analysis Holding Time Met

THT = TCLP Holding Time Met

NA = Not Applicable

DELTA ENVIRONMENTAL CONSULTANTS, INC. QC CHRONOLOGY

VIRONMENTAL CONSULTANTS, INC. Rept: ANO369

Lab ID	Sample ID	Units	Analyte	Method	Dilution Factor	Sample Date	Receive Date	TCLP Date	тнт	Analysis Date	АНТ	Matrix
A7632901SD	TP-1 (10-12)	MG/KG	Thallium - Total	6010	1.00	06/04/2007 09:50	06/07 08:45	NA	NA	06/12 17:34		
		MG/KG	Zinc - Total	6010	1.00	06/04/2007 09:50	06/07 08:45	NA	NA	06/12 17:34		
A7B0900702	Method Blank	MG/KG	Mercury - Total	7471	1.00		- 08:45	NA	NA	06/11 15:28	Yes	SOIL
A7B0903702	Method Blank	MG/KG	Antimony - Total	6010	1.00	-	- 08:45	NA	NA	06/12 16:46	Yes	SOIL
		MG/KG	Arsenic - Total	6010	1.00	-	- 08:45	NA	NA	06/12 16:46	Yes	SOIL
		MG/KG	Beryllium - Total	6010	1.00	-	- 08:45	NA	NA	06/12 16:46	Yes	SOIL
		MG/KG	Cadmium - Total	6010	1.00	- 1	- 08:45	NA	NA	06/12 16:46	Yes	SOIL
		MG/KG	Chromium - Total	6010	1.00	-	- 08:45	NA	NA	06/12 16:46		
		MG/KG	Copper - Total	6010	1.00	-	- 08:45	NA	NA	06/12 16:46	Yes	SOIL
		MG/KG	Lead - Total	6010	1.00		- 08:45	NA	NA	06/12 16:46		
		MG/KG	Nickel - Total	6010	1.00	-	- 08:45	NA	NA	06/12 16:46	Yes	SOIL
		MG/KG	Selenium - Total	6010	1.00	-	- 08:45	NA	NA	06/12 16:46	Yes	SOIL
		MG/KG	Silver - Total	6010	1.00	-	- 08:45	NA	NA	06/12 16:46	Yes	SOIL
		MG/KG	Thallium - Total	6010	1.00	-	- 08:45	NA	NA	06/12 16:46	Yes	SOIL
		MG/KG	Zinc - Total	6010	1.00	-	- 08:45	NA	NA	06/12 16:46	Yes	SOIL
A7B0921902	Method Blank	MG/KG	Mercury - Total	7471	1.00	-	- 09:00	NA	NA	06/14 11:51		
	Method Blank	MG/KG	Antimony - Total	6010	1.00	-	- 09:00	NA	NA	06/19 09:33	Yes	SOIL
		MG/KG	Arsenic - Total	6010	1.00	-	- 09:00	NA	NA	06/19 09:33	Yes	SOIL
		MG/KG	Beryllium - Total	6010	1.00		- 09:00	NA	NA	06/19 09:33		
		MG/KG	Cadmium - Total	6010	1.00	-	- 09:00	NA	NA	06/19 09:33	Yes	SOIL
:		MG/KG	Chromium - Total	6010	1.00	_	- 09:00	NA	NA	06/19 09:33	Yes	SOIL
		MG/KG	Copper - Total	6010	1.00		- 09:00	NA	NA	06/19 09:33		
		MG/KG	Lead - Total	6010	1.00		- 09:00	NA	NA	06/19 09:33		
		MG/KG	Nickel - Total	6010	1.00		- 09:00	NA	NA	06/19 09:33		
		MG/KG	Selenium - Total	6010	1.00		- 09:00	NA	NA	06/19 09:33		
		MG/KG	Silver - Total	6010	1.00		- 09:00	NA	NA	06/19 09:33		
		MG/KG	Thallium - Total	6010	1.00	•	- 09:00	NA	NA	06/19 09:33		
		MG/KG	Zinc - Total	6010	1.00		- 09:00	NA	NA	06/19 09:33		
A7B0900701	LCS	MG/KG	Mercury - Total	7471	1.00	l .	- 08:45	NA	NA	06/11 15:26		
A7B0921901		MG/KG	Mercury - Total	7471	1.00		- 09:00	NA	NA	06/14 11:50		
	LCS CLP Soils	MG/KG	Antimony - Total	6010	1.00	I .	- 08:45	NA	NA	06/12 16:51		
ALEONOSTOT	200 021 00113	MG/KG	Arsenic - Total	6010	1.00	1	- 08:45	NA.	NA	06/12 16:51		
		MG/KG	Beryllium - Total	6010	1.00	1	- 08:45	NA.	NA	06/12 16:51	1	1 1
		MG/KG	Cadmium - Total	6010	1.00		- 08:45	NA	NA	06/12 16:51		
		MG/KG	Chromium - Total	6010	1.00	I .	- 08:45	NA	NA	06/12 16:51		
		MG/KG	Copper - Total	6010	1.00		- 08:45	NA.	NA	06/12 16:51		
		MG/KG	Lead - Total	6010	1.00	1	- 08:45	NA.	NA	06/12 16:51		
		MG/KG	Nickel - Total	6010	1.00	1	- 08:45	NA .	NA	06/12 16:51		
		MG/KG	Selenium - Total	6010	1.00	1	- 08:45	NA	NA	06/12 16:51		
		MG/KG	Silver - Total	6010	1.00	l .	- 08:45	NA	NA	06/12 16:51		
	1	MG/KG	Thallium - Total	6010	1.00	li .	- 08:45	NA NA	NA	06/12 16:51		
		MG/KG	Zinc - Total	6010	1.00		- 08:45	NA.	NA	06/12 16:51		
47B0947101	LCS CLP Soils	MG/KG	Antimony - Total	6010	1.00	1	- 09:00	NA NA	NA	06/19 09:38		
7,100,41,101	203 021 30103	MG/KG	Arsenic - Total	6010	1.00		- 09:00	NA.	NA	06/19 09:38	Yes	SOLINA
		MG/KG	Beryllium - Total	6010	1.00		- 09:00	NA NA	NA	06/19 09:38		
		MG/KG	Cadmium - Total	6010	1.00	i e	- 09:00	NA NA	NA	06/19 09:38		
		MG/KG	Chromium - Total	6010	1.00		- 09:00	NA NA	NA	06/19 09:38		
		MG/KG	Copper - Total	6010	1.00		- 09:00		NA	06/19 09:38		
L		1,10,10	Tooks Tooks	1-2.2	1		1 37.00	1	1	1-1, 0,130	1	

AHT = Analysis Holding Time Met THT = TCLP Holding Time Met

NA = Not Applicable

STL Buffalo

Date: 06/22/2007 10:29:10

Jobno: A07-6476

DELTA ENVIRONMENTAL CONSULTANTS, INC.

QC CHRONOLOGY

Rept: ANO369

Dilution Sample Receive TCLP Analysis Lab ID Sample ID Units Analyte Method Factor Date Date Date THT Date AHT Matrix A7B0947101 LCS CLP Soils MG/KG Lead - Total 6010 1.00 - 09:00 06/19 09:38 Yes SOIL NA NA 06/19 09:38 Yes SOIL MG/KG Nickel - Total 6010 1.00 - 09:00 NΑ 06/19 09:38 Yes SOIL MG/KG Selenium - Total 6010 1.00 - 09:00 NA NA MG/KG Silver - Total 6010 06/19 09:38 Yes SOIL 1.00 - 09:00 NΑ NA MG/KG Thallium - Total 6010 NA 06/19 09:38 Yes SOIL 1.00 - 09:00 NA 06/19 09:38 Yes SOIL MG/KG Zinc - Total 6010 1.00 - 09:00 NA NA

Chain of Custody Record

STL-4124 (0901) Client		Project Ma	nager			_										Į D.	ale _					Chai	n of Custo	dy Nun	ber	
DEWA ENV CONSULTA	NI		Sc	157		5	m	M	N	-							6-	<u>- }</u>	0	<u>Z</u>			298	366	<u> 31</u>	
Address 185 Jonan RD			78		rea Co. 3 · 0	ÓJ	-g'	/-	(7	٤ ۽	203	00	ک	2_			Nun					Pag	je		of	<u>'</u>
City State Zip C Project Name and Cocation (State)	2180	STO Conta	Du	PK lumbe		La	3.4 3.4	An	147	jr,	MEC	1 17	U	0	mo	re sp	is (At	tach i	ist if ided)			1320				
Contract/Purchase Order/Quote No.	St tranki NH	<u> </u>	·	Matrix	· 	T		Conte				G P26	Ş	MERIO	8.							8			struction of Rece	
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Aqueous	Sec	38	Unpres.	H2S04	HNO3	Ę	Zhaci A	NaOH.	Z	Space	2	2							1974				
MW-1 (8-10')	6-6-07 12	230			1	<u> </u>	1			\perp				[-	1							2				
GSB-5 (12-14')	6-7-07 14	30			1					\prod		$oxed{oxed}$		1												
GSB-8 (12-14')		145				\prod						I	17	1	1		T					\prod				
CSB-9 77-9')		2015			\prod	\prod				T		П	П	П					Π							
A 65B-10 (10-12')		245			7	\top							П	IT	T	П			T			\sqcap				
& GSB-11 (12-14)		300	T		#	#	$\dagger \dagger$	\Box	\top	\top	+		H	11	1			+								
GS9-12 (12-14')	1	400	1		H	\parallel	\Box		\dagger	+	1		\parallel	#	\parallel			\top	T							-
		410	+-	\vdash	H	#			T	+	-		H	$\dagger \dagger$	\dagger			_	+	\vdash		$\neg \dagger$				
21H GSB-13 (10-12') 22H GSB-14 (14-16)		605	+	\vdash	H	╫	+		\dashv	+	+	╁╂	H	╁	$\dagger \uparrow$	\vdash	\dashv	\dashv	+			\dashv			-,	
MW-2 (10-12)		515	+-	\vdash	H	╫	+	1	\dashv	+	+	+	H	H	+	\vdash		\dashv	+	H	-	+				
mW-2 (30-32)		530	+		╫	╫	+	\vdash	\dashv	+	+	+	H	╁	╁	+	+	+	+		-					
-mw-3 (10-12)	6-8-07 9	115	+		+	\mathcal{H}	+		-	+	╁	H	H	$oldsymbol{H}$	${\color{blue}+}$	-	\vdash	-	+	\vdash		\vdash			·	
Possible Hazard Identification		315	Samo	le Dis	osai	إدل	لسار	لِـا		ــــــــــــــــــــــــــــــــــــــ		Щ	Ц	Ц	1	11		L_		Ļ			 		·	
	☐ Paison B ☐	Unknown			To Clie	nt		Dispos	al By	Lab		Arci	hive i	For			Month	(A 18 lo	l fee n nger ti	nay be han 1	mor	essec ith)	if sample:	are re	tained	
Turn Around Time Required	F-1	⊡ Othe	<i> }</i> }	AL	,		lac	Requ	irem	ents (Specify		~						*				,	1		
24 Hours 48 Hours 7 Days 14 Da	ys 21 Days	Date	0	Tin		_	-	Receiv	red B	<u>_</u>	Mo	W2	_									, 0	ate /	/	Time	
Scatt - Son		6-8-6	7	1	64	5		M	`	C					-								1910	22	031	$\underline{\infty}$
2 Melhydished By	>	Date		Tir	ne	•	2. F	lecei	red B	y									. —				ate	-	Time	
3. Relinquished By		Date		Tin	ne .	7.	3. F	Recei	ved B	У												10	ate	 	Time	
SVOCS 34 8270 DISTRIBUTION: WHITE - Returned to Client with Report: C	PLUI D	I MEXT	HYL	F	M.M.	PH	mil								<u> </u>	2	. (> .	٠, ر	· · · ·	_					

Chain of Custody Record

STL-4124 (0901)																						•			
DELTA EN CONSULTANT	(Project Ma			3 m	10.		-								Date /o-)-م)	07		Chain	2°0	S F	lumber 60		
		Telephone						nber								Lab Nun									
185 JONDAN RD	WHITE AND A STATE OF THE STATE	518	2				5	78	2	03	005	7							,	Page	e		_ of		
City State Zip	Code 2180	Site Conta	•	ırk	N	Lab	Conta	act MV	Fis	CHE	1			,	moi	alysis (Atı re space i	tach lis s need	st if led)		S					
Project Name and Location (State)												260	F	5	١.١				1	Z				•	
COUKSON ELECTEONICS PANNER	YST FRANKL	N										82	DMF	E	2				1 .	200	Sno	ecial :	Instru	ctions/	
Contract/Purchase Order/Quote No.	N	#	- 1	Matrix					ainer ervati			25	2+	Mεi	2808					-				Receipt	
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Aqueous	Deg S	Soil	Unpres.	H2SO4	HNO3	Ž	NaOH ZnAc/	VaO.	700		PP	PLBS					1077					
TP-1 (10-121)	6-4-07 0	950	Ť			1		Ť	Ť										-	2					
TP-2 (10-12)	1 11	120		П	1	1			T				1	1	1					1					
TP-3 (8-10)	12	23																		\prod					
TP-4 (10+2')		45				Ш																			
TP-5 (3-4')	6-5-07 10	020			$\perp \!\!\! \perp$	Ш																		en gr	
Tr-6 (6-8')	1 7	-05			$\perp \!\!\! \perp$	Ш			ľ				٧	4	y					4		٠			
GSB-1 (18-20')	1	(00			1							Ш													
GSB-2 (16-18')	11	115										Ш								1					
C5B-3 (10-12')	i	150			Ц_	Ц			1			Ш	1	_						2					
CSB-4 (8-10°)		220			Ш	Ш			\perp			Ш	Ш	\perp											
G-SB-6 (10-12)		400	ļ			Ц				\bot		Ш		Ш	Ш					Ш			-		
GSB-7 (10-12)	4 15	.45	1		Y	4						↓		1	V					*					
Possible Hazard Identification	<u> </u>		Samp	le Dis	osal		· · · · · ·	_				<u></u>					<u>-</u>	ee may	he asse	secod if	f campi	loe ara	retaine		-
	Poison B	Unknown		eturn	o Clien	t	U Di	ispos	al By	Lab		Arch	ive F	or _		Months		ger than			Janipi	63 a16	· Ctairio	,	
Turn Around Time Required			10				l		ireme	ents (S	Specify)												, , , , ,	
	iys 🗌 21 Days	Other.	70					10		Nø	MQ.		4	_)									
1. Relinquistled By	. •	Sate	07	Tim	630		1. Re	eceiv	ed B		on		4	L		<u> </u>	S 17	~_		Date	%) }\o}	15	Time	84	5
2. Relinquished By		Date		Tim			2: Re	eceila	ed B	V				1			<i>~</i>			Dal	е	(Time		− 5
3. Relinquished By		Date		Tim	9		3. Re	eceiv	ed By	<u>, </u>										Date	e		Time		
Comments		<u> </u>												_		<u> </u>			·				<u></u>		0
SVOCS by 8270 PLUS	DIMETHYL	form	AM	IIDE									(~	2.0	څ (\sum	>						
DISTRIBUTION: WHITE - Returned to Client with Report;	CANARY - Stays with	the Sample	PINE	K - Fie	а Сору								て												-

STL

STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

August 21, 2007

Mr. Scott Bryant Delta Environmental 185 Jordan Rd. Troy, NY 12180

RE: REVISION for SDG 6329

Dear Mr. Bryant:

Please find enclosed the analytical report pages concerning samples recently submitted by your firm. Specifically, they are the Tentatively Identified Compound (TIC) pages added per your request. The pertinent information regarding these analyses is listed below:

Site: Cookson/Tannery Street site

Event: Soil sampling

If you have any questions concerning these data, please contact the Project Manager at (716) 691-2600 and refer to the I.D. number listed below. It has been our pleasure to provide Delta and the Cookson/Tannery Street site with environmental testing services. We look forward to serving you in the future.

Sincerely,

STL Buffalo

For. Brian J. Fischer Project Manager

Lama Il Sullow

BJF:lhs Enclosure I.D. SDG 6329 #NY4A9341

	['	GSB-1 (18-20)
Lab Name: STL Buffalo Contract:	L	
Lab Code: RECNY Case No.: SAS No.:	SDG No.: <u>6329</u>	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A7632907
Sample wt/vol: $\underline{5.08}$ (g/mL) \underline{G}	Lab File ID:	F6509.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	06/05/2007 06/07/2007
% Moisture: not dec. <u>3.0</u>	Date Analyzed:	06/11/2007
GC Column: <u>ZB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume: (uL)
Number TICs found: <u>0</u>	CONCENTRATION UNIT (ug/L or ug/Kg)	
		the second secon

CAS NO.	Compound Name	RT	Est. Conc.	Q

		GSB-10 (10-12)
Lab Name: STL Buffalo Contract:	<u> </u>	
Lab Code: RECNY Case No.: SAS No.:	SDG No.: <u>6329</u>	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A7647605
Sample wt/vol: $\underline{5.06}$ (g/mL) \underline{G}	Lab File ID:	F6543.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	06/07/2007 06/09/2007
% Moisture: not dec. 2.4	Date Analyzed:	06/12/2007
GC Column: <u>ZB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor	:1.00
Soil Extract Volume: (uL)	Soil Aliquot Vo	lume: (uL)
Number TICs found:1	CONCENTRATION UNIT (ug/L or ug/Kg)	

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 110-54-3	HEXANE	2.71	6	JN

		GSB-11 (12-14)
Lab Name: STL Buffalo Contract:	_	
Lab Code: RECNY Case No.: SAS No.:	SDG No.: <u>6329</u>	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A7647606
Sample wt/vol: 5.01 (g/mL) G	Lab File ID:	F6544.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	06/07/2007 06/09/200
% Moisture: not dec. <u>60.8</u>	Date Analyzed:	06/12/2007
GC Column: <u>ZB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor	:1.00
Soil Extract Volume: (uL)	Soil Aliquot Vo	lume: (uL)
Number TICs found: <u>1</u>	CONCENTRATION UNIT (ug/L or ug/Kg)	

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 110-54-3	HEXANE	2.71	15	JN

Client No.

	GSB-12 (12-14)
--	----------------

Lab Name: STL Buffalo Contract: _____

Lab Code: <u>RECNY</u> Case No.: _____ SAS No.: ____ SDG No.: <u>6329</u>

Matrix: (soil/water) SOIL Lab Sample ID: A7647607

Sample wt/vol: $\underline{5.07}$ (g/mL) \underline{G} Lab File ID: $\underline{F6545.RR}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>06/07/2007</u> <u>06/09/2007</u>

% Moisture: not dec. 2.3 Date Analyzed: 06/12/2007

GC Column: ZB-624 ID: 0.25 (mm) Dilution Factor: 1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

Number TICs found: <u>1</u> (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 110-54-3	HEXANE	2.71	5	JN

	GSB-13 (10-12)
Lab Name: STL Buffalo Contract:	
Lab Code: RECNY Case No.: SAS No.:	SDG No.: <u>6329</u>
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: <u>A7647608</u>
Sample wt/vol: $\underline{5.02}$ (g/mL) \underline{G}	Lab File ID: <u>F6546.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv: <u>06/07/2007</u> <u>06/09/200</u>
% Moisture: not dec. <u>1.2</u>	Date Analyzed: <u>06/12/2007</u>
GC Column: <u>ZB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
Number TICs found:0	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q

Client No.

GSB-14 (14-16)
000 11(11 10)

Lab Name: <u>STL Buffalo</u> Contract:	
--	--

Lab Code: <u>RECNY</u> Case No.: _____ SAS No.: ____ SDG No.: <u>6329</u>

Matrix: (soil/water) SOIL Lab Sample ID: A7647609

Sample wt/vol: $\underline{}$ 5.15 (g/mL) $\underline{}$ Lab File ID: $\underline{}$ F6547.RR

Level: (low/med) Level: Date Samp/Recv: $\underline{06/07/2007}$ $\underline{06/09/2007}$

% Moisture: not dec. 4.3 Date Analyzed: 06/12/2007

GC Column: ZB-624 ID: 0.25 (mm) Dilution Factor: 1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

Number TICs found: 1 (ug/L or ug/Kg) <u>UG/KG</u>

	CAS NO. Compound Name		RT Est. Conc.		Q
ĺ	1. 110-54-3	HEXANE	2.71	6	JN

Client No.

GSB-2 (16-18)

Lab Name:	STL Buffalo	Contract:	-	
Lab Code:	<u>RECNY</u> Case No.	: SAS No.:	SDG No.: <u>6329</u>	
Matrix: (soil/water) <u>SOIL</u>		Lab Sample ID:	A7632908
Sample wt	/vol: 5.20	<u>)</u> (g/mL) <u>G</u>	Lab File ID:	F6510.RR
Level:	(low/med) <u>LOW</u>		Date Samp/Recv:	06/05/2007 06/07/200
% Moistur	re: not dec. <u>4.2</u>		Date Analyzed:	06/11/2007
GC Column	n: <u>ZB-624</u> ID:	: <u>0.18</u> (mm)	Dilution Factor	:1.00
Soil Extr	ract Volume:	(uL)	Soil Aliquot Vo	lume: (uL)
Number TI	Cs found: <u>0</u>		CONCENTRATION UNI (ug/L or ug/Kg)	
[CAS NO	Compound Name	RT Est.	Conc. 0

Client No.

GSB-3	(10-12)
i	,

Lab Name: SIL BUITALO CONCIACL:	-	
Lab Code: RECNY Case No.: SAS No.:	SDG No.: <u>6329</u>	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A7632909
Sample wt/vol: $\underline{5.09}$ (g/mL) \underline{G}	Lab File ID:	F6566.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	06/05/2007 06/07/2007
% Moisture: not dec. <u>0.8</u>	Date Analyzed:	06/13/2007
GC Column: <u>ZB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) <u>UG/KG</u>

 CAS NO.
 Compound Name
 RT
 Est. Conc.
 Q

 1. 110-54-3
 HEXANE
 2.71
 9 JN

Number TICs found: 1

Client No.

GSB-4 (8-10)

Lab Name:	STL Buffalo	Contract:		
Lab Code:	<u>RECNY</u> Case No.	: SAS No.: S	SDG No.: <u>6329</u>	
Matrix: (soil/water) <u>SOIL</u>		Lab Sample ID:	A7632910
Sample wt	/vol: <u>5.12</u>	<u>?</u> (g/mL) <u>G</u>	Lab File ID:	F6512.RR
Level:	(low/med) <u>LOW</u>		Date Samp/Recv:	06/05/2007 06/07/200
% Moistur	re: not dec. <u>1.7</u>		Date Analyzed:	06/11/2007
GC Column	n: <u>ZB-624</u> ID:		Dilution Factor	:1.00
Soil Extr	ract Volume:	(uL)	Soil Aliquot Vo	lume: (uL)
Number TI	Cs found: <u>0</u>	_	ONCENTRATION UNI (ug/L or ug/Kg)	
	CAS NO.	Compound Name	RT Est.	Conc. Q

Client No.

GSB-5 (12-14)

Lab Name:	STL Buffalo	Contract:	-		L			
Lab Code:	<u>RECNY</u> Case No.	.: SAS No.:	_ SD	G No.: <u>6</u>	5329			
Matrix: (soil/water) <u>SOIL</u>		L	ab Sampl	le ID:	<u>A764760</u>	2_	
Sample wt	/vol: 5.22	<u>2</u> (g/mL) <u>G</u>	L	ab File	ID:	<u>F6540.</u> R	R	······
Level:	(low/med) <u>LOW</u>		D	ate Samp	p/Recv:	06/07/2	007 (06/09/200
% Moisture: not dec. <u>4.6</u>			D	ate Anal	lyzed:	06/12/2	007	
GC Column: <u>ZB-624</u> ID: <u>0.25</u> (mm)			D	ilution	Factor:	1.0	<u>10</u>	
Soil Extr	ract Volume:	(uL)	S	Soil Alio	quot Vol	ume:		_ (uL)
Number TI	Cs found: <u>0</u>			icentrati 1g/L or 1		S: <u>UG/KG</u>		
	CAS NO.	Compound Name		RT	Est.	Conc.	Q	

	GSB-6 (10-12)
Lab Name: STL Buffalo Contract:	_
Lab Code: RECNY Case No.: SAS No.:	SDG No.: <u>6329</u>
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: A7632911
Sample wt/vol: $\underline{5.18}$ (g/mL) \underline{G}	Lab File ID: <u>F6513.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv: <u>06/05/2007</u> <u>06/07/200</u>
% Moisture: not dec. <u>5.2</u>	Date Analyzed: <u>06/11/2007</u>
GC Column: <u>ZB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
Number TICs found: <u>0</u>	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

Client No.

GSB-7	(10-12)	
	•	

Lab Name: STL Buffalo Contract: ____

Matrix: (soil/water) SOIL Lab Sample ID: A7632912

Sample wt/vol: $\underline{5.13}$ (g/mL) \underline{G} Lab File ID: $\underline{F6514.RR}$

Level: (low/med) Low Date Samp/Recv: $\underline{06/05/2007}$ $\underline{06/07/2007}$

% Moisture: not dec. <u>2.2</u> Date Analyzed: <u>06/11/2007</u>

GC Column: ZB-624 ID: 0.18 (mm) Dilution Factor: 1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

Number TICs found: 1 (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 110-54-3	HEXANE	2.71	6	JN

Client No.

GSB-8 (12-14)	

Lab Name: STL Buffalo Contract: _____

Lab Code: RECNY Case No.: ____ SAS No.: ____

SDG No.: 6329

Matrix: (soil/water) SOIL

Sample wt/vol: $\underline{5.14}$ (g/mL) \underline{G}

Lab Sample ID: A7647603

Lab File ID: <u>F6541.RR</u>

Date Samp/Recv: 06/07/2007 06/09/2007

Level: (low/med) <u>LOW</u>

Date Analyzed: 06/12/2007

% Moisture: not dec. __0.5

Dilution Factor: ____1.00

GC Column: <u>ZB-624</u> ID: <u>0.25</u> (mm)

Soil Aliquot Volume: ____ (uL)

Soil Extract Volume: ____ (uL)

CONCENTRATION UNITS:

<u>UG/KG</u>

Number TICs found: 2

(ug/L or ug/Kg)

CAS NO.	Compound Name	RT	Est. Conc.	Q
	2-METHOXYETHANOL 2-METHOXYETHANOL	3.89 4.22		JN JN

			GSB-9 (7-9)
Lab Name: STL Buffalo	Contract:	-	
Lab Code: <u>RECNY</u> Case No	.: SAS No.:	SDG No.: <u>6329</u>	
Matrix: (soil/water) <u>SOIL</u>		Lab Sample ID:	A7647604
Sample wt/vol:5.0	<u>7</u> (g/mL) <u>G</u>	Lab File ID:	F6542.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	06/07/2007 06/09/200
Moisture: not dec. 1.1		Date Analyzed:	06/12/2007
GC Column: <u>ZB-624</u> ID	: <u>0.25</u> (mm)	Dilution Factor	:1.00
Soil Extract Volume:	(uL)	Soil Aliquot Vol	lume: (uL)
Number TICs found: <u>1</u>		CONCENTRATION UNIT (ug/L or ug/Kg)	

CAS NO.	Compound Name	Compound Name RT Est. Conc.		Q
1. 109-86-4	2-METHOXYETHANOL	4.25	43	JN

					MW-1 (8-1	LO)	
Lab Name:	STL Buffalo	Contract:					
Lab Code:	<u>RECNY</u> Case No.	: SAS No.:	SDG No.: 6	5329			
Matrix: ((soil/water) <u>SOIL</u>		Lab Sampl	le ID:	<u>A7647601</u>	<u>L</u>	
Sample wt	/vol: <u>5.10</u>	<u>)</u> (g/mL) <u>G</u>	Lab File	ID:	F6539.RF	2	_ .
Level:	(low/med) <u>LOW</u>		Date Samp	/Recv:	06/06/20	007 06	5/09/2 <u>007</u>
% Moistur	re: not dec. <u>5.0</u>		Date Anal	Lyzed:	06/12/20	007	
GC Column	n: <u>ZB-624</u> ID:	: <u>0.25</u> (mm)	Dilution	Factor	: 1.00	<u>)</u>	
Soil Extr	ract Volume:	(uL)	Soil Alio	quot Vo.	lume:		(uL)
Number TI	ICs found:0		CONCENTRATI (ug/L or 1				
	CAS NO.	Compound Name	RT	Est.	Conc.	Q	

						MW-2 (10-	12)		
Lab Name:	STL Buffalo	Cor	ntract:						
Lab Code:	<u>RECNY</u> Case No.	:	SAS No.:	SDG No.: <u>6</u>	329				
Matrix: (soil/water) <u>SOIL</u>			Lab Sampl	e ID:	A764761	0		
Sample wt	:/vol:	3 (g/mL) <u>G</u>	-	Lab File	ID:	<u>F6548.R</u>	R		
Level:	(low/med) <u>LOW</u>			Date Samp	/Recv:	06/07/2	007 (06/09/200	<u>)7</u>
% Moistur	re: not dec. <u>2.4</u>			Date Anal	lyzed:	06/12/2	007		
GC Column	n: <u>ZB-624</u> ID	. <u>0.25</u> (mm)		Dilution	Factor	:1.0	<u>O</u>		
Soil Extr	ract Volume:	(uL)		Soil Aliq	quot Vo	lume:		_ (uL)	
Number TI	Cs found: _0			CONCENTRATI (ug/L or ı				_	
	CNS NO	C	ompound Name	RT	Est.	Conc.	Q		

Client No.

Lab Name: STL Buffalo Contract: _____

Lab Code: <u>RECNY</u> Case No.: _____ SAS No.: ____ SDG No.: <u>6329</u>

Matrix: (soil/water) SOIL

Lab Sample ID: A7647611

Sample wt/vol: $\underline{5.04}$ (g/mL) \underline{G}

Lab File ID: <u>F6549.RR</u>

Level: (low/med) LOW

Date Samp/Recv: 06/07/2007 06/09/2007

Date Analyzed: 06/12/2007

% Moisture: not dec. 10.1

GC Column: <u>ZB-624</u> ID: <u>0.25</u> (mm)

Dilution Factor: ____1.00

Soil Extract Volume: ____ (uL)

Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

Number TICs found: 10

(ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 3073-66-3 2. 3. 4. 5. 6. 7. 2051-30-1 8. 9.	1,1,3-TRIMETHYLCYCLOHEXANE UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN ,6-DIMETHYLOCTANE UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN	6.22 6.93 7.02 7.13 7.29 7.39 7.53 7.64 7.76 7.83	900 990 850 620 2800 1300 2800 1400 640 1700	JN J J J JN J J

Client No.

MW-2 (30-32)

Lab Name: STL Buffalo Contract:

Lab Code: RECNY Case No.: ____ SAS No.: ____

SDG No.: 6329

Matrix: (soil/water) SOIL

Lab Sample ID: A7647611DL

Sample wt/vol: $\underline{5.05}$ (g/mL) \underline{G}

Lab File ID: <u>Q1764.RR</u>

Level: (low/med) MED

Date Samp/Recv: 06/07/2007 06/09/2007

% Moisture: not dec. 10.1

Date Analyzed: 06/14/2007

Dilution Factor: 1.00

GC Column: <u>ZB-624</u> ID: <u>0.25</u> (mm)

Soil Aliquot Volume: 100.00 (uL)

Soil Extract Volume: 10000 (uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg)

<u>UG/KG</u>

Number TICs found: 10

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 2. 3. 4. 5. 6. 589-90-2 7. 8. 2847-72-5 9. 10.	UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN 1,4-DIMETHYLCYCLOHEXANE UNKNOWN 4-METHYLDECANE UNKNOWN UNKNOWN	0.14 8.44 8.59 8.86 8.98 9.08 9.14 9.39 9.48 10.13	34000 34000 26000 69000 27000 46000 32000 28000 24000 45000	J J J J J J J J J J J J J J J J J J J

Client No.

	MW-3 (10-12)
--	--------------

Lab Name: STL Buffalo Contract: _____

Lab Code: <u>RECNY</u> Case No.: _____ SAS No.: ____ SDG No.: <u>6329</u>

Matrix: (soil/water) SOIL

Lab Sample ID: A7647612

Sample wt/vol: $\underline{5.21}$ (g/mL) \underline{G}

Lab File ID: <u>F6550.RR</u>

Date Samp/Recv: 06/08/2007 06/09/2007

Level: (low/med) LOW

Date Analyzed: 06/12/2007

% Moisture: not dec. $\underline{2.2}$

GC Column: <u>ZB-624</u> ID: <u>0.25</u> (mm)

Dilution Factor: ____1.00

Soil Aliquot Volume: ____ (uL)

Soil Extract Volume: ____ (uL)

CONCENTRATION UNITS:

Number TICs found: 10

(uq/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 2051-30-1 2. 3. 4. 5. 6. 2847-72-5 7. 8. 9. 10.	2,6-DIMETHYLOCTANE UNKNOWN UNKNOWN UNKNOWN UNKNOWN 4-METHYL-DECANE UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN	7.48 7.79 8.07 8.33 8.40 8.71 8.95 9.51 9.82 10.13	14 10 16 10 12 27 20 16 10	JN J J JN J J

				l _N	W-4 (8-10)		
Lab Name:	STL Buffalo	Contract:	<u> </u>	L				
Lab Code:	<u>RECNY</u> Case No.	.: SAS No.:	SDG No.: <u>6</u>	329				
Matrix: (soil/water) <u>SOIL</u>		Lab Sampl	e ID:	<u>A7647613</u>			
Sample wt	/vol: <u>5.05</u>	5 (g/mL) <u>G</u>	Lab File	ID:	<u>F6551.RR</u>			
Level:	(low/med) <u>LOW</u>		Date Samp	/Recv:	06/08/20	<u>07</u> <u>06</u>	/09/2007	<u> </u>
% Moistur	re: not dec. <u>6.3</u>		Date Anal	.yzed:	06/12/20	07		
GC Column	n: <u>ZB-624</u> ID:	: <u>0.25</u> (mm)	Dilution	Factor:	1.00	!		
Soil Extr	ract Volume:	(uL)	Soil Aliq	quot Volu	.me:		(uL)	
Number TI	Cs found:0		CONCENTRATI (ug/L or u					
	CAS NO.	Compound Name	RT	Est. (Conc.	Q		

Client No.

TP-1	(10-12)	
	(10 11)	

Date Samp/Recv: 06/04/2007 06/07/2007

Lab Name: STL Buffalo Contract: _____

Lab Code: <u>RECNY</u> Case No.: _____ SAS No.: ____ SDG No.: <u>6329</u>

Lab Sample ID: A7632901 Matrix: (soil/water) SOIL

Lab File ID: <u>F6495.RR</u> Sample wt/vol: $\underline{5.11}$ (g/mL) \underline{G}

Level: (low/med) LOW

Date Analyzed: 06/10/2007 % Moisture: not dec. 14.0

Dilution Factor: ____1.00 GC Column: <u>ZB-624</u> ID: <u>0.18</u> (mm)

Soil Aliquot Volume: _____ (uL) Soil Extract Volume: ____ (uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) <u>UG/KG</u> Number TICs found: 1

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 110-54-3	HEXANE	2.71	6	JN

Client No.

TP-2 (10-12)

Date Samp/Recv: 06/04/2007 06/07/2007

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: 6329

Lab Name: STL Buffalo Contract: _____

Lab Sample ID: <u>A7632902</u> Matrix: (soil/water) SOIL

Lab File ID: <u>F6496.RR</u> Sample wt/vol: $\underline{5.13}$ (g/mL) \underline{G}

Level: (low/med) LOW

Date Analyzed: <u>06/10/2007</u> % Moisture: not dec. <u>4.8</u>

Dilution Factor: 1.00 GC Column: <u>ZB-624</u> ID: <u>0.18</u> (mm)

Soil Aliquot Volume: ____ (uL) Soil Extract Volume: ____ (uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) <u>UG/KG</u> Number TICs found: __1

ſ	CAS NO.	Compound Name	RT	Est. Conc.	Q
f	1. 110-54-3	HEXANE	2.71	5	JN

Client No.

				ļ	TP-3 (8-1	10)	
Lab Name:	STL Buffalo	Contract:		L			
Lab Code:	RECNY Case No.	.: SAS No.:	SDG No.: 6	329			
Matrix: (soil/water) <u>SOIL</u>		Lab Sampl	e ID:	A7632903	3	
Sample wt	/vol: <u>5.0</u> 7	7 (g/mL) <u>G</u>	Lab File	ID:	F6497.RI	R	_
Level:	(low/med) <u>LOW</u>		Date Samp)/Recv:	06/04/20	007 <u>06</u>	/07/200
% Moistur	re: not dec. <u>14.9</u>		Date Anal	Lyzed:	06/11/2	007	
GC Column	i: <u>ZB-624</u> ID	: <u>0.18</u> (mm)	Dilution	Factor:	1.0	<u>0</u>	
Soil Extr	ract Volume:	(uL)	Soil Alio	quot Vol	ume:		(uL)
Number TI	Cs found: <u>0</u>		CONCENTRATI (ug/L or 1				
	CAS NO.	Compound Name	RT	Est.	Conc.	Q	

		TP-4 (10-12)
Lab Name: <u>STL Buffalo</u> Contract:		
Lab Code: RECNY Case No.: SAS No.:	SDG No.: <u>6329</u>	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	<u>A7632904</u>
Sample wt/vol: $\underline{5.14}$ (g/mL) \underline{G}	Lab File ID:	F6498.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	06/04/2007 06/07/200
% Moisture: not dec. <u>1.5</u>	Date Analyzed:	06/11/2007
GC Column: <u>ZB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor	:1.00
Soil Extract Volume: (uL)	Soil Aliquot Vo	lume: (uL)
Number TICs found: <u>1</u>	CONCENTRATION UNI (ug/L or ug/Kg)	

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 110-54-3	HEXANE	2.71	6	JN

		TP-5 (3-4)
Lab Name: STL Buffalo Contract:	_ .	
Lab Code: RECNY Case No.: SAS No.:	SDG No.: <u>6329</u>	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A7632905
Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{G}	Lab File ID:	F6507.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	06/05/2007 06/07/200
% Moisture: not dec. <u>3.5</u>	Date Analyzed:	06/11/2007
GC Column: <u>ZB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor	:1.00
Soil Extract Volume: (uL)	Soil Aliquot Vo	lume: (uL)
Number TICs found: <u>1</u>	CONCENTRATION UNI (ug/L or ug/Kg)	

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 110-54-3	HEXANE	2.71	12	JN

DELTA-METHOD 8260 - TCL VOLATILE ORGANICS TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

						TP-6 (6-8	3)		
Lab Name:	STL Buffalo	Contrac	t:		1				
Lab Code:	<u>RECNY</u> Case No.	: SAS	No.:	SDG No.: <u>6</u>	329				
Matrix: ((soil/water) <u>SOIL</u>			Lab Sampl	e ID:	<u>A763290</u> 6	<u>5</u>		
Sample wt	:/vol:	g (g/mL) <u>G</u>		Lab File	ID:	<u>F6508.R</u> I	R	·	
Level:	(low/med) <u>LOW</u>			Date Samp	/Recv:	06/05/20	007 06	5/07/200	7
% Moistur	re: not dec. <u>5.7</u>			Date Anal	yzed:	06/11/20	007		
GC Column	n: <u>ZB-624</u> ID	: <u>0.18</u> (mm)		Dilution	Factor:	:1.00	<u>0</u>		
Soil Extr	ract Volume:	(uL)		Soil Alig	juot Vol	lume:		(uL)	
Number TI	Cs found: _0		-	ONCENTRATI (ug/L or u					
	CAS NO.	Compou	ınd Name	RT	Est.	Conc.	Q		

APPENDIX E

Laboratory Analytical Reports - Groundwater

STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

ANALYTICAL REPORT

Job#: <u>A07-7011</u>

Project#: NY4A9341

Site Name: Delta Environmental Consultants, Inc.

Task: Cookson site/Tannery Street

Mr. Scott Bryant Delta Environmental 185 Jordan Rd. Troy, NY 1218013214

STL Buffalo

Brian J. Fischer Project Manager

07/07/2007

STL Buffalo Current Certifications

As of 5/16/2007

STATE	Program	Cert # / Lab ID
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA,NELAP CWA, RCRA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	NELAP SDWA, CWA, RCRA	NY455
New York	NELAP AIR, SDWA, CWA, RCRA,CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA, RCRA	998310390

SAMPLE SUMMARY

			SAMP)	ŒD	RECEIVE	ŒD
LAB SAMPLE ID	CLIENT SAMPLE ID	<u>MATRIX</u>	DATE	TIME	DATE	TIME
A7701101	GW MONITORING-MW-1	WATER	06/21/2007	12:30	06/22/2007	08:45
A7701102	GW MONITORING-MW-2	WATER	06/21/2007	14:00	06/22/2007	08:45
A7701103	GW MONITORING-MW-3	WATER	06/21/2007	13:30	06/22/2007	08:45
A7701104	GW MONITORING-MW-4	WATER	06/21/2007	13:00	06/22/2007	08:45
A7701105	Trip Blank	WATER	06/21/2007		06/22/2007	08:45

METHODS SUMMARY

Job#: <u>A07-7011</u>

Project#: NY4A9341

Site Name: Delta Environmental Consultants, Inc.

PARAMETER	ANALYTICAL METHOD
DELTA - METHOD 8260/25 ML - TCL VOLATILE ORGANICS	SW8463 8260
METHOD 8270 - TCL SEMI-VOAs+dimethyl formamide	SW8463 8270
DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS	SW8463 8082
Antimony - Soluble	SW8463 6010
Arsenic - Soluble	SW8463 6010
Beryllium - Soluble	SW8463 6010
Cadmium - Soluble	SW8463 6010
Chromium - Soluble	SW8463 6010
Copper - Soluble	SW8463 6010
Lead - Soluble	SW8463 6010
Mercury - Soluble	SW8463 7470
Nickel - Soluble	SW8463 6010
Selenium - Soluble	SW8463 6010
Silver - Soluble	SW8463 6010
Thallium - Soluble	SW8463 6010
Zinc - Soluble	SW8463 6010

References:

SW8463

"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

SDG NARRATIVE

Job#: <u>A07-7011</u>

Project#: NY4A9341

Site Name: Delta Environmental Consultants, Inc.

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A07-7011

Sample Cooler(s) were received at the following temperature(s); 2@2.0 °C All samples were received in good condition.

GC/MS Volatile Data

No deviations from protocol were encountered during the analytical procedures.

GC/MS Semivolatile Data

No deviations from protocol were encountered during the analytical procedures.

GC Extractable Data

For method 8082, the Matrix Spike Blank, Matrix Spike Blank Duplicate, and the Method Blank required treatment with Copper prior to analysis due to the presence of elemental Sulfur in samples within the batch.

Metals Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Brian J. Fischer Project Manager

1-9-03

Date

STL

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- * Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

- ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.
- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- G Indicates a value greater than or equal to the project reporting limit but less than the laboratory quantitation limit
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8260/25 ML - TCL VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		GW MONITORING-MW-1 A07-7011 A7701101 06/21/2007		GW MONITORING-MW-2 A07-7011 A7701102 06/21/2007		GW MONITORING-MW-3 A07-7011 A7701103 06/21/2007		GW MONITORING-MW-4 AO7-7011 A7701104 06/21/2007	
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/L	1.9 J	5.0	ND	5.0	ND	5.0	2.1 J	5.0
Benzene	UG/L	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Bromodichloromethane	UG/L	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Bromoform	UG/L	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Bromomethane	UG/L	ND	1.0	ND	1.0	ND	1.0	ND	1.0
2-Butanone	UG/L	ND	5.0	ND	5.0	ND	5.0	ND	5.0
Carbon Disulfide	UG/L	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Carbon Tetrachloride	UG/L	ND ND	1.0	ND	1.0	ND ND	1.0	ND	1.0
Chlorobenzene	1 '. I		1.0	1	l				1
	UG/L	ND		ND ND	1.0	ND ND	1.0	ND	1.0
Chloroethane	UG/L	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Chloroform	UG/L	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Chloromethane	UG/L	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Cyclohexane	UG/L	ND	1.0	ND	1.0	ND	1.0	ND	1.0
1,2-Dibromoethane	UG/L	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Dibromochloromethane	UG/L	· ND	1.0	ND	1.0	ND	1.0	ND .	1.0
1,2-Dibromo-3-chloropropane	UG/L	ND	1.0	ND	1.0	ND	1.0	ND	1.0
1,2-Dichlorobenzene	UG/L	ND	1.0	ND	1.0	ND	1.0	ND	1.0
1,3-Dichlorobenzene	UG/L	ND	1.0	ND	1.0	ND	1.0	ND	1.0
1,4-Dichlorobenzene	UG/L	ND	1.0	ND	1.0	ND	1.0	ND '	1.0
Dichlorodifluoromethane	UG/L	ND	1.0	ND	1.0	ND	1.0	ND	1.0
1,1-Dichloroethane	UG/L	ND	1.0	ND	1.0	ND	1.0	ND	1.0
1,2-Dichloroethane	UG/L	ND	1.0	ND	1.0	l ND	1.0	ND	1.0
1,1-Dichloroethene	UG/L	ND	1.0	ND	1.0	ND	1.0	ND	1.0
cis-1,2-Dichloroethene	UG/L	ND	1.0	ND	1.0	ND	1.0	ND	1.0
trans-1,2-Dichloroethene	UG/L	ND	1.0	ND	1.0	ND	1.0	ND	1.0
1,2-Dichloropropane	UG/L	ND	1.0	ND	1.0	ND	1.0	ND	1.0
cis-1,3-Dichloropropene	UG/L	ND	1.0	ND ND	1.0	ND	1.0	ND	1.0
trans-1,3-Dichloropropene	UG/L	ND ND	1.0	ND ND	1.0	ND ND	1.0	ND	1.0
Ethylbenzene	UG/L	ND	1.0	ND ND	1.0	ND ND	1.0	ND	1.0
2-Hexanone	UG/L	ND ND	5.0	ND ND	5.0	ND ND	5.0	ND	5.0
Isopropylbenzene		ND	1.0	ND	1.0	ND ND			-
• • •	UG/L UG/L		1.0				1.0	ND	1.0
Methyl acetate		ND		ND	1.0	ND	1.0	ND	1.0
Methylcyclohexane	UG/L	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Methylene chloride	UG/L	ND	1.0	ND	1.0	ND	1.0	ND	1.0
4-Methyl-2-pentanone	UG/L	ND	5.0	ND	5.0	ND	5.0	ND	5.0
Methyl-t-Butyl Ether (MTBE)	UG/L	ND	1.0	ND	1.0	4.8	1.0	1.8	1.0
Styrene	UG/L	ND	1.0	ND	1.0	ND	1.0	ND	1.0
1,1,2,2-Tetrachloroethane	UG/L	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Tetrachloroethene	UG/L	ND	1.0	ND ND	1.0	ND .	1.0	ND	1.0
Toluene	UG/L	ND	1.0	ND	1.0	ND	1.0	ND	1.0
1,2,4-Trichlorobenzene	UG/L	ND	1.0	ND	1.0	ND	1.0	ND	1.0
1,1,1-Trichloroethane	UG/L	ND	1.0	ND	1.0	ND	1.0	ND	1.0
1,1,2-Trichloroethane	UG/L	ND	1.0	ND	1.0	ND	1.0	ND	1.0

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8260/25 ML - TCL VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		GW MONITORING-MW-1 A07-7011 A7701101 06/21/2007		GW MONITORING A07-7011 06/21/2007			-MW-3 A7701103	GW MONITORING-MW-4 A07-7011 A7701104 06/21/2007	
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
1,1,2-Trichloro-1,2,2-trifluor Trichlorofluoromethane Trichloroethene Vinyl chloride Total Xylenes IS/SURROGATE(S)	UG/L UG/L UG/L UG/L UG/L	ND ND ND ND	1.0 1.0 1.0 1.0 3.0	ND ND ND ND	1.0 1.0 1.0 1.0 3.0	ND ND ND ND ND	1.0 1.0 1.0 1.0 3.0	ND ND ND ND ND	1.0 1.0 1.0 1.0 3.0
Chlorobenzene-D5 1,4-Difluorobenzene 1,4-Dichlorobenzene-D4 Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	% % % % %	118 120 111 100 93 91	50-200 50-200 50-200 71-126 73-120 66-137	120 120 112 100 93 93	50-200 50-200 50-200 71-126 73-120 66-137	118 120 111 97 91 89	50-200 50-200 50-200 71-126 73-120 66-137	118 119 110 100 93 92	50-200 50-200 50-200 71-126 73-120 66-137

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Rept: ANO326

Client ID Job No Lab ID Sample Date		GW MONITORING- A07-7011 06/21/2007	MW-1 A7701101	GW MONITORING- A07-7011 06/21/2007	-MW-2 A7701102	GW MONITORING- A07-7011 06/21/2007	MW-3 A7701103	GW MONITORING- A07-7011 06/21/2007	-MW-4 A7701104
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
N.N-Dimethyl formamide	UG/L	ND	19	ND	19	ND	19	ND	19
Acenaphthene	UG/L	ND	5	ND	5	ND	5	ND	5
Acenaphthylene	UG/L	ND	5	ND	5	ND ND	5	ND	5
Acetophenone	UG/L	ND	5	ND	5	ND	5	ND	5
Anthracene	UG/L	ND	5	ND	5	ND ND	5	ND	5
Atrazine	UG/L	ND	5	ND	5	ND I	5	ND	5
Benzaldehyde	UG/L	ND	5	ND	5	ND	5	ND	5
Benzo(a)anthracene	UG/L	ND	5	ND	5	ND ND	5	ND	5
Benzo(b)fluoranthene	UG/L	ND	5	ND	5	ND I	5	ND	5
Benzo(k)fluoranthene	UG/L	ND ND	5	ND	5	ND I	5	ND	5
Benzo(ghi)perylene	UG/L	ND	5	ND	5	ND	5	ND	5
Benzo(a)pyrene	UG/L	ND	5	ND	5	ND ND	5	ND	5
Benzoic acid	UG/L	ND	140	ND	140	ND ND	140	ND	140
Benzyl alcohol	UG/L	ND	19	ND	19	ND ND	19	ND	19
Biphenyl	UG/L	ND ND	5	ND	5	ND ND	5	ND	5
Bis(2-chloroethoxy) methane	UG/L	ND	5	ND ND	5	ND ND	5	ND ND	5
Bis(2-chloroethyl) ether	UG/L	ND ND	5	ND	5	ND	5	ND ND	5
2,2'-0xybis(1-Chloropropane)	UG/L	ND ND	5	ND ND	5	ND ND	5	ND ND	5
Bis(2-ethylhexyl) phthalate	UG/L	13	5	12	5	40	5	29	5
4-Bromophenyl phenyl ether	UG/L	ND ND	5	ND ND	5	ND ND	5	ND	5
Butyl benzyl phthalate	UG/L	ND ND	5	ND ND	5	ND ND	5	ND ND	5
Caprolactam	UG/L	ND ND	5	ND ND	5	ND ND	5	ND ND	5
4-Chloroaniline	UG/L	ND ND	5	ND	5	ND ND	5	ND	5
4-Chloro-3-methylphenol	UG/L	ND ND	5	ND	5	ND ND	5	ND	5
2-Chloronaphthalene	UG/L	ND ND	5	ND ND	5	ND ND	5	ND ND	5
2-Chlorophenol	UG/L	ND ND	5	ND	5	ND ND	5	ND ND	5
4-Chlorophenyl phenyl ether	UG/L	ND ND	5	ND ND	5	ND ND	5	ND ND	5
Carbazole	UG/L	ND ND	5	ND ND	5	ND ND	5	ND ND	5
Chrysene	UG/L	ND ND	5	ND ND	5	ND ND	5	ND ND	5
Dibenzo(a,h)anthracene	UG/L	ND ND	5	ND ND	5	ND	5	ND ND	5
Dibenzofuran	UG/L	ND ND	5	ND ND	5	ND ND	5	ND ND	5
Di-n-butyl phthalate	UG/L	ND ND	5	ND ND	5	ND ND	5	ND ND	5
3,3'-Dichlorobenzidine	UG/L	ND ND	5	ND ND	5	ND ND	5	ND ND	5
2,4-Dichlorophenol	UG/L	ND ND	5	ND ND	5	ND ND	5	ND ND	5
Diethyl phthalate	UG/L	ND ND	5	ND ND	5	ND ND	5	ND ND	5
2,4-Dimethylphenol	UG/L	ND ND	5	ND	5	ND ND	5	ND ND	5
Dimethyl phthalate	UG/L	ND ND	5	ND ND	5	ND ND	5	ND	5
4,6-Dinitro-2-methylphenol	UG/L	ND ND	9	ND ND	9	ND ND	9	ND ND	9
2,4-Dinitrophenol	UG/L	ND ND	9	ND ND	9	ND ND	9	ND ND	9
2,4-Dinitrophenot	UG/L	ND ND	5	ND	5	ND ND	5	ND ND	5
1 .	UG/L	ND ND	5	ND ND	5	ND ND	5		5
2,6-Dinitrotoluene		0.9 BJ	, o - 5	0.5 BJ	5	0.4 BJ	_	ND O 6 B 1	
Di-n-octyl phthalate	UG/L		5	1	5		5 5	0.6 BJ	. 5 5
Fluoranthene	UG/L	ND)	ND,	,	ND	,	ND)

STL Buffalo

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID Sample Date		GW MONITORING-MW-1 A07-7011 A7701101 06/21/2007		GW MONITORING A07-7011 06/21/2007	-MW-2 A7701102	GW MONITORING A07-7011 06/21/2007	-MW-3 A7701103	GW MONITORING A07-7011 06/21/2007	-MW-4 A7701104
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Fluorene	ug/L	ND	5	ND	5	ND	5	ND	5
Hexachlorobenzene	UG/L	ND	5	ND	5	ND	5	ND	5
Hexachlorobutadiene	UG/L	ND	5	ND	5	ND	5	ND	5
Hexachlorocyclopentadiene	UG/L	ND	5	ND	5	ND	5	ND	5
Hexachloroethane	UG/L	ND	5	ND	5	ND	5	ND	5
Indeno(1,2,3-cd)pyrene	UG/L	ND	5	ND	5	ND	5	ND	5
Isophorone	UG/L	ND	5	ND	5	ND	5	ND	5
2-Methylnaphthalene	UG/L	ND	5	ND	5	ND	5	ND	5
2-Methylphenol	UG/L	ND	5	ND	5	ND	5	ND	5
4-Methylphenol	UG/L	ND	5	ND	5	ND	5	ND	5
Naphthalene	UG/L	ND	5	ND	5	ND	5	ND	5
2-Nitroaniline	UG/L	ND	9	ND	9	ND	9	ND	9
3-Nitroaniline	UG/L	ND	9	ND	9	ND	9	ND	9
4-Nitroaniline	UG/L	ND	9	ND	9	ND	9	ND	9
Nitrobenzene	UG/L	ND	5	ND	5	ND	5	ND	5
2-Nitrophenol	UG/L	ND	5	ND	5	ND	5	ND	5
4-Nitrophenol	UG/L	ND	9	ND	9	ND	9	ND	9
N-nitrosodiphenylamine	UG/L	ND	5	ND	5	ND	5	ND	5
N-Nitroso-Di-n-propylamine	UG/L	ND	5	ND	5	ND	5	ND	5
Pentachlorophenol Phenanthrene	UG/L	ND	9	ND	9	ND	9	ND	9
Phenanthrene Phenol	UG/L UG/L	ND	5	ND	- 5	ND	5	ND	5
Pyrene		ND	5	ND	5	ND	5	, ND	5
z,4,5-Trichlorophenol	UG/L	ND	5	ND	5	ND	5	ND	- 5
2,4,5-Trichtorophenot 2,4,6-Trichtorophenot	UG/L	ND	5	ND	5	ND	5	ND	5
=====IS/SURROGATE(S)======	UG/L	ND	5	ND	5	ND	5	ND	5
1,4-Dichlorobenzene-D4	1%	98	50-200	104	50-200	105	50-200	102	50-200
Naphthalene-D8	%	97	50-200	102	50-200	103	50-200	103	50-200
Acenaphthene-D10	%	99	50-200	103	50-200	101	50-200	101	50-200
Phenanthrene-D10	1%	99	50-200	105	50-200	104	50-200	105	50-200
Chrysene-D12	%	101	50~200	107	50-200	103	50-200	100	50-200
Perylene-D12	%	110	50-200	116	50-200	112	50-200	111	50-200
litrobenzene-D5	%	68	46-112	68	46-112	68	46-112	72	46-112
2-Fluorobiphenyl	%	69	48-116	68	48-116	71	48-116	75	48-116
p-Terphenyl-d14	%	67	24-136	67	24-136	72	24-136	72	24-136
Phenol-D5	%	26	16-120	27	16-120	26	16-120	27	16-120
2-Fluorophenol	%	35	20-120	35	20-120	35	20-120	36	20-120
2,4,6-Tribromophenol	1%	88	52-132	85	52-132	90	52-132	86	52-132

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client ID Job No Lab II Sample Date		GW MONITORING A07-7011 06/21/2007	6-MW-1 A7701101	GW MONITORING A07-7011 06/21/2007	-MW-2 A7701102	GW MONITORING A07-7011 06/21/2007	-MW-3 A7701103	GW MONITORING A07-7011 06/21/2007	A7701104
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Aroclor 1016	UG/L	ND	0.47	ND	0.47	ND	0.47	ND	0.47
Arocior 1221	UG/L	ND	0.47	ND	0.47	ND	0.47	ND ·	0.47
Aroclor 1232	UG/L	ND	0.47	ND	0.47	ND	0.47	ND	0.47
Aroclor 1242	UG/L	ND	0.47	ND	0.47	ND	0.47	ND	0.47
Aroclor 1248	UG/L	ND	0.47	ND	0.47	ND	0.47	ND	0.47
roclor 1254	UG/L	ND	0.47	ND	0.47	ND	0.47	ND	0.47
Aroclor 1260	UG/L	ND	0.47	ND	0.47	ND	0.47	ND	0.47
SURROGATE(S)									
etrachloro-m-xylene	%	77	35-136	74	35-136	72	35-136	78	35-136
Decachlorobiphenyl	%	57	12-137	86	12-137	60	12-137	73	12-137

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA-SOL PP METALS-SW8463/6010/7470-W

Client ID Job No Sample Date	Lab ID		GW MONITORING A07-7011 06/21/2007	-MW-1 A7701101	GW MONITORING A07-7011 06/21/2007	-MW-2 A7701102	GW MONITORING A07-7011 06/21/2007	-MW-3 A7701103	GW MONITORING A07-7011 06/21/2007	-MW-4 A7701104
Analyte		Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Antimony - Soluble		MG/L	ND	0.020	ND	0.020	ND	0.020	ND	0.020
Arsenic - Soluble		MG/L	ND	0.010	ND	0.010	ND ND	0.010	ND	0.010
Beryllium - Soluble		MG/L	ND	0.0020	ND	0.0020	ND ND	0.0020	ND	0.0020
Cadmium - Soluble		MG/L	ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010
Chromium - Soluble	1	MG/L	ND	0.0040	ND	0.0040	l ND	0.0040	ND	0.0040
Copper - Soluble		MG/L	ND	0.010	ND	0.010	ND ND	0.010	ND	0.010
Lead - Soluble		MG/L	ND	0.0050	ND	0.0050	l ND	0.0050	ND	0.0050
Mercury - Soluble		MG/L	ND	0.00020	ND	0.00020	ND	0.00020	ND	0.00020
Nickel - Soluble		MG/L	ND	0.010	ND	0.010	l ND	0.010	ND	0.010
Selenium – Soluble		MG/L	ND	0.015	ND	0.015	ND	0.015	ND	0.015
Silver - Soluble		MG/L	ND	0.0030	ND	0.0030	ND	0.0030	ND	0.0030
Thallium - Soluble	1	MG/L	ND	0.020	ND	0.020	ND ND	0.020	ND	0.020
Zinc - Soluble		MG/L	ND	0.010	ND	0.010	ND	0.010	ND	0.010

Chronology and QC Summary Package

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8260/25 ML - TCL VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		vblk14 A07-7011	A7B1047502						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/L	ND	5.0	NA NA		NA NA		NA	
Benzene	UG/L	ND	1.0	NA.		NA NA		NA NA	
Bromodichloromethane	UG/L	ND	1.0	NA		NA NA		NA NA	
Bromoform	UG/L	ND	1.0	NA.		NA NA		NA NA	
Bromomethane	UG/L	ND	1.0	NA		NA NA		NA NA	
2-Butanone	UG/L	ND	5.0	NA		NA NA		NA NA	i
Carbon Disulfide	UG/L	ND	1.0	NA		NA NA		NA NA	
Carbon Tetrachloride	UG/L	ND	1.0	NA NA		NA NA			
Chlorobenzene	UG/L	ND	1.0	NA NA		NA NA		NA NA	
Chloroethane	UG/L	ND	1.0	NA NA		NA NA		NA NA	
Chloroform	UG/L	ND	1.0	NA NA		NA NA		NA NA	
Chloromethane	UG/L	ND	1.0	NA NA		NA NA	İ	NA NA	
Cyclohexane	UG/L	ND	1.0	NA NA		I NA NA		NA NA	
1,2-Dibromoethane	UG/L	ND ND	1.0	NA NA				NA NA	
Dibromochloromethane	UG/L	ND ND	1.0	NA NA		NA NA		NA NA	
1,2-Dibromo-3-chloropropane	UG/L	ND	1.0	NA NA		NA NA		NA NA	
1,2-Dichlorobenzene	UG/L	ND	1.0	NA NA		NA NA		NA	
1,3-Dichlorobenzene	UG/L	ND	1.0	NA NA		NA NA		NA	
1,4-Dichlorobenzene	UG/L	ND ND	1.0			NA NA		NA	
Dichlorodifluoromethane	UG/L	ND ND	1.0	NA NA	*	NA NA		NA	
1,1-Dichloroethane	UG/L	ND ND	1.0			NA NA		NA	
1,2-Dichloroethane	UG/L	ND	1.0	NA NA		NA NA	ŀ	NA	
1,1-Dichloroethene	UG/L	ND ND	1.0	NA NA		NA NA		NA NA	
cis-1,2-Dichloroethene	UG/L	ND ND	1.0	NA NA		NA NA		NA	
trans-1,2-Dichloroethene	UG/L	ND ND	I i	NA NA		NA NA		NA	
1,2-Dichloropropane	UG/L	ND ND	1.0	NA		NA		NA	
cis-1,3-Dichloropropene	UG/L		1.0	NA NA		NA		NA	
trans-1,3-Dichloropropene	UG/L	ND ND	1.0	NA NA		NA		NA	
Ethylbenzene	UG/L	ND	1.0	NA		NA	, i	NA NA	
2-Hexanone	UG/L	ND	1.0	NA		NA		NA	
Isopropylbenzene		ND	5.0	NA		NA NA		NA NA	
	UG/L	ND	1.0	NA		NA		NA NA	
Methyl acetate	UG/L	ND	1.0	NA	*	NA NA		NA	
Methylone shlanida	UG/L	ND	1.0	NA		NA NA		NA	
Methylene chloride	UG/L	ND	1.0	NA		NA		NA	
4-Methyl-2-pentanone	UG/L	ND	5.0	NA		NA		NA	
Methyl-t-Butyl Ether (MTBE)	UG/L	ND	1.0	NA		NA		NA	1
Styrene	UG/L	ND	1.0	NA		NA		NA	1
1,1,2,2-Tetrachloroethane	UG/L	ND	1.0	NA		NA		NA	
Tetrachloroethene	UG/L	ND	1.0	NA		NA		NA	
Toluene	UG/L	ND	1.0	NA		NA		NA NA	
1,2,4-Trichlorobenzene	UG/L	ND	1.0	NA		NA ·		NA	
1,1,1-Trichloroethane	UG/L	ND	1.0	NA		NA		NA.	
1,1,2-Trichloroethane	UG/L	ND	1.0	NA	}	NA		NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8260/25 ML - TCL VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		vblk14 A07-7011	A7B1047502						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
1,1,2-Trichloro-1,2,2-trifl Trichlorofluoromethane Trichloroethene Vinyl chloride Total Xylenes	UG/L UG/L UG/L UG/L UG/L	ND ND ND ND	1.0 1.0 1.0 1.0 3.0	NA NA NA NA		NA NA NA NA		NA NA NA NA	
The state of the s	% % % %	120 122 115 102 95 94	50-200 50-200 50-200 71-126 73-120 66-137	NA NA NA NA		NA NA NA NA NA		NA NA NA NA NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8260/25 ML - TCL VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		msb14 A07-7011	A7B1047501						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/L	100	5.0	NA NA		NA		NA	
Benzene	UG/L	25	1.0	NA		NA		NA.	
Bromodichloromethane	UG/L	21	1.0	NA NA		NA NA		NA NA	
Bromoform	lug/L	19	1.0	NA		NA		NA NA	
romomethane	UG/L	29	1.0	NA		NA NA		NA NA	
2-Butanone	UG/L	120	5.0	NA		NA NA		NA NA	
arbon Disulfide	UG/L	26	1.0	NA NA		NA NA		NA NA	
arbon Tetrachloride	UG/L	17	1.0	NA NA		NA NA		NA NA	
Chlorobenzene	UG/L	25	1.0	NA NA		NA NA		NA NA	
Chloroethane	UG/L	30	1.0	NA NA		NA NA		NA NA	
Chloroform	UG/L	23	1.0	NA NA		NA NA			
Chloromethane	UG/L	23 19	1.0	NA NA		NA NA		NA NA	
Syclohexane	UG/L	27	1.0	NA NA				NA NA	ļ
1,2-Dibromoethane	UG/L	27 25	1.0	NA NA		NA NA		NA NA	
ibromochloromethane	UG/L	23	1.0	NA NA		NA NA		NA NA	İ
,2-Dibromo-3-chloropropane	UG/L	23	1.0	NA NA		NA NA		NA NA	
,2-Dichlorobenzene	UG/L	23 24	1.0	NA NA		NA NA	. 1	NA NA	į
,3-Dichlorobenzene	UG/L	24 25	1.0			NA NA		NA NA	
,4-Dichlorobenzene	UG/L		1.0	NA NA		NA		NA NA	
ichlorodifluoromethane	UG/L	25		NA NA		NA		NA NA	
		16	1.0	NA NA		NA		NA NA	
,1-Dichloroethane	UG/L	24	1.0	NA NA		NA 		NA	
,2-Dichloroethane	UG/L	23	1.0	NA		NA NA		NA NA	
,1-Dichloroethene	UG/L	27	1.0	NA		NA		NA NA	
is-1,2-Dichloroethene	UG/L	24	1.0	NA		NA		NA NA	
rans-1,2-Dichloroethene	UG/L	24	1.0	NA .		NA NA		NA	
,2-Dichloropropane	UG/L	23	1.0	NA NA		NA NA		NA NA	
is-1,3-Dichloropropene	UG/L	22	1.0	NA		NA .		NA	
rans-1,3-Dichloropropene	UG/L	20	1.0	NA NA		NA NA		NA NA	
thylbenzene	UG/L	25	1.0	NA		NA NA		NA NA	
-Hexanone	UG/L	130	5.0	NA.		NA		NA NA	
sopropylbenzene	UG/L	23	1.0	NA		NA		NA NA	
lethyl acetate	UG/L	23	1.0	NA NA		. NA		NA NA	
ethylcyclohexane	UG/L	30	1.0	NA NA		NA		NA NA	
ethylene chloride	UG/L	21	1.0	NA		NA		NA	
-Methyl-2-pentanone	UG/L	120	5.0	NA NA		NA		NA NA	
ethyl-t-Butyl Ether (MTBE)	UG/L	27	1.0	NA		NA		NA NA	
tyrene	UG/L	24	1.0	NA NA		NA		NA NA	
,1,2,2-Tetrachloroethane	UG/L	27	1.0	NA		NA		NA NA	
etrachloroethene	UG/L	25	1.0	NA		NA		NA.	
oluene	UG/L	25	1.0	NA		NA		NA NA	
,2,4-Trichlorobenzene	UG/L	22	1.0	NA		NA		NA NA	
,1,1-Trichloroethane	UG/L	20	1.0	NA		NA		NA NA	
,1,2-Trichloroethane	UG/L	25	1.0	NA		NA		NA NA	· ·

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8260/25 ML - TCL VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		msb14 A07-7011	A7B1047501						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
1,1,2-Trichloro-1,2,2-trifluor Trichlorofluoromethane Trichloroethene Vinyl chloride Total Xylenes	UG/L UG/L UG/L UG/L UG/L	30 23 26 21 74	1.0 1.0 1.0 1.0 3.0	NA NA NA NA		NA NA NA NA		NA NA NA NA	
IS/SURROGATE(S) Chlorobenzene-D5 1,4-Difluorobenzene 1,4-Dichlorobenzene-D4 Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	% % % % %	117 120 112 102 96 88	50-200 50-200 50-200 71-126 73-120 66-137	NA NA NA NA NA		NA NA NA NA NA		NA NA NA NA NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8260/25 ML - TCL VOLATILE ORGANICS

Client ID Job No Lab ID Sample Date		Trip Blank A07-7011 06/21/2007	A7701105						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/L	ND	5.0	NA NA		NA	_	NA	
Benzene	UG/L	ND	1.0	NA		NA		NA NA	
Bromodichloromethane	UG/L	ND	1.0	NA NA		NA NA		NA NA	
Bromoform	UG/L	ND	1.0	NA NA		NA NA		NA NA	
Bromomethane	UG/L	ND	1.0	NA		NA NA		NA	
2-Butanone	UG/L	ND	5.0	NA NA		NA NA		NA.	
Carbon Disulfide	UG/L	ND	1.0	NA NA		NA NA		NA.	
Carbon Tetrachloride	UG/L	ND	1.0	NA NA		NA NA		NA NA	
Chlorobenzene	UG/L	ND	1.0	NA NA		NA NA		NA NA	1
Chloroethane	UG/L	ND ND	1.0	NA NA		NA NA		NA NA	
Chloroform	UG/L	ND ND	1.0	NA NA		NA NA		NA NA	
Chloromethane	UG/L	ND	1.0	NA NA		NA NA		NA NA	
Cyclohexane	UG/L	ND	1.0	NA NA		NA NA		NA NA	1
1,2-Dibromoethane	UG/L	ND ND	1.0	NA NA		NA NA		NA NA	
Dibromochloromethane	UG/L	ND ND	1.0	NA NA		NA NA		NA NA	
	UG/L	ND ND	1.0	NA NA		NA NA		NA NA	
1,2-Dibromo-3-chloropropane	UG/L	ND ND	1.0	NA NA		NA NA		NA NA	
1,2-Dichlorobenzene	UG/L		1.0	NA NA		NA NA			
1,3-Dichlorobenzene		ND ND	l .	·)		NA NA	
1,4-Dichlorobenzene	UG/L	ND	1.0	NA NA		NA NA		NA NA	
Dichlorodifluoromethane	UG/L	ND	1.0	i .				NA NA	
1,1-Dichloroethane	UG/L	ND		NA NA		NA NA		NA NA	İ
1,2-Dichloroethane	UG/L	ND	1.0	NA NA		NA NA		NA	
1,1-Dichloroethene	UG/L	ND	1.0	NA NA		NA NA		NA	
cis-1,2-Dichloroethene	UG/L	ND	1.0	NA 		NA		NA	
trans-1,2-Dichloroethene	UG/L	ND	1.0	NA 		NA		NA NA	
1,2-Dichloropropane	UG/L	ND	1.0	NA 		NA .		NA	
cis-1,3-Dichloropropene	UG/L	ND	1.0	NA		NA		NA	
trans-1,3-Dichloropropene	UG/L	ND	1.0	NA		NA		NA	-
Ethylbenzene	UG/L	ND	1.0	NA NA		NA NA		NA NA	
2-Hexanone	UG/L	ND 	5.0	NA		NA		NA NA	
Isopropylbenzene	UG/L	ND	1.0	NA		NA 		NA	
Methyl acetate	UG/L	ND	1.0	NA		NA		NA	
Methylcyclohexane	UG/L	ND	1.0	NA	1	NA		NA	
Methylene chloride	ne/r	ND	1.0	NA	1	NA		NA	
4-Methyl-2-pentanone	UG/L	ND	5.0	NA 	1	NA		NA	
Methyl-t-Butyl Ether (MTBE)	UG/L	ND	1.0	NA NA	İ	NA NA		NA NA	
Styrene	UG/L	ND	1.0	NA NA		NA NA		NA	
1,1,2,2-Tetrachloroethane	UG/L	ND	1.0	NA		NA		NA	
Tetrachloroethene	UG/L	ND	1.0	NA NA		NA NA		NA	
Toluene	UG/L	ND	1.0	NA NA	1	NA		NA	
1,2,4-Trichlorobenzene	UG/L	ND	1.0	NA NA		NA NA		NA	
1,1,1-Trichloroethane	UG/L	ND	1.0	NA NA		NA		NA	
1,1,2-Trichloroethane	UG/L	ND	1.0	NA		NA		NA NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8260/25 ML - TCL VOLATILE ORGANICS

Rept: ANO326

Client ID Job No Lab ID Sample Date	٠.	Trip Blank A07-7011 06/21/2007	A7701105						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
1,1,2-Trichloro-1,2,2-trifluor Trichlorofluoromethane Trichloroethene Vinyl chloride Total Xylenes	UG/L UG/L UG/L UG/L UG/L	ND ND ND ND	1.0 1.0 1.0 1.0 3.0	NA NA NA NA		NA NA NA NA		NA NA NA NA	
IS/SURROGATE(S) Chlorobenzene-D5 1,4-Difluorobenzene 1,4-Dichlorobenzene-D4 Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	% % % % %	118 119 108 103 94 93	50-200 50-200 50-200 71-126 73-120 66-137	NA NA NA NA NA		NA NA NA NA NA		NA NA NA NA NA	

STL Buffalo

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID Sample Date		SBLK A07-7011	A7B1004503						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
N.N-Dimethyl formamide	UG/L	ND ND	20	NA		NA		NA NA	
Acenaphthene	UG/L	ND	5	NA NA		NA NA			
Acenaphthylene	UG/L	ND ND	5	NA NA		NA NA		NA NA	
Acetophenone	UG/L	ND	5	NA NA		NA NA		NA NA	
Anthracene	UG/L	ND	5	NA NA	·	NA NA		NA NA	
Atrazine	UG/L	ND	5	NA NA		NA NA		NA NA	
Benzaldehyde	UG/L	ND ND	5	NA NA		I .		NA 	
Benzo(a)anthracene	UG/L	ND ND	5	NA NA		NA NA		NA	· ·
Benzo(b)fluoranthene	UG/L	ND ND	5			NA NA		NA	
Benzo(k)fluoranthene	UG/L	ND ND	5	NA NA		NA NA		NA 	
Benzo(ghi)perylene	UG/L	ND ND	5	NA NA		NA NA		NA	
Benzo(a)pyrene	UG/L	1	5	NA NA		NA		NA	,
Benzoic acid	UG/L	ND	· -	NA		NA NA		NA NA	
		ND	150	NA		NA		NA	
Benzyl alcohol	UG/L	ND	20	NA NA		NA		NA NA	
Biphenyl	UG/L	ND	5	NA NA		NA NA		NA	
Bis(2-chloroethoxy) methane	UG/L	ND	5	. NA		NA		NA	
Bis(2-chloroethyl) ether	UG/L	ND	5	NA NA		NA .		NA	
2,2'-0xybis(1-Chloropropane)	UG/L	ND	5	NA		NA		NA	
Bis(2-ethylhexyl) phthalate	UG/L	ND	5	NA		NA		NA NA	
4-Bromophenyl phenyl ether	UG/L	ND	5	NA ·		NA		NA NA	
Butyl benzyl phthalate	UG/L	ND ·	5	NA		NA		NA	
Caprolactam	UG/L	ND	5	NA		NA NA		NA	
4-Chloroaniline	UG/L	ND	5	NA		NA		NA	
4-Chloro-3-methylphenol	UG/L	ND	5	NA	+	NA		NA	
2-Chloronaphthalene	UG/L	ND	5	NA	*	NA NA		NA	
2-Chlorophenol	UG/L	ND	5	NA NA		NA NA		NA	
4-Chlorophenyl phenyl ether	UG/L	ND	5	NA		NA NA		NA NA	
Carbazole	UG/L	ND	5	NA		NA		NA NA	
Chrysene	UG/L	ND	5	NA		NA NA		NA NA	
Dibenzo(a,h)anthracene	UG/L	ND	5	NA.		NA NA		NA NA	
Dibenzofuran	UG/L	ND	5	NA.		NA NA		NA NA	
Di-n-butyl phthalate	UG/L	ND	5	NA NA		NA NA		NA NA	
3,3'-Dichlorobenzidine	UG/L	ND	5	NA		NA NA			
2,4-Dichlorophenol	UG/L	ND	5	NA .		NA NA		NA	
Diethyl phthalate	UG/L	ND	5	NA NA			•	NA	
2,4-Dimethylphenol	UG/L	ND	5	NA NA		NA NA		NA	
Dimethyl phthalate	UG/L	ND	5	NA NA		NA NA		NA	
4,6-Dinitro-2-methylphenol	UG/L	ND ND	10	NA NA		NA NA		NA	
2,4-Dinitrophenol	UG/L	ND ND	10			NA NA		NA	
2,4-Dinitrotoluene	UG/L	ND	5	NA NA		NA NA		NA	
2,6-Dinitrotoluene	UG/L			NA ***		NA		NA	
Di-n-octyl phthalate		ND	5	NA ***		NA NA		NA	
Fluoranthene	UG/L	0.2 J	. 5	NA		NA NA		NA	
r tuoi aii thene	UG/L	ND	5	NA (NA		NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID Sample Date		SBLK A07-7011	A7B1004503	•					
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone 2-Methylnaphthalene 2-Methylphenol 4-Methylphenol Naphthalene 2-Nitroaniline 3-Nitroaniline Nitrobenzene 2-Nitrophenol 4-Nitroso-Di-n-propylamine N-Nitroso-Di-n-propylamine Pentachlorophenol Phenanthrene Phenol Pyrene	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ND ND ND ND ND ND ND ND ND ND ND ND ND N	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	NA NA NA NA NA NA NA NA NA NA NA NA NA N		NA NA NA NA NA NA NA NA NA NA NA NA NA N		NA NA NA NA NA NA NA NA NA NA NA NA NA N	
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	UG/L UG/L	ND ND	5 5	NA NA		NA NA		NA NA	
IS/SURROGATE(S) 1,4-Dichlorobenzene-D4 Naphthalene-D8 Acenaphthene-D10 Phenanthrene-D10 Chrysene-D12 Perylene-D12 Nitrobenzene-D5 2-Fluorobiphenyl p-Terphenyl-d14 Phenol-D5 2-Fluorophenol 2,4,6-Tribromophenol	% % % % % % % % % % % % % % % % % % %	87 89 90 92 89 101 70 68 90 29 36 89	50-200 50-200 50-200 50-200 50-200 50-200 46-112 48-116 24-136 16-120 20-120 52-132	NA NA NA NA NA NA NA NA NA NA NA		NA NA NA NA NA NA NA NA		NA NA NA NA NA NA NA NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID Sample Date		Matrix Spike E A07-7011	3lank A7B1004501	Matrix Spike E A07-7011	3lk Dup A7B1004502				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
N,N-Dimethyl formamide	UG/L	ND	20	ND	20	NA NA	1.	NA	
Acenaphthene	UG/L	86	5	80	5	NA		NA	
Acenaphthylene	UG/L	86	5	79	5	NA		NA	
Acetophenone	UG/L	79	5	74	5	NA		NA	
Anthracene	UG/L	99	5	92	5	NA.		NA NA	
Atrazine	UG/L	92	5	83	5	NA NA		NA NA	
Benzaldehyde	UG/L	60	5	53	5	NA NA			
Benzo(a)anthracene	UG/L	100	5	94	5			NA NA	
Benzo(b)fluoranthene	UG/L	99	5		_	NA		NA	
				87	5	NA		NA	
Benzo(k)fluoranthene	UG/L	93	5	95	5	NA		NA	1
Benzo(ghi)perylene	UG/L	130	5	120	5	NA		NA	
Benzo(a)pyrene	UG/L	96	. 5	88	5	NA		NA	
Benzoic acid	UG/L	ND	150	ND	150	NA		NA	
Benzyl alcohol	UG/L	64	20	62	20	NA		NA	
Biphenyl	UG/L	78	5	72	5	NA		NA	
Bis(2-chloroethoxy) methane	UG/L	82	5	77	5	NA		NA	
Bis(2-chloroethyl) ether	UG/L	74	5	69	5	NA		NA	
2,2'-0xybis(1-Chloropropane)	UG/L	80	5	74	5	NA		NA	
Bis(2-ethylhexyl) phthalate	UG/L	97	5	92	5	NA NA		NA	
4-Bromophenyl phenyl ether	UG/L	92	5	88	5	NA		NA NA	
Butyl benzyl phthalate	UG/L	100	5	93	5	NA NA		NA NA	
Caprolactam	UG/L	30	5	57	5	NA NA	İ	NA NA	
4-Chloroaniline	UG/L	83	5	76	5	NA NA			
4-Chloro-3-methylphenol	UG/L	89	5	86	5			NA	
2-Chloronaphthalene	UG/L	79	5	73	5	NA		NA	
2-Chlorophenol	UG/L		5			NA		NA	
•		68	-	63	5	NA.		NA	
4-Chlorophenyl phenyl ether	UG/L	90	5	84	5	NA		NA	
Carbazole	UG/L	98	5	93	5	NA		NA	
Chrysene	UG/L	100	5	95	5	NA		NA	
Dibenzo(a,h)anthracene	UG/L	120	5	110	5	NA		NA	
Dibenzofuran	UG/L	85	5	79	5	NA		NA	
Di-n-butyl phthalate	UG/L	100	5	94	5	NA		NA	
3,3'-Dichlorobenzidine	UG/L	83	5	71	5	NA		NA	
2,4-Dichlorophenol	UG/L	83	5	77	5	NA		NA	
Diethyl phthalate	UG/L	94	5	88	5	NA		NA	
2,4-Dimethylphenol	UG/L	76	5	71	5	NA		NA	
Dimethyl phthalate	UG/L	92	5	84	5	NA		NA NA	
4,6-Dinitro-2-methylphenol	UG/L	110	10	100	10	NA NA		NA NA	
2,4-Dinitrophenol	UG/L	90	10	82	10	NA NA		NA NA	
2,4-Dinitrotoluene	UG/L	95	5	89	5	NA NA			
2,6-Dinitrotoluene	UG/L	95	5	88	5			NA NA	
Di-n-octyl phthalate	UG/L	95 110 В	5		- 1	NA NA		NA	
Fluoranthene	UG/L	97	5 .	98 B	5	NA		NA	
COOT OF CHECK	ן איין	71	, J	92	5	NA	l l	NA	1

Client ID Job No Lab ID Sample Date		Matrix Spike A07-7011	Blank A7B1004501	Matrix Spike A07-7011	Blk Dup A7B1004502				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Fluorene	UG/L	91	5	85	5	NA NA		NA NA	
Hexachlorobenzene	UG/L	94	5	87	5	NA		NA NA	
Hexachlorobutadiene	UG/L	49	. 5	49	5	NA		NA	
Hexachlorocyclopentadiene	UG/L	55	5	52	5	NA.		NA NA	·
Hexachloroethane	UG/L	46	5	47	5	NA NA		NA NA	
Indeno(1,2,3-cd)pyrene	UG/L	120	5	110	5	NA		NA NA	
Isophorone	UG/L	82	5	77	5	NA NA		1	
2-Methylnaphthalene	UG/L	72	5	69	5	NA NA		NA NA	
2-Methylphenol	UG/L	68	5	64	5	NA NA		NA NA	
4-Methylphenol	UG/L	66	5	62	5	NA NA		NA NA	
Naphthalene	UG/L	69	5	66	5	NA NA		NA 	
2-Nitroaniline	UG/L	93	10	86	10	NA NA		NA 	
3-Nitroaniline	UG/L	88	10	81	10	NA NA		NA	
4-Nitroaniline	UG/L	92	10	85	10			NA	
Nitrobenzene	UG/L	77	5	72	5	NA NA		NA NA	
2-Nitrophenol	UG/L	80	5	76	5	NA NA		NA NA	
4-Nitrophenol	UG/L	36	10	34	10	NA		NA NA	
N-nitrosodiphenylamine	UG/L	73	5	68	5	NA		NA NA	
N-Nitroso-Di-n-propylamine	UG/L	85	5	80	1 -	NA NA		NA NA	i '
Pentachlorophenol	UG/L	100	10	92	5	NA		NA	
Phenanthrene	UG/L	99	5		10	NA		NA	
Phenol	UG/L	32	5	92	5	NA NA		NA	
Pyrene	UG/L	100	5	31	5_	NA		NA	
2,4,5-Trichlorophenol	UG/L	94	5	94	5	NA NA		NA	
2,4,6-Trichlorophenol	UG/L	88		85	5	NA NA		NA :	
IS/SURROGATE(S)	100/L	00	5	84	5	NA NA		NA	
1,4-Dichlorobenzene-D4	%	111	F0 200						
Naphthalene-D8	^o	111	50-200	88	50-200	NA		NA	
Acenaphthene-D10	1%		50-200	91	50-200	NA NA		NA	
Phenanthrene-D10	/°	115 116	50-200	94	50-200	NA NA		NA	
Chrysene-D12	/° /		50-200	95	50-200	NA NA		NA	
Perylene-D12	[/] 0	110	50-200	93	50-200	NA		NA	
Nitrobenzene-D5	^{/6}	124	50-200	101	50-200	NA NA		NA	
2-Fluorobiphenyl	/6 e/	72	46-112	68	46-112	NA		NA	
z-rtuoropipnenyt p-Terphenyl-d14	1/6	77	48-116	70	48-116	NA		NA	
	%	88	24-136	81	24-136	NA NA		NA	
Phenol-D5	%	28	16-120	27	16-120	NA		NA	
2-Fluorophenol	%	35	20-120	33	20-120	NA		NA	
2,4,6-Tribromophenol	[%	93	52-132	82	52-132	NA		NA NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client ID Job No Lab II Sample Date		Method Blank A07-7011	A7B0998603						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Aroclor 1016	UG/L	ND	0.50	NA		NA		NA	
Aroclor 1221	UG/L	ND	0.50	NA		NA NA		NA	
Aroclor 1232	UG/L	ND	0.50	NA		NA		NA	
Aroclor 1242	UG/L	ND	0.50	NA		NA		NA	
Aroclor 1248	UG/L	ND	0.50	NA		NA		NA	
Aroclor 1254	UG/L	ND	0.50	NA		NA		NA	
Aroclor 1260 ————SURROGATE(S)———	UG/L	ND	0.50	NA		NA		NA	
Tetrachloro-m-xylene	/%	76	35-136	NA		NA		NA	
Decachlorobiphenyl	\% <u></u>	42	12-137	NA		NA		NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client ID Job No Lab ID Sample Date		Matrix Spike A07-7011	Blank A7B0998601	Matrix Spike A07-7011	Blk Dup A7B0998602				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	UG/L UG/L UG/L UG/L UG/L UG/L	3.4 ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50	3.5 ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50	NA NA NA NA NA NA		NA NA NA NA NA	
SURROGATE(S)——— Tetrachloro-m-xylene Decachlorobiphenyl	% %	86 51	35-136 12-137	81 35	35-136 12-137	NA NA		NA NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA-SOL PP METALS-SW8463/6010/7470-W

Client ID Job No Sample Date	Lab ID	Method Blank A07-7011	A7B0999502	Method Blank A07-7011	A7B1016702				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Arsenic - Soluble	MG/L	ND	0.010	NA		NA		NA	
Cadmium - Soluble	MG/L	ND	0.0010	NA		NA NA		NA	
Chromium – Soluble	MG/L	ND	0.0040	NA		NA		NA	
Nickel - Soluble	MG/L	ND	0.010	NA NA		NA		NA .	
Selenium – Soluble	MG/L	ND	0.015	NA		NA		NA	
Silver – Soluble	MG/L	ND	0.0030	NA NA		NA		NA	
Mercury - Soluble	MG/L	NA I		ND	0.00020	NA		NA NA	
Antimony - Soluble	MG/L	ND	0.020	NA NA		NA		NA	
Beryllium - Soluble	MG/L	ND	0.0020	NA NA		NA NA		NA NA	
Copper - Soluble	MG/L	ND	0.010	NA NA		NA .		NA	
Lead - Soluble	MG/L	ND ND	0.0050	NA		NA NA		NA	
Thallium - Soluble	MG/L	ND ND	0.020	NA NA		NA		NA	
Zinc - Soluble	MG/L	l ND	0.010	NA NA		NA NA		NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA-SOL PP METALS-SW8463/6010/7470-W

Client ID Job No La Sample Date	ab ID	GW MONITORING A07-7011 06/21/2007	-MW-3 A7701103MS	GW MONITORING A07-7011 06/21/2007	-MW-3 A7701103SD	LCS A07-7011	A7B1016701	LFB A07-7011	A7B0999501
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Mercury - Soluble	MG/L	NA	1	NA		0.0033	0.00020	NA NA	
Antimony - Soluble	MG/L	0.20	0.020	0.20	0.020	NA		0.19	0.020
Arsenic - Soluble	MG/L	0.20	0.010	0.20	0.010	NA		0.19	0.010
Beryllium - Soluble	MG/L	0.21	0.0020	0.21	0.0020	NA		0.20	0.0020
Cadmium - Soluble	MG/L	0.19	0.0010	0.20	0.0010	NA NA		0.19	0.0010
Chromium - Soluble	MG/L	0.19	0.0040	0.20	0.0040	NA NA		0.19	0.0040
Copper - Soluble	MG/L	0.21	0.010	0.21	0.010	NA		0.21	0.010
Lead - Soluble	MG/L	0.20	0.0050	0.20	0.0050	NA		0.20	0.0050
Nickel - Soluble	MG/L	0.20	0.010	0.20	0.010	NA NA		0.20	0.010
Selenium - Soluble	MG/L	0.20	0.015	0.20	0.015	NA NA		0.19	0.015
Silver - Soluble	MG/L	0.051	0.0030	0.051	0.0030	NA		0.051	0.0030
Thallium - Soluble	MG/L	0.19	0.020	0.20	0.020	NA NA		0.19	0.020
Zinc - Soluble	MG/L	0.20	0.010	0.20	0.010	NA NA		0.20	0.010

msb14 A7B1047501

Client Sample ID: vblk14 Lab Sample ID: A7B1047502

Analyte		Concent		ĺ	
	Units of Measure	Blank Spike	Spike Amount	% Recovery Blank Spike	QC LIMITS
DELTA - METHOD 8260/25 ML - TCL VOLAT	ILE				
1,1-Dichloroethene	UG/L	27.4	25.0	110	71-147
Trichloroethene	UG/L	25.5	25.0	102	71-120
Benzene	UG/L	24.6	25.0	98	79-12
Toluene	UG/L	25.2	25.0	101	69-120
Chlorobenzene	UG/L	24.8	25.0	99	79-118

Client Sample ID: SBLK Lab Sample ID: A7B1004503

Matrix Spike Blank

Matrix Spike Blk Dup A7B1004502

A7B1004501 A7B100

		Concen	% Recovery								
Analyte	Units of Measure	Spike Blank	Spike Blank Dup	Spike SB	Amount SBD	SB	SBD	Avg	% RPD	QC LI RPD	IMITS REC.
METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FOR											
Phenol	UG/L	31.7	30.9	100	100	32	31	32	3	39.0	17-120
2-Chlorophenol	UG/L	67.5	63.0	100	100	68	63	66	8	33.0	47-120
N-Nitroso-Di-n-propylamine	UG/L	84.8	79.7	100	100	85	80	83	6	38.0	55-115
4-Chloro-3-methylphenol	UG/L	89.2	85.5	100	100	89	86	88	3	25.0	64-120
Acenaphthene	UG/L	86.5	79.7	100	100	86	80	83	7	23.0	60-118
4-Nitrophenol	UG/L	35.6	33.9	100	100	36	34	35	6	30.0	16-120
2,4-Dinitrotoluene	UG/L	94.7	88.7	100	100	95	89	92	6	20.0	58-125
Pentachlorophenol	UG/L	99.7	92.2	100	100	100	92	96	8	27.0	39-136
Pyrene	UG/L	101	94.1	100	100	101	94	98	7	25.0	58-136
<u> </u>	L										<u> </u>

Client Sample ID: Method Blank Lab Sample ID: A7B0998603

Matrix Spike Blank A7B0998601 Matrix Spike Blk Dup A7B0998602

		Concentration					Recove	ŗy			
Analyte	Units of Measure		Spike Blank Dup	Spike SB	Amount SBD	SB	SBD	Avg	% RPD	QC L RPD	IMITS REC.
DELTA - METHOD 8082 - POLYCHLORINATED BI Aroclor 1260 Aroclor 1016	UG/L UG/L	4.10 3.40	3.78 3.52	5.00 5.00	5.00 5.00	82 68	76 70	79 69	8 3	50.0 50.0	44-121 61-123

Client Sample ID: GW MONITORING-MW-3 Lab Sample ID: A7701103

GW MONITORING-MW-3

A7701103MS

GW MONITORING-MW-3

A7701103SD

	1 1		Conce	entration			% і	Recovery	<i>y</i> [
	Units of				Spike Am	ount				%	QC LI	
	Measure	Sample	Matrix Spike	Spike Duplicate	MS	MSD	MS	MSD	Avg	RPD	RPD	REC.
DELTA-SOL PP METALS-SW8463/6010/7470-W												
SOLUBLE ANTIMONY	MG/L	0	0.196	0.205	0.200	0.200	98	103	101	5	20.0	75-12
SOLUBLE ARSENIC	MG/L	0.00110	0.196	0.199	0.200	0.200	98	99	99	1	20.0	75-12
SOLUBLE BERYLLIUM	MG/L	0.00020	0.206	0.210	0.200	0.200	103	105	104	2	20.0	75-12
SOLUBLE CADMIUM	MG/L	0.00010	0.193	0.198	0.200	0.200	97	99	98	2	20.0	75-12
SOLUBLE CHROMIUM	MG/L	0	0.193	0.198	0.200	0.200	97	99	98	2	20.0	75-12
SOLUBLE COPPER	MG/L	0	0.209	0.209	0.200	0.200	105	105	105	0	20.0	75-12
SOLUBLE LEAD	MG/L	0.00020	0.200	0.203	0.200	0.200	100	101	101	1	20.0	75-12
SOLUBLE NICKEL	MG/L	0.00080	0.199	0.204	0.200	0.200	99	102	101	3	20.0	75-12
SOLUBLE SELENIUM	MG/L	0.00060	0.199	0.204	0.200	0.200	100	102	101	2	20.0	75-12
SOLUBLE SILVER	MG/L	0.00100	0.0512	0.0510	0.0500	0.0500	100	100	100	0	20.0	75-12
SOLUBLE THALLIUM	MG/L	0.00020	0.191	0.197	0.200	0.200	95	99	97	4	20.0	75-12
SOLUBLE ZINC	MG/L	0.00240	0.202	0.205	0.200	0.200	100	102	101	2	20.0	75-12
	1											1

Client Sample ID: Method Blank

Lab Sample ID: A7B0999502

LFB

A7B0999501

		Concentr	ation		
Analyte	Units of Measure	Blank Spike	Spike Amount	% Recovery Blank Spike	QC LIMITS
DELTA-SOL PP METALS-SW8463/6010/7470-W					
SOLUBLE ANTIMONY	MG/L	0.192	0.200	96	80-120
SOLUBLE ARSENIC	MG/L	0.190	0.200	94	80-120
SOLUBLE BERYLLIUM	MG/L	0.204	0.200	102	80-120
SOLUBLE CADMIUM	MG/L	0.192	0.200	96	80-120
SOLUBLE CHROMIUM	MG/L	0.194	0.200	97	80-120
SOLUBLE COPPER	MG/L	0.208	0.200	104	80-120
SOLUBLE LEAD	MG/L	0.199	0.200	99	80-120
SOLUBLE NICKEL	MG/L	0.196	0.200	98	80-120
SOLUBLE SELENIUM	MG/L	0.193	0.200	96	80-120
SOLUBLE SILVER	MG/L	0.0509	0.0500	102	80-120
SOLUBLE THALLIUM	MG/L	0.190	0.200	95	80-120
SOLUBLE ZINC	MG/L	0.199	0.200	99	80-120

^{*} Indicates Result is outside QC Limits NC = Not Calculated ND = Not Detected

Client Sample ID: Method Blank Lab Sample ID: A7B1016702

LCS

A7B1016701

Analyte	Units of Measure	Concentr Blank Spike	% Recovery Blank Spike	QC LIMITS	
DELTA-SOL PP METALS-SW8463/6010/7470-W SOLUBLE MERCURY	MG/L	0.00333	0.00333	100	80-120

DELTA ENVIRONMENTAL CONSULTANTS, INC.
SAMPLE CHRONOLOGY

Rept: ANO374 Page: 1

Client Sample ID		GW MONITORING-MW-2	GW MONITORING-MW-3	GW MONITORING-MW-4	
Job No & Lab Sample ID		A07-7011 A7701102	A07-7011 A7701103	A07-7011 A7701104	
Sample Date Received Date Extraction Date	06/21/2007 12:30 06/22/2007 08:45	06/21/2007 14:00 06/22/2007 08:45	06/21/2007 13:30 06/22/2007 08:45	06/21/2007 13:00 06/22/2007 08:45	
Analysis Date	07/01/2007 19:13	07/01/2007 19:37	07/01/2007 20:00	07/01/2007 20:23	
Extraction HT Met?	-	-	-	-	
Analytical HT Met?	YES	YES	YES	YES	
Sample Matrix Dilution Factor Sample wt/vol % Dry	WATER	WATER	WATER	WATER	
	1.0	1.0	1.0	1.0	
	0.005 LITERS	0.005 LITERS	0.005 LITERS	0.005 LITERS	

Date: 07/07/2007 Time: 10:13:53 DELTA ENVIRONMENTAL CONSULTANTS, INC. QC SAMPLE CHRONOLOGY

Rept: ANO374 Page: 2

Client Sample ID Job No & Lab Sample ID	•		
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	06/21/2007 06/22/2007 08:45 07/01/2007 18:50 - YES WATER 1.0 0.005 LITERS		

Date: 07/07/2007 DELTA ENVIRONMENTAL CONSULTANTS, INC.
Time: 10:13:53 QC SAMPLe CHRONOLOGY

Rept: ANO374 Page: 3

Client Sample ID Job No & Lab Sample ID	msb14 A07-7011 A7B1047501		
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	07/01/2007 12:33 - - - WATER 1.0 0.005 LITERS		

Date: 07/07/2007 DELTA ENVIRONMENTAL CONSULTANTS, INC.
Time: 10:13:53 QC SAMPLE CHRONOLOGY Page: 4

Client Sample ID Job No & Lab Sample ID			
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	07/01/2007 13:21 - - - WATER 1.0 0.005 LITERS		

DELTA ENVIRONMENTAL CONSULTANTS, INC. SAMPLE CHRONOLOGY

Rept: ANO374 Page: 1

METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client Sample ID Job No & Lab Sample ID		GW MONITORING-MW-2 A07-7011 A7701102	GW MONITORING-MW-3 A07-7011 A7701103	GW MONITORING-MW-4 A07-7011 A7701104	
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met?	06/21/2007 12:30 06/22/2007 08:45 06/27/2007 14:45 07/03/2007 15:18 YES	06/21/2007 14:00 06/22/2007 08:45 06/27/2007 14:45 07/03/2007 15:42 YES	06/21/2007 13:30 06/22/2007 08:45 06/27/2007 14:45 07/03/2007 16:07 YES	06/21/2007 13:00 06/22/2007 08:45 06/27/2007 14:45 07/03/2007 16:31 YES	
Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	YES WATER 1.0 1.06 LITERS	YES WATER 1.0 1.06 LITERS	YES WATER 1.0 1.06 LITERS	YES WATER 1.0 1.06 LITERS	

DELTA ENVIRONMENTAL CONSULTANTS, INC.

QC SAMPLE CHRONOLOGY

Rept: ANO374 Page: 2

METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client Sample ID Job No & Lab Sample ID	•	Matrix Spike Blk Dup AO7-7011 A7B1004502		
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	06/27/2007 14:45 07/03/2007 14:04 - - WATER 1.0 1.0 LITERS	06/27/2007 14:45 07/03/2007 14:28 - - - WATER 1.0 1.0 LITERS		

DELTA ENVIRONMENTAL CONSULTANTS, INC.

QC SAMPLE CHRONOLOGY

Rept: ANO374 Page: 3

METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client Sample ID Job No & Lab Sample ID			
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	06/27/2007 14:45 07/03/2007 14:53 - - WATER 1.0 1.0 LITERS		

DELTA ENVIRONMENTAL CONSULTANTS, INC.
SAMPLE CHRONOLOGY

Rept: ANO374 Page: 1

DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client Sample ID	GW MONITORING-MW-1 GW MONITORING-MW-2		GW MONITORING-MW-3	GW MONITORING-MW-4		
Job No & Lab Sample ID	A07-7011 A7701101 A07-7011 A7701102		A07-7011 A7701103	A07-7011 A7701104		
Sample Date Received Date Extraction Date Extraction Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	06/21/2007 12:30	06/21/2007 14:00	06/21/2007 13:30	06/21/2007 13:00		
	06/22/2007 08:45	06/22/2007 08:45	06/22/2007 08:45	06/22/2007 08:45		
	06/27/2007 07:00	06/27/2007 07:00	06/27/2007 07:00	06/27/2007 07:00		
	06/28/2007 12:13	06/28/2007 12:27	06/28/2007 12:41	06/28/2007 12:56		
	YES	YES	YES	YES		
	YES	YES	YES	YES		
	WATER	WATER	WATER	WATER		
	1.0	1.0	1.0	1.0		
	1.06 LITERS	1.06 LITERS	1.06 LITERS	1.06 LITERS		

DELTA ENVIRONMENTAL CONSULTANTS, INC.

QC SAMPLE CHRONOLOGY

Rept: ANO374 Page: 2

DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client Sample ID Job No & Lab Sample ID	•	Matrix Spike Blk Dup A07-7011 A7B0998602		
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	06/27/2007 07:00 06/28/2007 11:31 - - WATER 1.0 1.0 LITERS	06/27/2007 07:00 06/28/2007 11:45 - - WATER 1.0 1.0 LITERS		

Date: 07/07/2007 DELTA ENVIRONMENTAL CONSULTANTS, INC.
Time: 10:14:00 QC SAMPLE CHRONOLOGY

Rept: ANO374 Page: 3

DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client Sample ID Job No & Lab Sample ID	Method Blank A07-7011 A7B0998603		
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	06/27/2007 07:00 06/28/2007 11:59 - - - WATER 1.0 1.0 LITERS		

Lab ID	Sample ID	Units	Analyte	Method	Dilution Factor	Sample Date	Receive Date	TCLP Date	ТНТ	Analysis Date	АНТ	Matrix
A7701101	GW MONITORING-MW-1	MG/L	Antimony - Soluble	6010	1.00	06/21/2007 12:30	06/22 08:45	NA NA	NA	06/27 16:47	Yes	WATER
		MG/L	Arsenic - Soluble	6010		06/21/2007 12:30		NA.	NA	06/27 16:47		
		MG/L	Beryllium - Soluble	6010		06/21/2007 12:30		NA	NA	06/27 16:47		
		MG/L	Cadmium - Soluble	6010	1.00	06/21/2007 12:30	06/22 08:45	NA	NA	06/27 16:47		
		MG/L	Chromium - Soluble	6010	1.00	06/21/2007 12:30	06/22 08:45	NA	NA	06/27 16:47	Yes	WATER
		MG/L	Copper - Soluble	6010	1.00	06/21/2007 12:30	06/22 08:45	NA	NA	06/27 16:47		
		MG/L	Lead - Soluble	6010	1.00	06/21/2007 12:30	06/22 08:45	NA	NA	06/27 16:47		
		MG/L	Mercury - Soluble	7470		06/21/2007 12:30		NA	NA	06/29 11:42		
		MG/L	Nickel - Soluble	6010	1.00	06/21/2007 12:30	06/22 08:45	NA	NA	06/27 16:47		
		MG/L	Selenium - Soluble	6010	1.00	06/21/2007 12:30	06/22 08:45	NA	NA	06/27 16:47		
		MG/L	Silver - Soluble	6010	1.00	06/21/2007 12:30	06/22 08:45	NA	NA	06/27 16:47		
		MG/L	Thallium - Soluble	6010	1.00	06/21/2007 12:30	06/22 08:45	NA	NA	06/27 16:47		
		MG/L	Zinc - Soluble	6010	1.00	06/21/2007 12:30	06/22 08:45	NA	NA	06/27 16:47		
A7701102	GW MONITORING-MW-2	MG/L	Antimony - Soluble	6010	1.00	06/21/2007 14:00	06/22 08:45	NA	NA	06/27 16:53	Yes	WATER
		MG/L	Arsenic - Soluble	6010		06/21/2007 14:00		NA	NA	06/27 16:53	Yes	WATER
		MG/L	Beryllium - Soluble	6010	1.00	06/21/2007 14:00	06/22 08:45	NA	NA	06/27 16:53	Yes	WATER
		MG/L	Cadmium - Soluble	6010		06/21/2007 14:00		NA	NA	06/27 16:53		
		MG/L	Chromium - Soluble	6010	1.00	06/21/2007 14:00	06/22 08:45	NA	NA	06/27 16:53	Yes	WATER
		MG/L	Copper - Soluble	6010	1.00	06/21/2007 14:00	06/22 08:45	NA	NA	06/27 16:53	Yes	WATER
		MG/L	Lead - Soluble	6010	1.00	06/21/2007 14:00	06/22 08:45	NA	NA	06/27 16:53	Yes	WATER
1		MG/L	Mercury - Soluble	7470	1.00	06/21/2007 14:00	06/22 08:45	NA	NA	06/29 11:45		
			Nickel - Soluble	6010	1.00	06/21/2007 14:00	06/22 08:45	NA	NA	06/27 16:53		
		MG/L	Selenium - Soluble	6010		06/21/2007 14:00		NA	NA	06/27 16:53	Yes	WATER
		MG/L	Silver - Soluble	6010		06/21/2007 14:00		NA	NA	06/27 16:53	Yes	WATER
1	•	MG/L	Thallium - Soluble	6010	1.00	06/21/2007 14:00	06/22 08:45	NA	NA	06/27 16:53	Yes	WATER
A7701103	GW MONITORING-MW-3	MG/L	Zinc - Soluble	6010	1.00	06/21/2007 14:00	06/22 08:45	NA	NA	06/27 16:53		
A7701103	GM MONTIOKTUR-MM-2	MG/L	Antimony - Soluble	6010	1.00	06/21/2007 13:30	06/22 08:45	NA	NA	06/27 17:11		
		MG/L	Arsenic - Soluble	6010	1.00	06/21/2007 13:30	06/22 08:45	NA	NA	06/27 17:11	Yes	WATER
		MG/L MG/L		6010	1.00	06/21/2007 13:30	06/22 08:45	NA	NA	06/27 17:11		
		MG/L	1	6010	1.00	06/21/2007 13:30	06/22 08:45	NA	NA	06/27 17:11		
		MG/L	l	6010	1.00	06/21/2007 13:30	06/22 08:45	NA	NA	06/27 17:11		
		MG/L	l 'a a a a a a a a a a a a a a a a a a a	6010		06/21/2007 13:30		NA	NA	06/27 17:11		
				6010		06/21/2007 13:30		NA	NA	06/27 17:11		
		1 7	•	7470		06/21/2007 13:30		NA	NA	06/29 11:47		
		MG/L	1 1	6010	1.00	06/21/2007 13:30	06/22 08:45	NA	NA	06/27 17:11		
			l _	6010	1.00	06/21/2007 13:30	06/22 08:45	NA	NA	06/27 17:11	1	
		MG/L		6010	1.00	06/21/2007 13:30	06/22 08:45	NA	NA	06/27 17:11		
		MG/L	l	6010		06/21/2007 13:30		NA	NA	06/27 17:11		
A7701104	GW MONITORING-MW-4	MG/L		6010		06/21/2007 13:30		NA	NA	06/27 17:11		
/// / / / / / / / / / / / / / / / / / /	ou hour out to	MG/L	1	6010	1.00	06/21/2007 13:00	06/22 08:45	NA	NA	06/27 17:36		
		MG/L		6010 6010	1.00	06/21/2007 13:00	06/22 08:45	NA	NA	06/27 17:36		
		MG/L		6010		06/21/2007 13:00		NA	NA	06/27 17:36		
		MG/L		6010		06/21/2007 13:00		NA	NA	06/27 17:36		
		MG/L		6010	1.00	06/21/2007 13:00	00/22 08:45	NA	NA	06/27 17:36		
			· · · · · · · · · · · ·	6010		06/21/2007 13:00		NA	NA	06/27 17:36		
				7470	1.00	06/21/2007 13:00 06/21/2007 13:00	06/22 08:45	NA		06/27 17:36	Yes	WATER
				6010		06/21/2007 13:00		NA	NA	06/29 11:49	Yes	WATE
	1	1 -, -		0010	1.00	00/21/200/ 13:00	00/22 08:45	NA	NA	06/27 17:36	Yes	WATE

AHT = Analysis Holding Time Met

THT = TCLP Holding Time Met

NA = Not Applicable

Date: 07/07/2007 10:14:04 Jobno: A07-7011

DELTA ENVIRONMENTAL CONSULTANTS, INC.

SAMPLE CHRONOLOGY

Dilution Sample Receive TCLP Analysis Lab ID Method Sample ID Units Analyte Factor Date Date Date THT Date AHT Matrix 06/27 17:36 Yes WATER 06/27 17:36 Yes WATER A7701104 GW MONITORING-MW-4 MG/L Selenium - Soluble 6010 1.00 06/21/2007 13:00 06/22 08:45 NA MG/L 1.00 06/21/2007 13:00 06/22 08:45 Silver - Soluble 6010 NΑ NA MG/L Thallium - Soluble 6010 1.00 06/21/2007 13:00 06/22 08:45 06/27 17:36 Yes WATER NA NA 1.00 06/21/2007 13:00 06/22 08:45 06/27 17:36 Yes WATER MG/L Zinc - Soluble 6010 NA

STL Buffalo

Dilution Sample Receive TCLP Analysis Lab ID Sample ID Units Analyte Method Factor Date Date Date THT Date AHT Matrix A7701103MS GW MONITORING-MW-3 MG/L Antimony - Soluble 6010 1.00 06/21/2007 13:30 06/22 08:45 NA 06/27 17:26 Yes WATER MG/L Arsenic - Soluble 6010 1.00 06/21/2007 13:30 06/22 08:45 NA 06/27 17:26 Yes WATER MG/L Beryllium - Soluble 6010 1.00 06/21/2007 13:30 06/22 08:45 06/27 17:26 Yes WATER NA NA MG/L Cadmium - Soluble 6010 1.00 06/21/2007 13:30 06/22 08:45 06/27 17:26 Yes WATER NA NA Chromium - Soluble MG/L 6010 1.00 06/21/2007 13:30 06/22 08:45 06/27 17:26 Yes WATER NA NA MG/L Copper - Soluble 6010 1.00 06/21/2007 13:30 06/22 08:45 06/27 17:26 Yes WATER NA MG/L Lead - Soluble 6010 1.00 06/21/2007 13:30 06/22 08:45 06/27 17:26 Yes WATER NA MG/L Nickel - Soluble 6010 1.00 06/21/2007 13:30 06/22 08:45 06/27 17:26 Yes WATER NA MG/L Selenium - Soluble 6010 1.00 06/21/2007 13:30 06/22 08:45 06/27 17:26 Yes WATER NA MG/L Silver - Soluble 6010 1.00 06/21/2007 13:30 06/22 08:45 NA NA 06/27 17:26 Yes WATER MG/L Thallium - Soluble 6010 1.00 06/21/2007 13:30 06/22 08:45 06/27 17:26 Yes WATER NA MG/L Zinc - Soluble 6010 1.00 06/21/2007 13:30 06/22 08:45 06/27 17:26 Yes WATER NA A7701103SD GW MONITORING-MW-3 MG/L Antimony - Soluble 6010 1.00 06/21/2007 13:30 06/22 08:45 NA 06/27 17:31 Yes WATER NA MG/L Arsenic - Soluble 6010 1.00 06/21/2007 13:30 06/22 08:45 06/27 17:31 Yes WATER NΑ 1.00 06/21/2007 13:30 06/22 08:45 MG/L Beryllium - Soluble 6010 NA 06/27 17:31 Yes WATER NA MG/L Cadmium - Soluble 6010 1.00 06/21/2007 13:30 06/22 08:45 NA 06/27 17:31 Yes WATER MG/L Chromium - Soluble 6010 1.00 06/21/2007 13:30 06/22 08:45 06/27 17:31 Yes WATER NA NA MG/L Copper - Soluble 1.00 06/21/2007 13:30 06/22 08:45 6010 06/27 17:31 Yes WATER NA NA MG/L Lead - Soluble 1.00 06/21/2007 13:30 06/22 08:45 6010 06/27 17:31 Yes WATER NA NA MG/L Nickel - Soluble 6010 1.00 06/21/2007 13:30 06/22 08:45 06/27 17:31 Yes WATER NA NA MG/L Selenium - Soluble 1.00 06/21/2007 13:30 06/22 08:45 6010 06/27 17:31 Yes WATER NA NA MG/L Silver - Soluble 1.00 06/21/2007 13:30 06/22 08:45 6010 NA NA 06/27 17:31 Yes WATER MG/L Thallium - Soluble 6010 1.00 06/21/2007 13:30 06/22 08:45 NA NA 06/27 17:31 Yes WATER MG/L Zinc - Soluble 6010 1.00 06/21/2007 13:30 06/22 08:45 06/27 17:31 Yes WATER NA NA A7B0999502 Method Blank MG/L Antimony - Soluble 6010 1.00 06/27 15:20 Yes WATER - 08:45 NA MG/L Arsenic - Soluble 6010 1.00 - 08:45 NA 06/27 15:20 Yes WATER MG/L Beryllium - Soluble 6010 1.00 - 08:45 06/27 15:20 Yes WATER NA NA MG/L Cadmium - Soluble 6010 1.00 - 08:45 06/27 15:20 Yes WATER NA NA MG/L Chromium - Soluble 6010 1.00 -08:4506/27 15:20 Yes WATER NA NA MG/L Copper - Soluble 6010 1.00 - 08:45 06/27 15:20 Yes WATER NA NA MG/L Lead - Soluble 6010 1.00 - 08:45 NA NA 06/27 15:20 Yes WATER MG/L Nickel - Soluble 6010 1.00 - 08:45 06/27 15:20 Yes WATER NA NA MG/L Selenium - Soluble 6010 1.00 - 08:45 06/27 15:20 Yes WATER NA NA MG/L Silver - Soluble 6010 1.00 - 08:45 06/27 15:20 Yes WATER NA NA MG/L Thallium - Soluble 6010 1.00 - 08:45 06/27 15:20 Yes WATER NA MG/L Zinc - Soluble 6010 1.00 - 08:45 NA 06/27 15:20 Yes WATER A7B1016702 Method Blank MG/L Mercury - Soluble 7470 1.00 - 08:45 06/29 12:39 Yes WATER NA A7B1016701 LCS MG/L Mercury - Soluble 7470 1.00 - 08:45 NA NA 06/29 12:37 Yes WATER A7B0999501 LFB MG/L Antimony - Soluble 6010 1.00 - 08:45 06/27 15:25 Yes WATER NA MG/L Arsenic - Soluble 6010 1.00 - 08:45 06/27 15:25 Yes WATER NA MG/L Beryllium - Soluble 6010 1.00 - 08:45 06/27 15:25 Yes WATER NA NA MG/L Cadmium - Soluble 6010 1.00 - 08:45 NA 06/27 15:25 Yes WATER NA MG/L Chromium - Soluble 6010 1.00 - 08:45 NA NA 06/27 15:25 Yes WATER MG/L Copper - Soluble 6010 1.00 - 08:45 06/27 15:25 Yes WATER NA MG/L Lead - Soluble 6010 1.00 - 08:45 06/27 15:25 Yes WATE NA MG/L Nickel - Soluble 6010 1.00 - 08:45 06/27 15:25 Yes WATEN NA NA Selenium - Soluble MG/L 6010 1.00 06/27 15:25 Yes WATE - 08:45 NA NA MG/L Silver - Soluble 6010 1.00 -08:45NA 06/27 15:25 Yes WATE DELTA ENVIRONMENTAL CONSULTANTS, INC.

Date: 07/07/2007 10:14:04 Jobno: A07-7011 QC CHRONOLOGY

Lab ID	Sample ID	Units	Analyte	Method	Dilution Factor	Sample Date	Receive Date	TCLP Date	тнт	Analysis Date	АНТ	Matrix
A7B0999501		l '.		6010 6010	1.00 1.00		- 08:45 - 08:45	NA NA		06/27 15:25 06/27 15:25		

Chain of Custody Record

STL-4124 (0901)																					
Delta Environmental Consult	tants	Project M	anager OH E	301	^^-	L L							1	Date	121	10-	7	Chain	of Custody	Number 3110	1
Address	unis	Telephon	e Number	(Area C	ode)/F	ax Nur	mber						٠,	ab Nu		10	<u></u>	\vdash	<u> 343</u>	<u>) </u>	<u> </u>
185 Jordan Road		(518		-03											,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Page		of _	
City State Zip C	2180	Site Cont J 450 Carrier/W	act A 17 au	M ON	d R	b Cont	tact	أدما	14.0			'n	Analy nore s	sis (Al pace	tach I is nee	ist if ded)					
1 Toject Name and Location (State)	~	Carrier/W	aybill Nun	nber	טויי	(Lu ₁))	1301		$\neg \lceil \; \rceil$	0	200	J	П							
Cookson - 45 Tannery Street F	ranklin, Nt	FedE	(-8	619	319	4-	103	55		<u>ب</u>	ISIN	30	3						Specia	l Instruct	ions/
Contract/Purchase Order/Quote No.			Ма	trix		C F	Conta Prese	ainers rvativ	& es	6 46	S 8	Cs 8270	2						Condition	ons of Re	eceipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Aqueous	Soil Soil	Unpres.	H2SO4	HNO3	Ž Ž	ZnAc/ NaOH	DO M e to	VOCS	2000									
GW Monitaring - MW-1	6/2/67 1	12:30	X		X	_	X	V		\forall	17	XX	<				11	1.			····
fw Monitoria - MW-2		4:00	ТX		X		X	Υ		X	X	XX									
GW Maritary - MW-3	6/21/07 1	3:30	1		X		V	V		X	X	X y	1								
aw Maritanh - MW-4		3:00	X		X	_	X	X		X	X	XX									
																				·	
															1		11				***************************************
									11								11				
					1	\Box		1	\top	1					_	\Box	11	_			
			1			T		十	$\dagger \dagger$	_	T		-	\vdash		\Box	+				
·							\top	T	11		П	\top	†		1	$\dagger \dagger$		-			
														П							
Possible Hazard Identification		,	Sample t			M								<u> </u>	(A	fee may	be asse	essed if:	samples ar	e retained	
☐ Non-Hazard ☐ Flammable ☐ Skin Irritant ☐ Turn Around Time Required	Poison B	Unknown	Retu	rn To Cli	ent	D D			ab [Arcl	hive Fo	or		Month	s Ìon		n 1 mont				
24 Hours 48 Hours 7 Days 14 Day	/s 21 Days	Other					төцин	enien	is (Spec	, iiy)									/ /		
1. Relinquished By		Date		15:0	<u> </u>	S. S.	eceive	ed By	<u> </u>					mei.es.				Date		Time	2 53^
2. Helinquished by		0/2// Date		Time	<u>U</u>	2. Re	eceive	ed By										Date	22105	Time	37
3. Relinquished By	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Data		F:		L						-							~~~		
and the second s		Date	· '	Time		3. He	eceive	∌а Ву										Date		Time	
Comments		•		~~		<u> </u>)	~									
DISTRIBUTION: WHITE Returned to Client with Report; Co.	ANARY . Stave with	the Samela	· DINIK I	Field Co-	314					0/	<u>e</u>	مر	<u>۔</u>	<u>)</u>							
The state of the s	www.ii - Olays Willi	r me sample	, FIIVA • 1	naid COD	'y																

STL

STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

August 13, 2007

Mr. Scott Bryant Delta Environmental 185 Jordan Rd. Troy, NY 12180

RE: REVISION for A07-7011

Dear Mr. Bryant:

Please find enclosed the analytical report pages concerning samples recently submitted by your firm. Specifically, they are the Tentatively Identified Compound (TIC) pages added per your request. The pertinent information regarding these analyses is listed below:

Site: Cookson/Tannery Street site

Event: GW sampling

If you have any questions concerning these data, please contact the Project Manager at (716) 691-2600 and refer to the I.D. number listed below. It has been our pleasure to provide Delta and the Cookson/Tannery Street site with environmental testing services. We look forward to serving you in the future.

Sincerely,

STL Buffalo

Brian J. Fischer
Project Manager

Lamo I Sulew

BJF:lhs Enclosure I.D. A07-7011 #NY4A9341

DELTA - METHOD 8260/25 ML - TCL VOLATILE ORGANICS TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

			GW MONITORING	-MW-1
Lab Name: <u>STL Buffalo</u>	Contract:	- -		
Lab Code: <u>RECNY</u> Case No.: _	SAS No.:	SDG No.:		
Matrix: (soil/water) <u>WATER</u>		Lab Sample ID:	<u>A7701101</u>	
Sample wt/vol: $\underline{5.00}$ (g	g/mL) <u>ML</u>	Lab File ID:	N8922.RR	
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	06/21/2007 0	6/22/200
% Moisture: not dec		Date Analyzed:	07/01/2007	
GC Column: <u>ZB-624</u> ID: <u>0</u> .	<u>25</u> (mm)	Dilution Factor:	:1.00	
Soil Extract Volume: (u	L)	Soil Aliquot Vol	Lume:	(uL)
Number TICs found:0		CONCENTRATION UNIT (ug/L or ug/Kg)		
				٦

CAS NO.	Compound Name	RT	Est. Conc.	Q

DELTA - METHOD 8260/25 ML - TCL VOLATILE ORGANICS TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

GW MONITORING-MW-2

Lab Name: STL Buffalo Contract: _____

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ____

Lab Sample ID: A7701102

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$

Matrix: (soil/water) WATER

Lab File ID: N8923.RR

Date Samp/Recv: 06/21/2007 06/22/2007

Level: (low/med) LOW

Date Analyzed: <u>07/01/2007</u> % Moisture: not dec. _____

Dilution Factor: ____1.00 GC Column: <u>ZB-624</u> ID: <u>0.25</u> (mm)

Soil Aliquot Volume: ____ (uL) Soil Extract Volume: ____ (uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L Number TICs found: 10

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 3728-56-1 2. 3. 4. 5. 6. 6783-92-2 7. 8. 9. 10.	1-ETHYL-4-METHYLCYCLOHEXANE UNKNOWN ALKANE UNKNOWN UNKNOWN 1,1,2,3-TETRAMETHYLCYCLOHEX UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN	8.25 8.58 8.78 8.94 9.09 9.37 9.89 10.73 11.24 11.31	9 17 15 20 11 26 13 18 11	JN J J J J J J J J J J J J J J J J

DELTA - METHOD 8260/25 ML - TCL VOLATILE ORGANICS TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

		GW MONITORING-MW-3
Lab Name: STL Buffalo Contract:	_	
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A7701103
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID:	N8924.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	06/21/2007 06/22/200
% Moisture: not dec	Date Analyzed:	07/01/2007
GC Column: <u>ZB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor	:1.00
Soil Extract Volume: (uL)	Soil Aliquot Vo	lume: (uL)
Number TICs found: 1	CONCENTRATION UNI	

CAS NO.	Compound Name	RT	Est. Conc.	Q
1.	UNKNOWN	4.93	3	J

DELTA - METHOD 8260/25 ML - TCL VOLATILE ORGANICS TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

					GW MONIT	ORING	-MW-4	
Lab Name:	STL Buffalo	Contract:	narione.					
Lab Code:	<u>RECNY</u> Case No.	.: SAS No.:	SDG No.: _					
Matrix: (soil/water) <u>WATER</u>		Lab Samp	le ID:	<u>A770110</u>	4		
Sample wt	:/vol:5.00	0 (g/mL) <u>ML</u>	Lab File	ID:	N8925.R	R		
Level:	(low/med) <u>LOW</u>		Date Samp	p/Recv:	06/21/2	<u>007</u> <u>0</u>	6/22/200	7
% Moistur	re: not dec	_	Date Ana	lyzed:	07/01/2	007		
GC Column	n: <u>ZB-624</u> ID:	:_0.25 (mm)	Dilution	Factor	:1.0	0		
Soil Extr	cact Volume:	(uL)	Soil Alio	quot Vo	lume:		(uL)	
Number Tl	ICs found:0		CONCENTRATION (ug/L or 1					
	CAS NO.	Compound Name	RT	Est.	Conc.	Q		

STL

STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

ANALYTICAL REPORT

Job#: <u>A07-A734</u>

Project#: NY4A9341

Site Name: Delta Environmental Consultants, Inc.

Task: Cookson site/Tannery Street

Mr. Scott Bryant Delta Environmental 185 Jordan Rd. Troy, NY 12180

STL Buffalo

Brian J. Fischer Project Manager

10/08/2007

STL Buffalo Current Certifications

As of 5/16/2007

STATE	Program	Cert # / Lab ID
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA,NELAP CWA, RCRA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA, CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	NELAP SDWA, CWA, RCRA	NY455
New York	NELAP AIR, SDWA, CWA, RCRA,CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA, RCRA	998310390

SAMPLE SUMMARY

			SAMP)	ED	RECEIVI	Œ
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A7A73401	MW-5	WATER	09/21/2007	09:45	09/22/2007	09:00
A7A73402	Trip Blank	WATER	09/21/2007		09/22/2007	09:00

METHODS SUMMARY

Job#: <u>A07-A734</u>

Project#: NY4A9341

Site Name: Delta Environmental Consultants, Inc.

	ANALYTICAL
PARAMETER	METHOD
DELTA - METHOD 8260/25 ML - TCL VOLATILES + TICS	SW8463 8260
METHOD 8270 - TCL SEMI-VOAs+dimethyl formamide	SW8463 8270
DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS	SW8463 8082
Antimony - Soluble	SW8463 6010
Arsenic - Soluble	SW8463 6010
Beryllium - Soluble	SW8463 6010
Cadmium - Soluble	SW8463 6010
Chromium - Soluble	SW8463 6010
Copper - Soluble	SW8463 6010
Lead - Soluble	SW8463 6010
Mercury - Soluble	SW8463 7470
Nickel - Soluble	SW8463 6010
Selenium - Soluble	SW8463 6010
Silver - Soluble	SW8463 6010
Thallium - Soluble	SW8463 6010
Zinc - Soluble	SW8463 6010

References:

SW8463

"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

SDG NARRATIVE

Job#: A07-A734

Project#: NY4A9341

Site Name: Delta Environmental Consultants, Inc.

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A07-A734

Sample Cooler(s) were received at the following temperature(s); 2.0 °C All samples were received in good condition.

GC/MS Volatile Data

No deviations from protocol were encountered during the analytical procedures.

GC/MS Semivolatile Data

No deviations from protocol were encountered during the analytical procedures.

GC Extractable Data

No deviations from protocol were encountered during the analytical procedures.

<u>Metals Data</u>

The CCV recovery for Beryllium, Chromium, Thallium and Zinc in Method 6010 was above quality control limits. However, since target analytes were non-detect in the samples and the high recoveries would yield a high bias, no further corrective action was necessary.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Brian J. Fischer Project Manager	
Date	

STL

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- G Indicates a value greater than or equal to the project reporting limit but less than the laboratory quantitation limit
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

Sample Date		A07-A734 09/21/2007	A7A73401						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/L	2.3 J	5.0	NA		NA NA		NA	
Benzene	UG/L	ND	1.0	NA		NA		NA	
3romodichloromethane	UG/L	ND	1.0	NA		NA .		NA	
Bromoform	UG/L	ND	1.0	NA.		NA		NA	
3romomethane	UG/L	ND	1.0	NA		NA		NA	
2-Butanone	UG/L	ND	5.0	NA		NA		NA	
Carbon Disulfide	UG/L	ND	1.0	. NA		NA		NA	
Carbon Tetrachloride	UG/L	ND	1.0	NA		NA		NA	
Chlorobenzene	UG/L	ND	1.0	NA		NA		NA	
Chloroethane	UG/L	ND	1.0	NA		NA		NA	
Chloroform	UG/L	ND	1.0	NA		NA		NA	
Chloromethane	UG/L	ND I	1.0	NA		NA		NA	
Cyclohexane	UG/L	ND	1.0	NA NA		NA		NA	
1,2-Dibromoethane	UG/L	ND	1.0	NA NA		NA		NA	
Dibromochloromethane	UG/L	ND	1.0	NA .		NA		NA.	
1,2-Dibromo-3-chloropropane	UG/L	ND	1.0	NA		NA NA		NA.	
•	UG/L	ND	1.0	NA NA		NA NA		NA	
1,2-Dichlorobenzene	UG/L	ND ND	1.0	NA NA		NA NA		NA.	
1,3-Dichlorobenzene	UG/L	ND ND	1.0	NA NA		NA NA		NA NA	
1,4-Dichlorobenzene	UG/L	***	1.0	NA NA	1	NA NA		NA NA	
Dichlorodifluoromethane		ND	1.0	NA NA		NA NA		NA NA	
1,1-Dichloroethane	UG/L	ND		****		NA NA		NA NA	
1,2-Dichloroethane	UG/L	ND	1.0	NA NA				NA NA	
1,1-Dichloroethene	UG/L	ND	1.0	NA	1	NA NA		ł .	
cis-1,2-Dichloroethene	UG/L	ND	1.0	NA .		NA NA		NA NA	
trans-1,2-Dichloroethene	UG/L	ND	1.0	NA	1	NA NA		NA NA	
1,2-Dichloropropane	ne/r	ND	1.0	NA		NA		ł	
cis-1,3-Dichloropropene	UG/L	ND	1.0	NA		NA		NA	
trans-1,3-Dichloropropene	ne\r	ND	1.0	NA		NA		NA 	
Ethylbenzene	ne\r	ND	1.0	NA		NA		NA	
2-Hexanone	UG/L	ND	5.0	NA		NA		NA	
Isopropylbenzene	UG/L	ND	1.0	. NA		NA		NA NA	
Methyl acetate	UG/L	ND	1.0	NA		NA		NA NA	
Methylcyclohexane	UG/L	ND	1.0	NA		NA		NA	
Methylene chloride	UG/L	0.44 BJ	1.0	NA		NA		. NA	
4-Methyl-2-pentanone	UG/L	ND	5.0	NA ⁻		NA	1.	NA	-
Methyl-t-Butyl Ether (MTBE)	UG/L	ND	1.0	NA		NA		NA	
Styrene	UG/L	ND	1.0	NA		NA		NA	
1,1,2,2-Tetrachloroethane	UG/L	ND	1.0	NA		NA:		NA	
Tetrachloroethene	UG/L	ND	1.0	NA		NA		NA NA	
Toluene	UG/L	ND	1.0	NA		NA		NA	
1,2,4-Trichlorobenzene	UG/L	ND	1.0	NA		NA		NA NA	
1,1,1-Trichloroethane	UG/L	ND	1.0	NA		NA		NA NA	
1,1,2-Trichloroethane	UG/L	ND	1.0	NA		NA		. NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8260/25 ML - TCL VOLATILES + TICS

Client ID Job No Lab ID Sample Date		MW-5 A07-A734 09/21/2007	A7A73401						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
1,1,2-Trichloro-1,2,2-trifluor Trichlorofluoromethane Trichloroethene Vinyl chloride Total Xylenes ———————————————————————————————————	UG/L UG/L UG/L UG/L UG/L	ND ND ND ND	1.0 1.0 1.0 1.0 3.0	NA NA NA NA		NA NA NA NA		NA NA NA NA	
Chlorobenzene-D5 1,4-Difluorobenzene 1,4-Dichlorobenzene-D4 Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	% % % % %	88 91 78 95 85 86	50-200 50-200 50-200 71-126 73-120 66-137	NA NA NA NA NA		NA NA NA NA NA		NA NA NA NA NA	

DELTA - METHOD 8260/25 ML - TCL VOLATILES + TICS TENTATIVELY IDENTIFIED COMPOUNDS

10/51

Client No.

			MW-5
Lab Name: <u>STL Buffalo</u>	Contract:	_	
Lab Code: <u>RECNY</u> Case No.:	_ SAS No.:	SDG No.:	
Matrix: (soil/water) WATER		Lab Sample ID:	A7A73401
Sample wt/vol:5.00 (g/mL)) <u>ML</u>	Lab File ID:	J4813.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	09/21/2007 09/22/200
% Moisture: not dec.	•	Date Analyzed:	10/03/2007
GC Column: <u>ZB-624</u> ID: <u>0.25</u>	(mm)	Dilution Factor	:1.00
Soil Extract Volume: (uL)		Soil Aliquot Vo	lume: (uL)
Number TICs found: 2		CONCENTRATION UNIT	

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 115-11-7	1-PROPENE, 2-METHYL	0.03	6	JN
2.	UNKNOWN	2.35	3	J

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID Sample Date		MW-5 A07-A734 09/21/2007	A7A73401						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
N,N-Dimethyl formamide	UG/L	ND	20	NA		NA		NA NA	
Acenaphthene	UG/L	ND	5	NA		NA NA		NA NA	
Acenaphthylene	UG/L	ND	5	NA		NA NA		NA NA	
Acetophenone	UG/L	ND	5	NA		NA NA		NA NA	
Anthracene	UG/L	ND	5	NA		NA		NA NA	
Atrazine	UG/L	ND	5	NA		NA NA		NA NA	
Benzaldehyde	UG/L	ND	5	NA NA		NA NA		NA NA	
Benzo(a)anthracene	UG/L	ND	5	NA		NA NA		NA NA	
Benzo(b)fluoranthene	UG/L	ND	5	NA.		NA NA		NA NA	
Benzo(k)fluoranthene	UG/L	ND	5	NA NA		NA NA		NA NA	
Benzo(ghi)perylene	UG/L	ND	5	NA NA		NA NA		NA NA	
Benzo(a)pyrene	UG/L	ND	5	NA NA		NA NA			
Benzoic acid	UG/L	ND	150	NA NA		NA NA		NA NA	
Benzyl alcohol	UG/L	ND	20	NA NA		NA NA		NA NA	
Biphenyl	UG/L	ND	5	NA NA		}		NA	
Bis(2-chloroethoxy) methane	UG/L	ND	5		i	NA NA		NA	
Bis(2-chloroethyl) ether	UG/L	ND	5	NA NA		NA		NA NA	
2,2'-0xybis(1-Chloropropane)	UG/L	ND ND	5	NA NA		NA		NA NA	
				NA		NA		NA	
Bis(2-ethylhexyl) phthalate	UG/L	ND	5	NA		NA		NA NA	
4-Bromophenyl phenyl ether	UG/L	ND	5	NA		NA		NA NA	
Butyl benzyl phthalate	UG/L	ND	5	NA	'	NA		NA	
Caprolactam	UG/L	ND	5	NA		NA		NA	
4-Chloroaniline	UG/L	ND	5	NA		NA		NA NA	
4-Chloro-3-methylphenol	UG/L	ND	5	NA		NA		NA	
2-Chloronaphthalene	UG/L	ND	5	NA		NA		NA	
2-Chlorophenol	UG/L	ND	5	NA		NA		NA	
4-Chlorophenyl phenyl ether	UG/L	ND	5	NA		NA NA		NA	
Carbazole	UG/L	ND	5	NA		NA NA		NA	
Chrysene	UG/L	ND	5	NA		NA NA		NA	
Dibenzo(a,h)anthracene	UG/L	ND	5	NA		NA NA		NA	
Dibenzofuran	UG/L	ND	5	NA		NA NA		NA NA	
Di-n-butyl phthalate	UG/L	0.3 J	5	NA		NA NA		NA NA	
3,3'-Dichlorobenzidine	UG/L	ND	5	NA		NA NA		NA.	
2,4-Dichlorophenol	UG/L	ND	5	NA		NA.		NA NA	
Diethyl phthalate	UG/L	ND	5	NA		NA NA		NA NA	
2,4-Dimethylphenol	UG/L	ND	5	NA		NA NA		NA NA	
Dimethyl phthalate	UG/L	ND	5	NA		NA NA		NA NA	
4,6-Dinitro-2-methylphenol	UG/L	ND	10	NA		NA NA		NA NA	
2,4-Dinitrophenol	UG/L	ND	10	NA NA		NA NA		NA NA	
2,4-Dinitrotoluene	UG/L	ND	5	NA NA		NA NA		NA NA	
2,6-Dinitrotoluene	UG/L	ND	5	NA NA		NA NA			
Di-n-octyl phthalate	UG/L	ND	5	NA NA		NA NA		NA NA	
Fluoranthene	UG/L	3 J	5	NA NA		1		NA NA	
	100, -	J U	,	INA	\	NA NA	1	NA NA	ļ

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID Sample Date		MW-5 A07-A734 O9/21/2007	A7A73401						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Fluorene	UG/L	ND	5	. NA		NA		NA	
Hexachlorobenzene	UG/L	ND	5	NA		NA		NA	
Hexachlorobutadiene	UG/L	ND ND	5	NA	'	NA		NA	
Hexachlorocyclopentadiene	UG/L	ND	5	NA		NA		NA	
Hexachloroethane	UG/L	ND	5	NA		NA		NA	
Indeno(1,2,3-cd)pyrene	UG/L	ND	5	NA ·		NA		NA	
Isophorone	UG/L	ND	5	NA		NA		NA	
2-Methylnaphthalene	UG/L	ND	5	NA		NA		NA	
2-Methylphenol	UG/L	ND	5	NA NA		NA		NA	
4-Methylphenol	UG/L	ND	5	NA		NA		NA	
Naphthalene	UG/L	ND ND	5	NA		NA NA		NA	
2-Nitroaniline	UG/L	ND ND	10	NA		NA NA		NA	
3-Nitroaniline	UG/L	ND ND	10	NA NA		NA NA		NA	
4-Nitroaniline	UG/L	ND ND	10	NA.		NA NA		NA	
4-Nitroaniline Nitrobenzene	UG/L	ND ND	5	NA NA		NA		NA	
	UG/L	ND ND	5	NA.		NA NA		NA	
2-Nitrophenol	UG/L	ND ND	10	NA NA		NA NA		NA	
4-Nitrophenol	UG/L	ND ND	5	NA NA		NA NA		NA	
N-nitrosodiphenylamine		ND ND	5	NA NA		NA NA		NA NA	
N-Nitroso-Di-n-propylamine	UG/L	1	10	NA NA		NA NA		NA.	
Pentachlorophenol	UG/L	ND ND	5	NA NA		NA NA		NA NA	
Phenanthrene	UG/L		5	NA NA		NA NA		NA NA	
Phenol	UG/L	ND	5	NA NA		NA NA		NA NA	
Pyrene	UG/L	4 J				NA NA	1	NA NA	
2,4,5-Trichlorophenol	UG/L	ND	5 5	NA NA		NA NA	[NA NA	
2,4,6-Trichlorophenol	uG/L	ND	5	NA		INA		11/0	
IS/SURROGATE(S)			EQ 200	A. A		NA		NA NA	
1,4-Dichlorobenzene-D4	%	96	50-200	NA NA		NA NA		NA NA	
Naphthalene-D8	%	94	50-200	NA NA		NA NA		NA NA	
Acenaph thene-D10	%	93	50-200	NA				NA NA	
Phenanthrene-D10	%	99	50-200	NA NA		NA NA	1	NA NA	
Chrysene-D12	%	97	50-200	NA.		NA			
Perylene-D12	%	101	50-200	NA		NA		NA NA	
Nitrobenzene-D5	%	76	46-112	NA NA	1	NA		NA NA	
2-Fluorobiphenyl	1%	82	48-116	NA		NA		NA NA	
p-Terphenyl-d14	%	97	24-136	NA NA		NA		NA	
Phenol-D5	%	34	16-120	NA NA		NA		NA	
2-Fluorophenol	%	43	20-120	NA NA		NA		NA NA	1 .
2,4,6-Tribromophenol	1%	96	52-132	NA NA		NA NA	1	NA NA	1

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client ID Job No Lab I Sample Date	D	MW-5 A07-A734 09/21/2007	A7A73401						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Aroclor 1016 Aroclor 1221	UG/L UG/L	ND ND	0.52 0.52	NA NA		NA NA		NA NA	
Aroclor 1232	UG/L	ND	0.52	NA		NA NA		NA NA	
Aroclor 1242 Aroclor 1248	UG/L UG/L	ND ND	0.52 0.52	NA NA		NA NA		NA	
Aroclor 1254	UG/L	ND	0.52	NA NA		NA NA		NA NA	
Aroclor 1260 SURROGATE(S)	UG/L	ND	0.52	NA		NA		NA	ļ
Tetrachloro-m-xylene Decachlorobiphenyl	% %	68 3 5	35-136 12-137	NA NA		NA NA		NA NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA-SOL PP METALS-SW8463/6010/7470-W

Client ID Job No Lab ID Sample Date		MW-5 A07-A734 09/21/2007	A7A73401						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Antimony - Soluble	MG/L	ND	0.020	NA		NA		NA	1
Arsenic - Soluble	MG/L	ND	0.010	NA		NA		NA	
Beryllium - Soluble	MG/L	ND	0.0020	NA		NA		NA	
Cadmium - Soluble	MG/L	ND	0.0010	NA		NA		NA	
Chromium - Soluble	MG/L	ND	0.0040	NA		NA		NA	
Copper - Soluble	MG/L	ND	0.010	NA		NA NA		NA	
Lead - Soluble	MG/L	ND	0.0050	NA		NA	1	NA	
Mercury - Soluble	MG/L	ND	0.00020	NA		NA		NA	
Nickel - Soluble	MG/L	ND	0.010	NA		NA		NA	
Selenium - Soluble	MG/L	ND	0.015	NA		NA		NA	
Silver - Soluble	MG/L	ND	0.0030	NA ·		NA NA		NA	
Thallium - Soluble	MG/L	ND	0.020	NA		NA NA		NA	
Zinc - Soluble	MG/L	ND	0.010	NA NA		NA NA		NA NA	į

Chronology and QC Summary Package

Analyte	u-i4-								
	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
cetone	UG/L	ND	5.0	ND	5.0	NA		NA	
Benzene	UG/L	ND	1.0	ND	1.0	NA		NA	
Bromodichloromethane	UG/L	ND	1.0	ND	1.0	NA		NA	
Bromoform	UG/L	ND	1.0	. ND	1.0	NA		NA	
Bromomethane	UG/L	ND	1.0	ND	1.0	NA		NA	
2-Butanone	UG/L	ND	5.0	ND	5.0	NA		NA	
Carbon Disulfide	UG/L	ND	1.0	ND	1.0	NA		NA	
Carbon Tetrachloride	UG/L	ND ND	1.0	ND	1.0	NA		NA	
Chlorobenzene	UG/L	ND ND	1.0	ND	1.0	NA		NA	
Chloroethane	UG/L	ND ND	1.0	ND	1.0	NA		NA	
Chloroform	UG/L	ND ND	1.0	ND	1.0	NA		NA	
Chloromethane	UG/L	ND	1.0	ND	1.0	NA		NA	
	UG/L	ND	1.0	ND	1.0	NA.		NA	
Cyclohexane	UG/L	ND	1.0	ND	1.0	NA.		NA	
1,2-Dibromoethane		ND	1.0	ND ND	1.0	NA.	i	NA	
Dibromochloromethane	UG/L	ND ND	1.0	ND	1.0	NA NA		NA NA	
1,2-Dibromo-3-chloropropane	UG/L		1.0	ND ND	1.0	NA NA		NA	
1,2-Dichlorobenzene	UG/L	ND	1.0	ND	1.0	NA NA		NA NA	
1,3-Dichlorobenzene	UG/L	ND		ND ND	1.0	NA NA		NA NA	
1,4-Dichlorobenzene	UG/L	ND	1.0		1.0	NA NA		NA NA	
Dichlorodifluoromethane	UG/L	ND	1.0	ND	1 1			NA NA	
1,1-Dichloroethane	UG/L	ND	1.0	ND	1.0	NA NA		NA NA	
1,2-Dichloroethane	UG/L	ND	1.0	ND	1.0	NA		NA NA	
1,1-Dichloroethene	UG/L	ND	1.0	ND	1.0	NA			
cis-1,2-Dichloroethene	ug/L	ND	1.0	ND	1.0	NA]	NA NA	
trans-1,2-Dichloroethene	UG/L	ND	1.0	ND	1.0	NA.		NA NA	
1,2-Dichloropropane	UG/L	ND	1.0	ND	1.0	NA		NA	
cis-1,3-Dichloropropene	UG/L	ND	1.0	ND	1.0	NA		NA	
trans-1,3-Dichloropropene	UG/L	ND	1.0	ND	1.0	NA		NA NA	
Ethylbenzene	UG/L	ND	1.0	ND	1.0	NA		NA	
2-Hexanone	UG/L	ND	5.0	ND	5.0	NA		NA NA	
Isopropylbenzene	UG/L	ND ND	1.0	ND	1.0	NΑ	-	NA NA	
Methyl acetate	UG/L	ND	1.0	ND	1.0	NA		NA NA	
Methylcyclohexane	UG/L	ND	1.0	ND	1.0	NA		NA	
Methylene chloride	UG/L	0.78 J	1.0	0.46 J	1.0	NA		NA NA	
4-Methyl-2-pentanone	UG/L	ND	5.0	ND	5.0	NA		NA NA	
Methyl-t-Butyl Ether (MTBE)	UG/L	ND	1.0	ND	1.0	NA		NA NA	
Styrene	UG/L	ND	1.0	ND	1.0	NA		NA NA	
1,1,2,2-Tetrachloroethane	UG/L	ND ND	1.0	ND	1.0	NA		NA	
Tetrachloroethene	UG/L	ND	1.0	ND	1.0	NA		NA NA	
To Luene	UG/L	ND	1.0	ND	1.0	NA		NA NA	
1,2,4-Trichlorobenzene	UG/L	ND ND	1.0	ND	1.0	NA		NA NA	
1,1,1-Trichloroethane	UG/L	ND ND	1.0	ND	1.0	NA.		NA NA	
1,1,2-Trichtoroethane	UG/L	ND ND	1.0	ND	1.0	NA.		NA NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8260/25 ML - TCL VOLATILES + TICS

Rept: ANO326

ime: 07:53:13 Cookson site/Tannery Street

DELTA - METHOD 8260/25 ML - TCL VOLATILES +

Client ID Job No Lab ID Sample Date		VBLK63 A07-A734	A7B1553002	VBLK64 A07-A734	A7B1560402				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
1,1,2-Trichloro-1,2,2-trifluor Trichlorofluoromethane Trichloroethene Vinyl chloride Total Xylenes IS/SURROGATE(S)	UG/L UG/L UG/L UG/L UG/L	ND ND ND ND	1.0 1.0 1.0 1.0 3.0	ND ND ND ND	1.0 1.0 1.0 1.0 3.0	NA NA NA NA		NA NA NA NA	
Chlorobenzene-D5 1,4-Difluorobenzene 1,4-Dichlorobenzene-D4 Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	% % % % %	94 95 88 95 88 88	50-200 50-200 50-200 71-126 73-120 66-137	92 94 82 95 87 85	50-200 50-200 50-200 71-126 73-120 66-137	NA NA NA NA NA		NA NA NA NA NA	

DELTA - METHOD 8260/25 ML - TCL VOLATILES + TICS TENTATIVELY IDENTIFIED COMPOUNDS

18/51

Client No.

				VBLK63		
Lab Name:	STL Buffalo	Contract:				
Lab Code:	RECNY Case No.	: SAS No.:	SDG No.: _			
Matrix: (soil/water) <u>WATER</u>		Lab Sampl	Le ID: <u>A7B15</u>	53002	
Sample wt	/vol: <u>5.00</u>) (g/mL) <u>ML</u>	Lab File	ID: <u>J4786</u>	.RR	
Level:	(low/med) <u>LOW</u>		Date Samp	o/Recv:	······································	
% Moistur	e: not dec	-	Date Anal	lyzed: <u>10/02</u>	/2007	
GC Column	ı: <u>ZB-624</u> ID:	:_0.25 (mm)	Dilution	Factor: 1	.00	
Soil Extr	ract Volume:	(uL)	Soil Alic	quot Volume: _		(uL)
Number TI	Cs found: 0		CONCENTRATI (ug/L or u	ION UNITS: .g/Kg) <u>UG/L</u>		
	CAS NO.	Compound Name	RT	Est. Conc.	Q	, :

DELTA - METHOD 8260/25 ML - TCL VOLATILES + TICS TENTATIVELY IDENTIFIED COMPOUNDS

19/51

Client No.

Lab Name: STL Buffalo Contract:	
Matrix: (soil/water) WATER Lab Sample ID: A7B1560402	
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{J4807.RR}}$	
Level: (low/med) <u>LOW</u> Date Samp/Recv:	
% Moisture: not dec Date Analyzed: 10/03/2007	
GC Column: ZB-624 ID: 0.25 (mm) Dilution Factor: 1.00	
Soil Extract Volume: (uL) Soil Aliquot Volume:	(uL)
Number TICs found: _0 CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>	
CAS NO. Compound Name RT Est. Conc. Q	

Client ID Job No Lab ID Sample Date		MSB63 A07-A734	A7B1553001	MSB64 A07-A734	A7B1560401				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/L	ND	5.0	120	5.0	NA		NA	
Benzene	UG/L	23	1.0	23	1.0	NA		NA	
3romodichloromethane	UG/L	ND	1.0	22	1.0	NA:		NA	
Bromoform	UG/L	ND	1.0	24	1.0	NA		NA	
3romomethane	UG/L	ND	1.0	30	1.0	NA NA		NA	
2-Butanone	UG/L	ND	5.0	100	5.0	NA		NA	
Carbon Disulfide	UG/L	ND	1.0	23	1.0	NA		NA	
Carbon Tetrachloride	UG/L	ND	1.0	22	1.0	NA		NA	
Chlorobenzene	UG/L	24	1.0	23	1.0	NA		NA	
Chloroethane	UG/L	ND	1.0	26	1.0	NA NA		NA	
Chloroform	UG/L	ND	1.0	22	1.0	NA NA		NA	
Chloromethane	ug/L	ND	1.0	25	1.0	NA		NA	
Cyclohexane	UG/L	ND	1.0	19	1.0	NA NA		NA	
1,2-Dibromoethane	UG/L	ND	1.0	23	1.0	NA		NA	
Dibromochloromethane	UG/L	ND ND	1.0	24	1.0	NA.		NA	
1,2-Dibromo-3-chloropropane	UG/L	ND ND	1.0	23	1.0	NA NA		NA	
1,2-Dichlorobenzene	UG/L	ND ND	1.0	24	1.0	NA.		NA	
1,3-Dichlorobenzene	UG/L	ND ND	1.0	24	1.0	NA NA		NA	
1,4-Dichlorobenzene	UG/L	ND ND	1.0	24	1.0	NA NA		NA.	
Dichlorodifluoromethane	UG/L	ND	1.0	24	1.0	NA NA		NA NA	
	UG/L	ND ND	1.0	23	1.0	NA NA		NA NA	
1,1-Dichloroethane	UG/L	ND ND	1.0	23	1.0	NA NA		NA NA	
1,2-Dichloroethane		22	1.0	26	1.0	NA NA		NA NA	
1,1-Dichloroethene	UG/L		1.0	23	1.0	NA NA		NA NA	
cis-1,2-Dichloroethene	UG/L	ND	Į	25	1.0	NA NA		NA NA	
trans-1,2-Dichloroethene	UG/L	ND	1.0	23		1		NA NA	
1,2-Dichloropropane	UG/L	ND	1.0		1.0	NA NA			
cis-1,3-Dichloropropene	ug/L	ND	1.0	24	1.0	NA NA		NA NA	
trans-1,3-Dichloropropene	UG/L	ND	1.0	24	1.0	NA NA		NA NA	
Ethylbenzene	ne\r	ND .	1.0	23	1.0	NA		NA NA	
2-Hexanone	UG/L	ND	5.0	110	5.0	NA .		NA NA	
Isopropylbenzene	ne\r	ND	1.0	22	1.0	NA		NA NA	
Methyl acetate	UG/L	ND	1.0	19	1.0	NA		NA NA	
Methylcyclohexane	ne\r	ND	1.0	19	1.0	NA		NA 	
Methylene chloride	UG/L	1.0 B	1.0	23 B	1.0	NA		NA NA	
4-Methyl-2-pentanone	ug/L	ND	5.0	100	5.0	NA ·		NA	
Methyl-t-Butyl Ether (MTBE)	UG/L	ND	1.0	23	1.0	NA		NA NA	
Styrene	ug/L	ND	1.0	24	1.0	NA		NA NA	
1,1,2,2-Tetrachloroethane	UG/L	ND	1.0	25	1.0	NA		NA NA	
Tetrachloroethene	UG/L	ND	1.0	23	1.0	NA.		NA NA	
Toluene	UG/L	24	1.0	24	1.0	NA.		NA NA	
1,2,4-Trichlorobenzene	UG/L	ND	1.0	24	1.0	NA		NA NA	
1,1,1-Trichloroethane	UG/L	ND	1.0	22	1.0	NA		NA NA	
1,1,2-Trichloroethane	UG/L	ND	1.0	24	1.0	NA NA		NA NA	1

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8260/25 ML - TCL VOLATILES + TICS

Client ID Job No Lab ID Sample Date		MSB63 A07-A734	A7B1553001	MSB64 A07-A734	A7B1560401				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
1,1,2-Trichloro-1,2,2-trifluor Trichlorofluoromethane Trichloroethene Vinyl chloride Total Xylenes	UG/L UG/L UG/L UG/L UG/L	ND ND 23 ND ND	1.0 1.0 1.0 1.0 3.0	20 24 23 27 ND	1.0 1.0 1.0 1.0 3.0	NA NA NA NA		NA NA NA NA	
IS/SURROGATE(S) Chlorobenzene-D5 1,4-Difluorobenzene 1,4-Dichlorobenzene-D4 Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	% % % % %	98 100 92 95 91 90	50-200 50-200 50-200 71-126 73-120 66-137	103 101 99 94 92 89	50-200 50-200 50-200 71-126 73-120 66-137	NA NA NA NA NA		NA NA NA NA NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8260/25 ML - TCL VOLATILES + TICS

Client ID Job No Lab ID Sample Date		Trip Blank A07-A734 09/21/2007	A7A73402						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/L	3.2 J	5.0	NA		NA		NA	
Benzene	UG/L	ND	1.0	NA:		NA		NA	
Bromodichloromethane	UG/L	ND	1.0	NA		NA		NA	
Bromoform	UG/L	ND	1.0	NA		NA	1	NA	
Bromomethane	UG/L	ND	1.0	NA		NA		NA	
2-Butanone	UG/L	ND	5.0	NA		NA		NA	
Carbon Disulfide	UG/L	ND	1.0	NA		NA		NA	
Carbon Disutilde Carbon Tetrachloride	UG/L	ND ND	1.0	NA NA		NA		NA	1
Chlorobenzene	UG/L	ND ND	1.0	NA		NA		NA	
Chloropenzene Chloroethane	UG/L	ND ND	1.0	NA NA		NΑ		NA	
chloroform	UG/L	ND ND	1.0	NA		NA		NA	
Chloromethane	UG/L	ND ND	1.0	NA		NA		NA	
	UG/L	ND ND	1.0	NA NA	ì	NA		NA	
Cyclohexane	UG/L	ND ND	1.0	NA NA		NA		NA	
1,2-Dibromoethane	UG/L	ND ND	1.0	NA		NA		NA	
Dibromochloromethane	UG/L	ND ND	1.0	NA		NA NA		NA	
1,2-Dibromo-3-chloropropane		ND ND	1.0	NA NA		NA NA		NA	
1,2-Dichlorobenzene	UG/L	ND ND	1.0	NA NA		NA NA		NA	
1,3-Dichlorobenzene	UG/L		1.0	NA NA		NA NA		NA.	
1,4-Dichlorobenzene	UG/L	ND ND	1.0	NA NA		NA NA		NA	
Dichlorodifluoromethane	UG/L	ND	1.0	NA NA		NA NA		NA.	
1,1-Dichloroethane	UG/L	ND	1.0	NA NA		NA NA		NA	
1,2-Dichloroethane	UG/L	ND	1	****		NA NA		NA NA	
1,1-Dichloroethene	ug/L	ND	1.0	NA		NA NA		NA NA	
cis-1,2-Dichloroethene	UG/L	ND	1.0	NA		the state of the s		NA NA	ļ ·
trans-1,2-Dichloroethene	UG/L	ND	1.0	NA		NA NA		NA NA	
1,2-Dichloropropane	UG/L	ND	1.0	NA		NA NA			1
cis-1,3-Dichloropropene	UG/L	ND	1.0	NA		NA		NA NA	
trans-1,3-Dichloropropene	UG/L	ND	1.0	NA		NA		NA	
Ethylbenzene	UG/L	ND	1.0	NA		NA		NA NA	
2-Hexanone	UG/L	ND	5.0	NA		NA		NA NA	1
Isopropylbenzene	UG/L	ND	1.0	NA		NA		NA NA	
Methyl acetate	UG/L	ND	1.0	NA		NA		NA NA	
Methylcyclohexane	UG/L	ND	1.0	NA		NA NA	1	NA	
Methylene chloride	UG/L	ND	1.0	NA	†	NA NA		NA	
4-Methyl-2-pentanone	UG/L	ND	5.0	NA		NA NA		NA	
Methyl-t-Butyl Ether (MTBE)	UG/L	ND	1.0	NA		NA		NA NA	
Styrene	UG/L	ND	1.0	NA		NA		NA NA	
1,1,2,2-Tetrachloroethane	UG/L	ND	1.0	NA		NA		NA	1
Tetrachloroethene	UG/L	ND	1.0	NA		NA		NA NA	1
Toluene	UG/L	ND	1.0	NA		NA		NA NA	
1,2,4-Trichlorobenzene	UG/L	ND	1.0	NA		NA		NA	
1,1,1-Trichloroethane	UG/L	ND	1.0	NA		NA		NA	
1,1,2-Trichloroethane	UG/L	ND	1.0	NA NA		NA		NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8260/25 ML - TCL VOLATILES + TICS

Client ID Job No Lab ID Sample Date	:	Trip Blank A07-A734 09/21/2007	A7A73402						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
1,1,2-Trichloro-1,2,2-trifluor Trichlorofluoromethane Trichloroethene Vinyl chloride Total Xylenes ————IS/SURROGATE(S)	UG/L UG/L UG/L UG/L UG/L	ND ND ND ND	1.0 1.0 1.0 1.0 3.0	NA NA NA NA		NA NA NA NA		NA NA NA NA	
Taysokkoba Chlorobenzene 1,4-Difluorobenzene 1,4-Dichlorobenzene-D4 Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	% % % % %	84 85 77 95 86 85	50-200 50-200 50-200 71-126 73-120 66-137	NA NA NA NA NA		NA NA NA NA NA		NA NA NA NA NA	

DELTA - METHOD 8260/25 ML - TCL VOLATILES + TICS TENTATIVELY IDENTIFIED COMPOUNDS

24/51

Client No.

					Trip Bla	nk	
Lab Name:	STL Buffalo	Contract:					
Lab Code:	<u>RECNY</u> Case No.	.: SAS No.:	SDG No.: _				
Matrix: (soil/water) <u>WATER</u>		Lab Sampl	e ID:	<u>A7A7340</u>	2	
Sample wt	/vol:	<u>)</u> (g/mL) <u>ML</u>	Lab File	ID:	<u>J4801.R</u>	R	
Level:	(low/med) <u>LOW</u>		Date Samp	/Recv:	09/21/2	007 09	9/22/2007
% Moistur	re: not dec	_	Date Ana	Lyzed:	10/03/2	007	
GC Column	n: <u>ZB-624</u> ID	: <u>0.25</u> (mm)	Dilution	Factor	:1.0	00	
Soil Extr	ract Volume:	(uL)	Soil Alio	quot Vo	lume:		(uL)
Number TI	Cs found:0		CONCENTRAT: (ug/L or 1				
	CAS NO.	Compound Name	RT	Est.	Conc.	Q	w No.

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID Sample Date		SBLK A07-A734	A7B1496802						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
N,N-Dimethyl formamide	UG/L	ND	20	NA		NA NA		NA	•
Acenaphthene	UG/L	ND	5	NA NA		NA NA		NA NA	
Acenaphthylene	UG/L	ND	5	NA		NA NA		NA NA	
Acetophenone	UG/L	ND	5	NA.		NA NA		NA NA	
Anthracene	UG/L	ND	5	NA		NA NA		NA NA	
Atrazine	UG/L	ND	5	NA.		NA NA		NA NA	
Benzaldehyde	UG/L	ND	5	NA NA		NA NA		NA NA	
Benzo(a)anthracene	UG/L	ND	5	NA NA		NA NA			
Benzo(b)fluoranthene	UG/L	ND	5	NA NA		NA NA		NA NA	
Benzo(k)fluoranthene	UG/L	ND	5	NA NA		NA NA		NA NA	
Benzo(ghi)perylene	UG/L	ND	5	NA NA		NA NA		NA NA	
Benzo(a)pyrene	UG/L	ND	5	NA NA		NA NA		NA NA	
Benzoic acid	UG/L	ND	150	NA NA		NA NA			
Benzyl alcohol	UG/L	ND	20	NA NA		NA NA		NA NA	
Biphenyl	UG/L	ND	5	NA NA		NA NA		NA	
Bis(2-chloroethoxy) methane	UG/L	ND	5	NA NA		NA NA		NA NA	
Bis(2-chloroethyl) ether	UG/L	ND ND	5	NA NA		l .		NA	
2,2'-Oxybis(1-Chloropropane)	UG/L	ND	5	NA NA		NA NA		NA	
Bis(2-ethylhexyl) phthalate	UG/L	ND ND	5	NA NA		NA NA		NA	
4-Bromophenyl phenyl ether	UG/L	ND ND	5	NA NA		NA NA		NA	
Butyl benzyl phthalate	UG/L	ND ND	5	NA NA		NA NA		NA	
Caprolactam	UG/L	ND	5	1		NA		NA	1
4-Chloroaniline	UG/L	ND ND	5	NA NA		NA NA		NA	
4-Chloro-3-methylphenol	UG/L	ND ND	5	NA NA		NA		NA	
2-Chloronaphthalene	UG/L	ND	5	NA NA		NA		NA	1
2-Chlorophenol	UG/L	ND	5	NA NA		NA		NA	
4-Chlorophenyl phenyl ether	UG/L		-	NA NA		NA		ŅA	:
Carbazole	UG/L	ND	5	NA		NA		NA	
Chrysene		ND	5	NA		NA NA		NA	
Dibenzo(a,h)anthracene	UG/L	ND	5	NA		NA		NA	
Dibenzofuran	UG/L	ND	5	NA NA		NA NA		NA	
	UG/L	ND	5	NA		NA NA		NA	
Di-n-butyl phthalate	UG/L	ND	5	NA 		NA NA		NA	
3,3'-Dichlorobenzidine	UG/L	ND	5	NA 		NA NA		NA	
2,4-Dichlorophenol	UG/L	ND	5	NA NA		NA		NA	
Diethyl phthalate	UG/L	ND	5	NA	,	NA		NA	
2,4-Dimethylphenol	UG/L	ND	5	NA NA	+.	NA		NA	
Dimethyl phthalate	UG/L	ND	5	NA		NA		NA	
4,6-Dinitro-2-methylphenol	UG/L	ND	10	NA		NA		NA	
2,4-Dinitrophenol	UG/L	ND	10	NA		NA		NA	
2,4-Dinitrotoluene	UG/L	ND	5	NA	٠.	NA		NA	
2,6-Dinitrotoluene	UG/L	ND	5	NA:		NA		NA	
Di-n-octyl phthalate	UG/L	ND	5	NA	1	NA		NA	
Fluoranthene	UG/L	ND	5	NA NA		NA		NA NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID Sample Date		SBLK A07-A734	A7B1496802						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Fluorene	UG/L	ND	5	NA	·	NA NA		NA NA	
Hexachlorobenzene	UG/L	ND	5	NA	·	NA NA		NA	
Hexachlorobutadiene	UG/L	ND	5	NA	·	NA NA		NA	
Hexachlorocyclopentadiene	UG/L	ND	5	NA.		NA		NA	
Hexachloroethane	UG/L	ND	5	NA		NA NA		NA NA	
Indeno(1,2,3-cd)pyrene	UG/L	ND	. 5	NA		NA		NA NA	
Isophorone	UG/L	ND	5	NA		NA		NA NA	
2-Methylnaphthalene	UG/L	ND	5	NA		NA		NA	
2-Methylphenol	UG/L	ND	5	NA		NA NA		NA	
4-Methylphenol	UG/L	ND	5	NA		NA NA		NA	
Naphthalene	UG/L	ND I	5	NA		NA		NA	
2-Nitroaniline	UG/L	ND ND	10	NA		NA		NA	
3-Nitroaniline	UG/L	ND	10	NA		NA NA		NA NA	
4-Nitroaniline	UG/L	ND	10	NA NA		NA		NA NA	
Nitrobenzene	UG/L	ND	5	NA		NA NA		NA NA	
2-Nitrophenol	UG/L	ND ND	5	NA.		NA		NA NA	
4-Nitrophenol	UG/L	ND ND	10	NA		NA		l NA	
	UG/L	ND ND	5	NA NA		NA NA		NA.	
N-nitrosodiphenylamine	UG/L	ND ND	5	NA NA		NA NA	1	NA	
N-Nitroso-Di-n-propylamine		ND ND	10	NA NA		NA NA		NA	
Pentachlorophenol	UG/L	1	5	NA NA		NA NA		NA.	
Phenanthrene	UG/L	ND ND	- 5	NA NA		NA NA		NA .	
Phenol	UG/L		5	NA NA		NA NA		NA NA	
Pyrene	UG/L	ND	5	NA NA		NA NA		NA NA	
2,4,5-Trichlorophenol	UG/L	ND	5		,	NA NA		NA NA	
2,4,6-Trichlorophenol	UG/L	ND)	NA		IVA	<u> </u>	1 11/2	
IS/SURROGATE(S)			FO 200	• • •		NA NA		NA NA	
1,4-Dichlorobenzene-D4	%	89	50-200	NA NA		l control of the cont		NA NA	
Naphthalene-D8	%	- 88	50-200	NA NA		NA NA		NA NA	
Acenaphthene-D10	%	89	50-200	NA		NA NA			
Phenanthrene-D10	%	94	50-200	NA		NA		NA NA	
Chrysene-D12	1%	95	50-200	NA		NA		NA NA	
Perylene-D12	%	100	50-200	NA		NA.	ľ	NA NA	1
Nitrobenzene-D5	%	87	46-112	NA		NA		NA	
2-Fluorobiphenyl	1%	84	48-116	NA NA		NA		NA	
p-Terphenyl-d14	%	88	24-136	NA NA		NA		NA	1
Phenol-D5	%	35	16-120	NA NA		NA		NA	
2-Fluorophenol	1%	49	20-120	NA		NA		NA	
2,4,6-Tribromophenol	1%	90	52-132	NA NA		NA		NA	Į

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Acenaphthylene	ike Blank A7B1496801	x Spike Bl 734						
Acenaphthene	Reporting Limit		Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acenaphthene	20	1D	NA NA		NA		NA	
Acetophenone	5	83	NA		NA NA		NA ·	
Acetophenone Anthracene Anthracene Anthracene Anthracene Anthracene Anthracene Anthracene Anthracene Anthracene Benzaldehyde Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Benzo(a)pyrene Benzo(a)pyrene Benzoic acid Benzol alcohol Biphenyl Bis(2-chloroethoxy) methane Bis(2-chloroethoxy) methane Bis(2-chloroethyl) ether Bis(2-chloroethyl) ether Bis(2-chloroethyl) phthalate UG/L Bis(2-ethylhexyl) phthalate UG/L Bis(2-ethylhexyl) phthalate UG/L Bis(2-chloroenyl ether Bis(2-chloroenyl ether Bis(2-chloroenyl phenyl ether Bis(2-chloroenyl phenyl ether Bis(2-chloroenyl phenyl ether Bis(2-chloroenyl phenyl ether Bis(2-chloroenyl phenyl ether Bis(2-chloroanyl phenyl ether Bis(2-chloroanyl phenyl ether Bis(2-chloroanyl phenyl ether Bis(2-chloroanyl phenyl ether Bis(2-chloroanyl phenyl ether Bis(2-chloroanyl phenyl ether Bis(2-chloroanyl phenyl ether Bis(2-chloroanyl phenyl ether Bis(2-chloroanyl phenyl ether Bis(2-chloroanyl benyl ether Bis(2-c	5	82	NA		NA NA		NA	
Anthracene	5	84	NA		NA NA		NA	
Atrazine Benzaldehyde Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(a)pyrene Benzoic acid Benzoic acid Benzoic acid Benzoic acid Benzyl alcohol Bis(2-chloroethoxy) methane Bis(2-chloroethyl) ether 2,2'-Oxybis(1-chloropropane) Bis(2-ethylhexyl) phthalate 4-Bromophenyl phenyl ether UG/L Bis(2-ethylhexyl) phthalate UG/L Bis(2-chloroethyl) ether UG/L Bis(2-chloroethyl) ether UG/L Bis(2-chloronethyl) ether UG/L Bis(2-chloronethyl) ether UG/L Bis(2-chloronethyl) ether UG/L Bis(2-chloronethyl) phthalate UG/L 4-Bromophenyl phenyl ether UG/L Butyl benzyl phthalate UG/L Caprolactam UG/L 4-Chloroaniline UG/L 4-Chloroaphthalene UG/L 2-Chlorophenol UG/L 4-Chlorophenol UG/L Dibenzoia,h)anthracene UG/L Dibenzofuran UG/L D	5	110	NA		NA NA		NA NA	
Benzaldehyde	5	94	NA NA		NA NA		NA NA	
Benzo(a)anthracene	5	58	NA		NA NA		NA NA	
Benzo(b)fluoranthene	5	110	NA NA		NA NA		NA NA	
Benzo(k)fluoranthene	5	130	NA NA		NA NA		NA NA	
Benzo(ghi)perylene	5	110	NA NA		NA NA		NA NA	
Benzo(a)pyrene	5		NA NA		NA NA		NA NA	
Benzoic acid U6/L V6/L 70	5		NA NA		NA NA			
Benzyl alcohol U6/L U6/L U6/L Giphenyl U6/L U6/L Giphenyl U6/L U6/L Giphenyl U6/L	150		NA NA		NA NA		NA	
Biphenyl UG/L UG/L 99	20	70	NA NA				NA NA	
Bis(2-chloroethoxy) methane UG/L 96 Bis(2-chloroethyl) ether UG/L 81 2,2'-0xybis(1-Chloropropane) UG/L 82 Bis(2-ethylhexyl) phthalate UG/L UG/L 101 4-Bromophenyl phenyl ether UG/L UG/L 102 103 104 104 105	5	1	NA NA		NA NA		NA	
Bis(2-chloroethyl) ether	5	90	NA NA		NA NA		NA	
2,2'-Oxybis(1-Chloropropane)	5			•	NA NA		NA	
Bis(2-ethylhexyl) phthalate	5		NA NA		NA		NA	
4-Bromophenyl phenyl ether	5	1			NA		NA	
Butyl benzyl phthalate	5		NA		NA		NA	
Caprolactam			NA		NA		NA	
4-Chloroaniline 4-Chloro-3-methylphenol UG/L 2-Chlorophenol UG/L 2-Chlorophenol UG/L 2-Chlorophenol UG/L 3/2-Chlorophenyl phenyl ether Carbazole Chrysene UG/L Dibenzo(a,h)anthracene UG/L Dibenzofuran UG/L Di-n-butyl phthalate UG/L 3,3'-Dichlorobenzidine UG/L UG/L 3,4-Dichlorophenol UG/L Diethyl phthalate UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	5		NA		NA		NA	
4-Chloro-3-methylphenol	5		NA		NA		NA	
2-Chloronaphthalene	5	87	NA		NA		NA	
2-Chlorophenol	5	95	NA		NA		NA	
4-Chlorophenyl phenyl ether UG/L 99 Carbazole UG/L 100 Chrysene UG/L 110 Dibenzo(a,h)anthracene UG/L 120 Dibenzofuran UG/L 80 Di-n-butyl phthalate UG/L 110 3,3'-Dichlorobenzidine UG/L 80 2,4-Dichlorophenol UG/L 80 Diethyl phthalate UG/L 100 2,4-Dimethylphenol UG/L 8 Dimethyl phthalate UG/L 10 4,6-Dinitro-2-methylphenol UG/L 12 2,4-Dinitrophenol UG/L 10	5	71	NA NA		NA		NA	
Carbazole	5	76	NA		NA NA		NA	
Chrysene UG/L 11 Dibenzo(a,h)anthracene UG/L 12 Dibenzofuran UG/L 8 Di-n-butyl phthalate UG/L 11 3,3'-Dichlorobenzidine UG/L 8 2,4-Dichlorophenol UG/L 8 Diethyl phthalate UG/L 10 2,4-Dimethylphenol UG/L 10 4,6-Dinitro-2-methylphenol UG/L 12 2,4-Dinitrophenol UG/L 10	5	92	NA		NA.		NA	
Dibenzo(a,h)anthracene	5	100	NA		NA		NA	
Dibenzofuran	5	110	NA		NA		NA	
Di-n-butyl phthalate UG/L 110 3,3'-Dichlorobenzidine UG/L 80 2,4-Dichlorophenol UG/L 80 Diethyl phthalate UG/L 100 2,4-Dimethylphenol UG/L 100 Dimethyl phthalate UG/L 100 4,6-Dinitro-2-methylphenol UG/L 120 2,4-Dinitrophenol UG/L 100	5	120	NA		NA		NA	
3,3'-Dichlorobenzidine	5	86	NA		NA		NA	
2,4-Dichlorophenol	5	110	NA NA		NA		NA	
Diethyl phthalate	5	85	NA		NA NA		NA	
2,4-Dimethylphenol	5	89	NA		NA NA		NA	
Dimethyl phthalate UG/L 100 4,6-Dinitro-2-methylphenol UG/L 120 2,4-Dinitrophenol UG/L 100 100 100 100 100 100 100 100 100 10	5	100	NA		NA NA		NA	
4,6-Dinitro-2-methylphenol UG/L 12 2,4-Dinitrophenol UG/L 10	5	84	NA		NA NA		NA	
2,4-Dinitrophenol UG/L 10	5	100	NA		NA		NA	
	10	120	NA		NA		NA	
	10	100	NA		NA NA		NA	
	5	100	NA		NA NA		NA	
2,6-Dinitrotoluene UG/L 11	5	110	NA		NA NA		NA NA	
	5	110	NA NA		NA NA		NA NA	
	5	100	NA NA		NA NA		NA NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID Sample Date		Matrix Spike B A07-A734	lank A7B1496801						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Fluorene	UG/L	95	5	NA	1	NA		NA	
Hexachlorobenzene	UG/L	100	5	NA	1	NA		NA	
Hexachlorobutadiene	UG/L	50	5	NA		NA		NA	
Hexachlorocyclopentadiene	UG/L	48	5	NA		NA		NA	
Hexachloroethane	UG/L	51	5	NA.		NA		NA	
	UG/L	130	5	NA.		NA		NA	
Indeno(1,2,3-cd)pyrene	UG/L	89	5	NA		NA		NA	
Isophorone	UG/L		5	NA .		NA NA		NA	
2-Methylnaphthalene	UG/L	66	-			NA NA		NA	
2-Methylphenol	UG/L	72	5	NA		NA NA		NA NA	[-
4-Methylphenol	UG/L	69	- 5	NA					
Naphthalene	UG/L	69	5	NA		NA		NA NA	
2-Nitroaniline	UG/L	100	10	NA	Į	NA		NA	
3-Nitroaniline	UG/L	99	10	NA		NA		NA	
4-Nitroaniline	UG/L	100	10	NA		NA		NA	1
Nitrobenzene	UG/L	85	5	NA		NA		NA	
2-Nitrophenol	UG/L	87	5	NA		NA		NA	
4-Nitrophenol	UG/L	45	10	NA		NA NA		NA	
	UG/L	79	5	NA		NA NA		NA	
N-nitrosodiphenylamine		86	5	NA NA		NA.		NA	
N-Nitroso-Di-n-propylamine	UG/L	100	10	NA NA		NA NA		NA	
Pentachlorophenol	UG/L			NA NA		NA NA		NA.	
Phenanthrene	UG/L	100	5			NA NA		NA NA	
Phenol	ne\r	36	5	NA				NA NA	
Pyrene	UG/L	110	5	NA		NA NA			
2,4,5-Trichlorophenol	UG/L	98	5	NA		NA		NA	
2,4,6-Trichlorophenol	UG/L	96	5	NA		Į NA		NA NA	
IS/SURROGATE(S)									
1.4-Dichlorobenzene-D4	1%	94	50-200	NA		NA NA		NA NA	
Naphthalene-D8	%	91	50-200	NA		NA		NA NA	
Acenaphthene-D10	%	91	50-200	NA		NA		NA.	
Phenanthrene-D10	\\\ \%	95	50-200	NA.		NA		NA NA	
	/%	92	50-200	NA NA		NA NA		NA NA	
Chrysene-D12		93	50-200	NA NA		NA.		NA NA	
Perylene-D12	%	84	46-112	NA NA		NA NA		NA NA	1
Nitrobenzene-D5	%	1	I	NA NA		NA NA		NA NA	
2-Fluorobiphenyl	%	87	48-116			NA NA		NA NA	
p-Terphenyl-d14	%	88	24-136	NA				NA NA	
Phenol-D5	%	34	16-120	NA		NA		1	
2-Fluorophenol	%	45	20-120	NA NA		NA		NA NA	
2,4,6-Tribromophenol	1%	99	52-132	NA NA		NA NA	1	l NA	ı

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client ID Job No Lab ID Sample Date	,	Method Blank A07-A734	A7B1490903						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Aroclor 1016	UG/L	ND	0.50	NA		NA		NA	
Aroclor 1221	UG/L	ND	0.50	. NA		NA		NA	
Aroclor 1232	UG/L	ND	0.50	NA		NA		NA	
Aroclor 1242	UG/L	ND	0.50	NA		NA		NA	
Aroclor 1248	UG/L	ND	0.50	NA		NA		NA	
Aroclor 1254	UG/L	ND	0.50	NA		NA		NA	
Aroclor 1260	UG/L	ND	0.50	NA		NA -		NA	
SURROGATE(S)							 		
Tetrachloro-m-xylene	[%	66	35-136	NA		NA		NA	
Decachlorobiphenyl	%	60	12-137	NA		NA		NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client ID Job No Lab I Sample Date	D	Matrix Spike AO7-A734	Blank A7B1490901	Matrix Spike AO7-A734	Blk Dup A7B1490902				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Aroclor 1016	UG/L	4.1	0.50	3.9	0.50	NA		NA	1
Aroclor 1221	UG/L	ND	0.50	ND	0.50	NA	}	NA	
Aroclor 1232	UG/L	ND	0.50	ND	0.50	NA		NA	
Aroclor 1242	UG/L	ND	0.50	ND	0.50	NA		NA	
Aroclor 1248	UG/L	ND	0.50	ND	0.50	NA		NA	
Aroclor 1254	UG/L	ND	0.50	ND	0.50	NA		NA	
Aroclor 1260	UG/L	4.7	0.50	4.5	0.50	NA	ļ	NA	
SURROGATE(S)									
Tetrachloro-m-xylene	%	76	35-136	70	35-136	NA		NA	
Decachlorobiphenyl	[%	54	12-137	64	12-137	NA		NA	\

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA-SOL PP METALS-SW8463/6010/7470-W

Client ID Job No Sample Date	Lab ID	Method Blank A07-A734	A7B1498902	Method Blank A07-A734	A7B1509702				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Antimony - Soluble	MG/L	ND	0.020	NA NA		NA.		NA	
Arsenic - Soluble	MG/L	ND	0.010	NA		NA		NA	
Beryllium - Soluble	MG/L	ND	0.0020	NA		NA		NA	
Cadmium - Soluble	MG/L	ND	0.0010	NA		NA		NA	
Chromium - Soluble	MG/L	ND	0.0040	NA		NA		NA	
Copper - Soluble	MG/L	ND	0.010	NA		NA		NA	
Lead - Soluble	MG/L	ND	0.0050	NA		NA.		NA	
Mercury - Soluble	MG/L	NA		ND	0.00020	NA		NA	
Nickel - Soluble	MG/L	ND	0.010	NA		NA		NA	
Selenium - Soluble	MG/L	ND	0.015	NA NA		NA NA		NA	
Silver - Soluble	MG/L	ND	0.0030	NA NA		NA		NA NA	
Thallium - Soluble	MG/L	ND	0.020	NA		NA NA		NA	
Zinc - Soluble	MG/L	ND	0.010	NA NA		NA		NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA-SOL PP METALS-SW8463/6010/7470-W

Client ID Job No La Sample Date	ab ID	LCS AO7-A734	A7B1509701	LFB A07-A734	A7B1498901				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Mercury - Soluble	MG/L	0.0033	0.00020	NA		NA		NA	1
Antimony - Soluble	MG/L	NA		0.19	0.020	NA		NA	
Arsenic - Soluble	MG/L	NA.		0.20	0.010	NA		NA	
Beryllium - Soluble	MG/L	NA NA		0.21	0.0020	NA		NA	
Cadmium - Soluble	MG/L	NA		0.19	0.0010	NA		NA	
Chromium - Soluble	MG/L	NA NA		0.20	0.0040	NA NA		NA	
Copper - Soluble	MG/L	NA.		0.21	0.010	NA NA		NA	
Lead - Soluble	MG/L	NA		0.20	0.0050	NA NA		NA	
Nickel – Soluble	MG/L	NA		0.20	0.010	NA NA		NA	
Selenium - Soluble	MG/L	NA.		0.20	0.015	NA NA		NA	
Silver - Soluble	MG/L	NA		0.049	0.0030	NA NA		NA	
Thallium - Soluble	MG/L	NA NA		0.19	0.020	NA NA		NA	
Zinc - Soluble	MG/L	NA.		0.21	0.010	NA NA		NA	

Client Sample ID: VBLK63

Lab Sample ID: A7B1553002

MSB63

		Concent		-	
Analyte	Units of Measure	Blank Spike	Spike Amount	% Recovery Blank Spike	QC LIMITS
DELTA - METHOD 8260/25 ML - TCL VOLATI	LE				
1,1-Dichloroethene	UG/L	22.3	25.0	89	65-14
Trichloroethene	UG/L	23.0	25.0	92	71-12
Benzene	UG/L	22.6	25.0	91	67-12
Toluene	UG/L	23.8	25.0	95	69-12
Chlorobenzene	UG/L	23.5	25.0	94	73-12

Client Sample ID: VBLK64

Lab Sample ID: A7B1560402

MSB64 A7B1560401

		Concent	!		
Analyte	Units of Measure	Blank Spike	Spike Amount	% Recovery Blank Spike	QC LIMITS
DELTA - METHOD 8260/25 ML - TCL VOLATI					
1,1-Dichloroethene	UG/L	25.8	25.0	103	65-142
Trichloroethene	UG/L	23.2	25.0	93	71-120
Benzene	UG/L	23.4	25.0	94	67-126
Toluene	UG/L	23.5	25.0	94	69-120
Chlorobenzene	UG/L	23.4	25.0	94	73-120

Client Sample ID: SBLK

Matrix Spike Blank

Lab Sample ID: A7B1496802

		Concenti	-		
Analyte	Units of Measure	Blank Spike	Spike Amount	% Recovery Blank Spike	QC LIMITS
METHOD 8270 - TCL SEMI-VOAS+DIMETHYL	FOR				
Phenol	UG/L	36.4	100	36	17-120
2-Chlorophenol	UG/L	76.5	100	76	47-120
N-Nitroso-Di-n-propylamine	UG/L	86.4	100	86	55-115
4-Chloro-3-methylphenol	UG/L	95.0	100	95	64-120
Acenaphthene	UG/L	83.0	100	83	60-118
4-Nitrophenol	UG/L	44.7	100	45	16-120
2,4-Dinitrotoluene	UG/L	103	100	103	58-125
Pentachlorophenol	UG/L	101	100	101	39-136
Pyrene	UG/L	109	100	110	58-136

Client Sample ID: Method Blank

Matrix Spike Blank

Matrix Spike Blk Dup

Lab Sample ID: A7B1490903

A7B1490901

		Concen	tration	0-:1	A	%	Recove	ry	9/	QC L	TMITS
Analyte	Units of Measure	Spike Blank	Spike Blank Dup	SB SB	Amount SBD	SB	SBD	Avg	RPD	RPD	REC.
DELTA - METHOD 8082 - POLYCHLORINATED BI Aroclor 1260 Aroclor 1016	UG/L UG/L	4.70 4.08	4.53 3.94	5.00 5.00	5.00 5.00	94 82	91 79	93 81	3 4		44-121 51-123

Client Sample ID: Method Blank

Lab Sample ID: A7B1498902

LFB

		Concentra	tion		
	Units of	Blank	Spike	% Recovery	QC
Analyte	Measure	Spike	Amount	Blank Spike	LIMITS
DELTA-SOL PP METALS-SW8463/6010/7470-W					
SOLUBLE ANTIMONY	MG/L	0.194	0.200	97	80-12
SOLUBLE ARSENIC	MG/L	0.199	0.200	100	80-12
SOLUBLE BERYLLIUM	MG/L	0.207	0.200	104	80-12
SOLUBLE CADMIUM	MG/L	0.194	0.200	97	80-12
SOLUBLE CHROMIUM	MG/L	0.201	0.200	101	80-12
SOLUBLE COPPER	MG/L	0.210	0.200	105	80-12
SOLUBLE LEAD	MG/L	0.201	0.200	101	80-12
SOLUBLE NICKEL	MG/L	0.201	0.200	101	80-12
SOLUBLE SELENIUM	MG/L	0.198	0.200	99	80-12
SOLUBLE SILVER	MG/L	0.0491	0.0500	98	80-12
SOLUBLE THALLIUM	MG/L	0.193	0.200	95	80-12
SOLUBLE ZINC	MG/L	0.207	0.200	103	80-12

Client Sample ID: Method Blank

Lab Sample ID: A7B1509702

LCS

Analyte	Units of Measure	Concentr Blank Spike	ration Spike Amount	% Recovery Blank Spike	QC LIMITS
DELTA-SOL PP METALS-SW8463/6010/7470-W SOLUBLE MERCURY	MG/L	0.00330	0.00333	99	80-120

DELTA ENVIRONMENTAL CONSULTANTS, INC.
SAMPLE CHRONOLOGY

Rept: ANO374 Page: 1

Client Sample ID Job No & Lab Sample ID			
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	09/21/2007 09:45 09/22/2007 09:00 10/03/2007 13:47 - YES WATER 1.0 0.005 LITERS		

DELTA ENVIRONMENTAL CONSULTANTS, INC.

QC SAMPLE CHRONOLOGY

Rept: ANO374

Page:

2

Client Sample ID Job No & Lab Sample ID	•		
Sample Date Received Date Extraction Date	09/21/2007 09/22/2007 09:00		
Analysis Date Extraction HT Met?	10/03/2007 03:58 -		
Analytical HT Met? Sample Matrix Dilution Factor	YES WATER 1.0		
Sample wt/vol % Dry	0.005 LITERS		

Rept: ANO374 3

Page:

Client Sample ID MSB63 Job No & Lab Sample ID AO7-A734 A7B1553001	MSB64 A07-A734 A7B1560401		
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry Sample Date 10/02/2007 21:12	10/03/2007 10:35 - - - WATER 1.0 0.005 LITERS		

Rept: ANO374 Page: 4

Client Sample ID Job No & Lab Sample ID		VBLK64 A07-A734 A7B1560402		
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	10/02/2007 21:36 - - - WATER 1.0 0.005 LITERS	10/03/2007 11:23 - - - WATER 1.0 0.005 LITERS		

DELTA ENVIRONMENTAL CONSULTANTS, INC.
SAMPLE CHRONOLOGY

Rept: ANO374 Page: 1

METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client Sample ID Job No & Lab Sample ID			
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	09/21/2007 09:45 09/22/2007 09:00 09/25/2007 07:00 10/02/2007 11:38 YES YES WATER 1.0 1.0 LITERS		·

DELTA ENVIRONMENTAL CONSULTANTS, INC.

QC SAMPLE CHRONOLOGY

Rept: ANO374 Page: 2

METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client Sample ID Job No & Lab Sample ID				
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	09/25/2007 07:00 10/02/2007 10:53 - - - WATER 1.0 1.0 LITERS			

DELTA ENVIRONMENTAL CONSULTANTS, INC.

QC SAMPLE CHRONOLOGY

Rept: ANO374 Page: 3

METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client Sample ID Job No & Lab Sample ID			
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	09/25/2007 07:00 10/02/2007 11:16 - - WATER 1.0 1.0 LITERS		

DELTA ENVIRONMENTAL CONSULTANTS, INC.
SAMPLE CHRONOLOGY

Rept: ANO374 Page: 1

DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client Sample II Job No & Lab Sample II				
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met?	09/21/2007 09:45 09/22/2007 09:00 09/23/2007 07:00 09/24/2007 21:26 YES			
Sample Matrix Dilution Factor Sample wt/vol % Dry	WATER 1.0 0.97 LITERS			

DELTA ENVIRONMENTAL CONSULTANTS, INC.

QC SAMPLE CHRONOLOGY

Rept: ANO374 Page: 2

DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client Sample ID Job No & Lab Sample ID	•	Matrix Spike Blk Dup A07-A734 A7B1490902		
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	09/23/2007 07:00 09/24/2007 17:48 - - - WATER 1.0 1.0 LITERS	09/23/2007 07:00 09/24/2007 18:03 - - - WATER 1.0 1.0 LITERS		

DELTA ENVIRONMENTAL CONSULTANTS, INC.

QC SAMPLE CHRONOLOGY

Rept: ANO374 Page: 3

DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client Sample ID Job No & Lab Sample ID			
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	09/23/2007 07:00 09/24/2007 18:17 - - WATER 1.0 1.0 LITERS		

Date: 10/08/2007 07:54:08 Jobno: A07-A734

DELTA ENVIRONMENTAL CONSULTANTS, INC. SAMPLE CHRONOLOGY

Lab ID	Sample ID	Units	Analyte	Method	Dilution Factor	Sample Date	Receive Date	TCLP Date	тнт	Analysis Date	АНТ	Matrix
7A73401	MW-5	MG/L	Antimony - Soluble	6010	1.00	09/21/2007 09:45	09/22 09:00	NA NA	NA	09/27 01:26	Yes	WATER
		MG/L	Arsenic - Soluble	6010		09/21/2007 09:45				09/27 01:26		
		MG/L	Beryllium - Soluble	6010		09/21/2007 09:45				09/27 01:26		
		MG/L	Cadmium - Soluble	6010	1.00	09/21/2007 09:45	09/22 09:00			09/27 01:26		
		MG/L	Chromium - Soluble	6010	1.00	09/21/2007 09:45	09/22 09:00	NA	NA	09/27 01:26	Yes	WATER
		MG/L	Copper - Soluble	6010	1.00	09/21/2007 09:45	09/22 09:00			09/27 01:26		
		MG/L	Lead - Soluble	6010	1.00	09/21/2007 09:45	09/22 09:00	NA	NA	09/27 01:26	Yes	WATER
		MG/L	Mercury - Soluble	7470	1.00	09/21/2007 09:45	09/22 09:00	NA	NΑ	09/26 16:21	Yes	WATER
		1 ,	Nickel - Soluble	6010	1.00	09/21/2007 09:45	09/22 09:00	NA	NA	09/27 01:26	Yes	WATER
		MG/L	Selenium - Soluble	6010	1.00	09/21/2007 09:45	09/22 09:00	NA	NA	09/27 01:26	Yes	WATER
		MG/L	Silver - Soluble	6010	1.00	09/21/2007 09:45	09/22 09:00	NA	NA	09/27 01:26	Yes	WATER
		MG/L	Thallium - Soluble	6010	1.00	09/21/2007 09:45	09/22 09:00	NA	NΑ	09/27 01:26	Yes	WATER
		MG/L	Zinc - Soluble	6010	1.00	09/21/2007 09:45	09/22 09:00	NA	NA	09/27 01:26	Yes	WATER

DELTA ENVIRONMENTAL CONSULTANTS, INC.

QC CHRONOLOGY

Date: 10/08/2007 07:54:08 Jobno: A07-A734

Lab ID	Sample ID	Units	Analyte	Method	Dilution Factor	Sample Date	Receive Date	TCLP Date	тнт	Analysis Date	АНТ	Matrix
A7B1498902	Method Blank	MG/L	Antimony - Soluble	6010	1.00	-	- 09:00	NA	NA.	09/27 00:06	Yes	WATER
		MG/L	Arsenic - Soluble	6010	1.00	-	- 09:00	NA	NA	09/27 00:06	Yes	WATER
		MG/L	Beryllium - Soluble	6010	1.00	-	- 09:00	NA	NA	09/27 00:06	Yes	WATER
		MG/L	Cadmium - Soluble	6010	1.00	-	- 09:00	NA	NA	09/27 00:06	Yes	WATER
		MG/L	Chromium - Soluble	6010	1.00	-	- 09:00	NA	NA	09/27 00:06		
		MG/L	Copper - Soluble	6010	1.00	=	- 09:00	NA	NA	09/27 00:06	Yes	WATER
		MG/L	Lead - Soluble	6010	1.00	-	- 09:00		NA	09/27 00:06		
		MG/L	Nickel - Soluble	6010	1.00	-	- 09:00	NA:	NA	09/27 00:06		
		MG/L	Selenium - Soluble	6010	1.00	. -	- 09:00	NA	NA	09/27 00:06		
		MG/L	Silver - Soluble	6010	1.00	-	- 09:00	NA	NA	09/27 00:06		
		MG/L	Thallium - Soluble	6010	1.00	_	- 09:00	NA	NA	09/27 00:06		
		MG/L	Zinc - Soluble	6010	1.00	_	- 09:00	NA	NA	09/27 00:06		
	Method Blank	MG/L	Mercury - Soluble	7470	1.00	-	- 09:00		NA	09/26 16:24		
A7B1509701	I 1	MG/L	Mercury - Soluble	7470	1.00	-	- 09:00		NA	09/26 16:23		
A7B1498901	LFB	MG/L	Antimony - Soluble	6010	1.00	-	- 09:00		NA	09/27 00:11		
		MG/L	Arsenic - Soluble	6010	1.00		- 09:00	l	NA	09/27 00:11		
		MG/L	Beryllium - Soluble	6010	1.00	-	- 09:00		NA	09/27 00:11		
		MG/L	Cadmium - Soluble	6010	1.00	-	- 09:00		NA	09/27 00:11		
1		MG/L	Chromium - Soluble	6010	1.00		- 09:00		NA	09/27 00:11		
		MG/L	Copper - Soluble	6010	1.00		- 09:00		NA	09/27 00:11		
		MG/L	Lead - Soluble	6010	1.00	-	- 09:00		NA	09/27 00:11		
		MG/L	Nickel - Soluble	6010	1.00	-	- 09:00		NA	09/27 00:11		
		MG/L	Selenium - Soluble	6010	1.00		- 09:00		NA	09/27 00:11		
		MG/L	Silver - Soluble	6010	1.00	_	- 09:00		NA	09/27 00:11		
		MG/L	Thallium - Soluble	6010	1.00	-	- 09:00		NA	09/27 00:11		
		MG/L	Zinc - Soluble	6010	1.00		- 09:00	NA NA	NA	09/27 00:11	Yes	WATER

Chain of Custody Record

STL-4124 (0901)	^ <u>-</u>																		_									
Deta Consultant S		Projec	t Man	ager			7		,	<i>j.</i> .			٠				,	Dat	9 -3	21.	~	1	ł	Chain	of Custo		_	
Deta Consultant S			<u> </u>	<u> </u>	77	ea Coo	<u> </u>	an	<u> </u>						Q _	•	7	+			"			·	<u> </u>	90	98	
Address 185 Jordan Road		l elepr	none r	vumb	er (Ar	ea Coo 2	e)/ra	IX NUI	nber)				\mathcal{L}	7		5	Lab	Num	ber				0	. 1	•	-4 4	/
City State Zip	Code	Site C	ontaci		20	<u>3 -</u>	Uat	Con	20					8	69 -		<u> </u>	lusis	/A#	ach I	ict if			Page			or	
Troy	2180	5/10 0	Uniaci				Lau	COM	acı				Ľ		u		Ana nore	spa	ce is	nee	ded)							
Project Name and Location (State)		Carrie	r/Wav	bill N	umbei								-	2	B		Z											
COOKSON / Polyclad Fran	Klin, NH	/			•									F		3	8		-						Spec	rial Ir	structio	ne/
Contract/Furchase Order/Quote No.			Τ				T		Cont	taine	rs &		\neg	श्व	ठ्ठ	Q	77								Cond	litions	of Rec	eipt
Delta Proper #: 8A 070	4268P			~	latrix		1_			erva				2	N	V	Ž		1	İ								
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Air	Aqueous	Sed.	Soil	Unpres	H2S04	HNO3	Ę	NaOH	ZnAc/ NaOH		3	Ž,	አሄ	83											
Mw-5	9/21	0945	-	V			4			3				Y	X	X	X		\top		T			V	Fice	Ι.	Filter	-1
	4-		╁┈		7		† *	H	- 1		寸	\dashv	十	$^{\leftarrow}$				\dashv	+	+	T			1		a_		
			-				+	H		$\vdash \vdash$		-	\dashv	\dashv	\dashv		\dashv	\dashv	+	+-	+-	-	\vdash					
															\perp		\perp	\perp										
						j										Ì		ı						1				
					$\neg \uparrow$	+					$\neg \uparrow$			\dashv	_		\top	\top		十	1						***************************************	
	 		-		\dashv	+	-	\vdash				\dashv	-+	\dashv	\dashv	\dashv	-	+	+	+-	+-	+	\vdash	+			······································	
																			\perp		L							
											1		Ì	- 1														
					$\neg \dagger$	\dashv	+-					$\neg \dagger$	$\neg \uparrow$	_	十	一	十	+	+	+	\vdash	\vdash		\neg				
			1		-		+	\vdash	_				_	-	-		4	+	+	+	┼	_						
						T												T	T		Γ	Ī						
			+	\vdash	\dashv	\dashv	+	\vdash				\dashv	\dashv	\dashv	\dashv	\dashv	+	\dashv	+	+-	+	\vdash		-				
			_				↓_	Ш		-		_	_	_	_		4	_	4	\downarrow	_	lacksquare						
							1					1				- 1	l											
Possible Hazard Identification		<u> </u>	S	amp	e Disp	oosal		·												(A	fee r	nav b	e asse	essed if	f samples	s are re	etained	
	Poison B	☐ Unknow	m [] Re	aturn 1	To Cliei	nt		<u> </u>	sal B				Archi	ve F	or _		<u> </u>	onths				mont					
Turn Around Time Required	_					,		loc.	Requ	uirem	nents	(Spe	ecify)												,	1		
24 Hours 48 Hours 7 Days 14 D	ays 🗌 21 Day		ther					_																		/		
1. Relinquished By		Date	/2	/	Tim /	e 00	Ö '		ecei	ived E	. C			_										Dat		05	Time	55
2. Relinquished By		Date			Tim	е		2. F	ecei	ived E	Ву			•					•		-			Dat	e		Time	
3. Relinquished By		Date			Tim	e	·	3. F	Recei	ived E	Ву												· · · · · · · · · · · · · · · · · · ·	Dat	te	 	Time	
Comments					J			1																		1		
																		9				[^] ر						
DISTRIBUTION WHITE Box and to Climb in Fig.	CAMADY Co-	with the C-		DIN		id Ca-													(_		<u>~</u>						

ANALYTICAL REPORT

Job#: <u>A07-D055</u>

Project#: NY4A9341

Site Name: Delta Environmental Consultants, Inc.

Task: Cookson site/Tannery Street

Mr. Scott Bryant Delta Environmental 185 Jordan Rd. Troy, NY 12180

TestAmerica Laboratories Inc.

Brian J. Fischer Project Manager

11/23/2007

TestAmerica Buffalo Current Certifications

As of 6/15/2007

STATE	Program	Cert # / Lab ID
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP CWA, RCRA	E87672
Georgia*	SDWA,NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA, CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP, SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA,CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania*	Registration, NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA, RCRA	998310390

^{*}As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

SAMPLE SUMMARY

			SAMPI	ŒD	RECEIVE	⊡
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A7D05501	MW-6	WATER	11/08/2007	10:15	11/09/2007	08:45
A7D05502	MW-7	WATER	11/08/2007	11:40	11/09/2007	08:45
	Trip Blank		11/08/2007		11/09/2007	08:45

METHODS SUMMARY

Job#: <u>A07-D055</u>

Project#: NY4A9341

Site Name: Delta Environmental Consultants, Inc.

PARAMETER	ANALYTICAL METHOD
DELTA - METHOD 8260/25 ML - TCL VOLATILES + TICS	SW8463 8260
METHOD 8270 - TCL SEMI-VOAs+dimethyl formamide	SW8463 8270
DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS	SW8463 8082
Antimony - Soluble	SW8463 6010
Arsenic - Soluble	SW8463 6010
Beryllium - Soluble	SW8463 6010
Cadmium - Soluble	SW8463 6010
Chromium - Soluble	SW8463 6010
Copper - Soluble	SW8463 6010
Lead - Soluble	SW8463 6010
Mercury - Soluble	SW8463 7470
Nickel - Soluble	SW8463 6010
Selenium - Soluble	SW8463 6010
Silver - Soluble	SW8463 6010
Thallium - Soluble	SW8463 6010
Zinc - Soluble	SW8463 6010

References:

SW8463

"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

SDG NARRATIVE

Job#: A07-D055

Project#: NY4A9341

Site Name: Delta Environmental Consultants, Inc.

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A07-D055

Sample Cooler(s) were received at the following temperature(s); $2.0\,^{\circ}$ C All samples were received in good condition.

GC/MS Volatile Data

For method 8260, the trip blank was analyzed with headspace due to insufficient volume. The volatile organic results may be biased low.

GC/MS Semivolatile Data

No deviations from protocol were encountered during the analytical procedures.

GC Extractable Data

For method 8082, Aroclor 1260 exhibited a percent difference greater than 15% from the expected amount in the closing continuing calibration. The average of all analytes is within 15% and the associated laboratory quality control recoveries are compliant. No corrective action was required.

Metals Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Brian J. Fischer Project Manager

11-27-07

Date

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- * Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- G Indicates a value greater than or equal to the project reporting limit but less than the laboratory quantitation limit
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8260/25 ML - TCL VOLATILES + TICS

Client ID Job No Lab ID Sample Date		MW-6 A07-D055 11/08/2007	A7D05501	MW-7 A07-D055 11/08/2007	A7D05502				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/L	ND	5.0	ND	5.0	NA		NA NA	
Benzene	UG/L	l ND	1.0	ND	1.0	NA		NA	
Bromodichloromethane	UG/L	ND	1.0	ND ND	1.0	NA		NA	
Bromoform	UG/L	ND	1.0	ND	1.0	NA	İ	NA NA	
Bromomethane	UG/L	ND	1.0	ND	1.0	NA		· NA	
2-Butanone	UG/L	ND ND	5.0	ND	5.0	NA NA		NA NA	
Carbon Disulfide	UG/L	ND ND	1.0	ND	1.0	NA NA		NA .	
Carbon Tetrachloride	UG/L	ND ND	1.0	ND ND	1.0	NA NA		NA NA	
		ND ND	1.0	ND ND	1.0	NA NA		NA NA	
Chlorobenzene	UG/L			ND ND	1.0	NA NA		NA NA	
Chloroethane	UG/L	ND	1.0		1	l.		f .	
Chloroform	UG/L	ND	1.0	ND .	1.0	NA NA		NA NA	
hloromethane	UG/L	ND	1.0	ND	1.0	NA NA		NA NA	1
Cyclohexane	UG/L	ND	1.0	ND	1.0	NA		NA	
1,2-Dibromoethane	UG/L	ND	1.0	ND	1.0	NA	i	NA	
oibromochloromethane	UG/L	ND	1.0	ND	1.0	NA		NA NA	
1,2-Dibromo-3-chloropropane	UG/L	ND	1.0	ND	1.0	NA		NA NA	
1,2-Dichlorobenzene	UG/L	ND	1.0	ND	1.0	NA		.NA	
1,3-Dichlorobenzene	UG/L	ND	1.0	ND	1.0	NA NA		NA NA	
1,4-Dichlorobenzene	UG/L	ND ND	1.0	ND	1.0	NA NA		NA NA	
oichlorodifluoromethane	UG/L	ND	1.0	ND .	1.0	NA NA		. NA	
1,1-Dichloroethane	UG/L	ND	1.0	ND	1.0	l NA		l NA	
1,2-Dichloroethane	UG/L	ND	1.0	ND	1.0	NA NA		NA	
1,1-Dichloroethene	UG/L	ND ND	1.0	ND	1.0	NA.	1	NA NA	
cis-1,2-Dichloroethene	UG/L	ND	1.0	ND	1.0	NA NA		NA NA	
trans-1,2-Dichloroethene	UG/L	ND ND	1.0	ND ND	1.0	NA.		NA NA	
1,2-Dichloropropane	UG/L	ND ND	1.0	ND ND	1.0	NA NA		NA NA	
		ND ND	1.0	ND ND	1.0	NA NA		NA NA	
cis-1,3-Dichloropropene	UG/L		1.0	ND ND	1.0	NA NA		NA NA	
trans-1,3-Dichloropropene	UG/L	ND	1					1	
thylbenzene	UG/L	ND	1.0	ND	1.0	NA		NA NA	
2-Hexanone	UG/L	ND	5.0	ND	5.0	NA NA		NA	
Isopropylbenzene	UG/L	ND	1.0	ND	1.0	NA NA		NA	
Methyl acetate	UG/L	ND	1.0	ND	1.0	NA NA		NA	
1ethylcyclohexane	UG/L	ND	1.0	ND	1.0	NA NA		NA	
Methylene chloride	UG/L	ND	1.0	ND	1.0	NA NA		NA	
4-Methyl-2-pentanone	UG/L	ND	5.0	ND	5.0	NA		NA NA	
Methyl-t-Butyl Ether (MTBE)	UG/L	ND	1.0	ND	1.0	NA		NA	
Styrene	UG/L	ND	1.0	ND	1.0	NA		NA NA	
1,1,2,2-Tetrachloroethane	UG/L	ND	1.0	ND	1.0	NA		NA	
Tetrachloroethene	UG/L	ND	1.0	ND	1.0	. NA		NA	
Toluene	UG/L	ND	1.0	ND	1.0	NA		NA NA	
1,2,4-Trichlorobenzene	UG/L	ND	1.0	ND	1.0	NA		NA	
1,1,1-Trichloroethane	UG/L	ND	1.0	ND	1.0	NA NA		NA NA	
1,1,2-Trichloroethane	UG/L	ND ND	1.0	ND	1.0	NA NA		NA NA	
7.72 1. Torreor occinano	100, -	1	1	112	1	1	1	1	1

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8260/25 ML - TCL VOLATILES + TICS

Client ID Job No Lab ID Sample Date		MW-6 A07-D055 11/08/2007	A7D05501	MW-7 A07-D055 11/08/2007	A7D05502				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
1,1,2-Trichloro-1,2,2-trifluo		ND	1.0	ND	1.0	NA		NA	
Trichlorofluoromethane	UG/L	ND	1.0	ND	1.0	NA		NA	
Trichloroethene	UG/L	ND	1.0	0.52 J	1.0	NA		NA	
Vinyl chloride	UG/L	ND	1.0	ND	1.0	NA		NA	
Total Xylenes	UG/L	ND	3.0	ND	3.0	NA		NA NA	Į.
======================================	+					,			,
Chlorobenzene-D5	%	74	50-200	.77	50-200	NA		· NA	
1,4-Difluorobenzene	%	67	50-200	69	50-200	NA		NA	
1,4-Dichlorobenzene-D4	1%	72	50-200	74	50-200	NA		NA NA	
Toluene-D8	%	96	71-126	94	71-126	NA		NA	
-Bromofluorobenzene	1%	90	73-120	86	73-120	NA		NA	
1,2-Dichloroethane-D4	%	128	66-137	126	66-137	NA		NA NA	

DELTA - METHOD 8260/25 ML - TCL VOLATILES + TICS TENTATIVELY IDENTIFIED COMPOUNDS

10/53

Client No.

					MW-6		
Lab Name:	: <u>TestAmerica Labor</u>	cat Contract:					
Lab Code:	: <u>RECNY</u> Case No.	: SAS No.:	SDG No.: _				
Matrix:	(soil/water) <u>WATER</u>		Lab Samp	le ID:	A7D0550	<u>1</u>	
Sample wt	c/vol:	<u>)</u> (g/mL) <u>ML</u>	Lab File	ID:	S8604.R	R	
Level:	(low/med) <u>LOW</u>		Date Samp	p/Recv:	11/08/2	007 11	L/09/200
% Moistu	re: not dec	-	Date Ana	lyzed:	11/14/2	007	
GC Column	n: <u>ZB-624</u> ID:	:_0.18 (mm)	Dilution	Factor	:1.0	<u>0</u>	
Soil Exti	ract Volume:	(uL)	Soil Alio	quot Vol	lume:		(uL)
Number T	ICs found:0		CONCENTRAT (ug/L or 1	_			
	CAS NO.	Compound Name	RT	Est.	Conc.	Q	
							1

DELTA - METHOD 8260/25 ML - TCL VOLATILES + TICS TENTATIVELY IDENTIFIED COMPOUNDS

11/53

Client No.

Lab Name	: <u>TestAmerica Labo</u>	rat Contract:	_		MW-7		
Lab Code	: <u>RECNY</u> Case No	.: SAS No.:	SDG No.:				
Matrix:	(soil/water) <u>WATER</u>		Lab Sampi	le ID:	A7D0550	2	
Sample wt	z/vol: <u>5.0</u>	0 (g/mL) <u>ML</u>	Lab File	D:	S8605.R	R	_
Level:	(low/med) <u>LOW</u>		Date Sam	o/Recv:	11/08/2	007 1	1/09/200
% Moistu	re: not dec	.	Date Ana	lyzed:	11/14/2	007	
GC Column	n: <u>ZB-624</u> ID	: <u>0.18</u> (mm)	Dilution	Factor:	1.0	<u>0</u>	
Soil Exti	ract Volume:	(uL)	Soil Alic	quot Vol	ume:		(uL)
Number T	ICs found: 0		CONCENTRAT: (ug/L or 1				
	CAS NO.	Compound Name	RT	Est.	Conc.	Q	

Client ID Job No Lab ID Sample Date		MW-6 A07-D055 11/08/2007	A7D05501	MW-7 A07-D055 11/08/2007	A7D05502				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
N.N-Dimethyl formamide	UG/L	ND	19	ND	24	NA		NA	
Acenaphthene	UG/L	ND	.5	ND	6	NA		NA	
Acenaphthylene	UG/L	ND	5	ND	6	NA NA		NA	1
Acetophenone	UG/L	ND	5	ND	6	NA NA		NA NA	
Anthracene	UG/L	ND	5	ND	6	NA NA		NA	
Atrazine	UG/L	ND	5	ND	6	NA		NA	
Benzaldehyde	UG/L	ND	5	ND	6	NA		NA	
Benzo(a)anthracene	UG/L	ND ND	5	ND	6	NA NA		NA	l
Benzo(b)fluoranthene	UG/L	ND	5	ND	6	NA NA		NA NA	
Benzo(k)fluoranthene	UG/L	ND.	5	ND	6	NA NA		NA	
	UG/L	ND ND	5	ND	6	NA NA		NA NA	
Benzo(ghi)perylene	UG/L	ND ND	5	ND	6	NA NA		NA NA	
Benzo(a)pyrene		ND ND	140	ND ND	180	NA NA		NA NA	1
Benzoic acid	UG/L		140	ND ND	24	NA NA		NA NA	
Benzyl alcohol	UG/L	ND			6	NA NA		NA NA	
Biphenyl	UG/L	ND	5	ND	l e	l l		NA NA	
Bis(2-chloroethoxy) methane	UG/L	ND	5	ND	6	NA NA			
Bis(2-chloroethyl) ether	UG/L	ND	5	ND	6	NA		NA NA	
2,2'-0xybis(1-Chloropropane)	UG/L	ND	5	ND	6	NA NA		NA NA	
Bis(2-ethylhexyl) phthalate	UG/L	ND	5	ND	6	NA		NA NA	
4-Bromophenyl phenyl ether	UG/L	ND	5	ND	6	NA		NA	
Butyl benzyl phthalate	UG/L	ND	5	ND	6	NA		NA	
Caprolactam	UG/L	ND ND	5	ND	6	NA NA		NA NA	
4-Chloroaniline	UG/L	ND	5	ND	6	NA		NA NA	
4-Chloro-3-methylphenol	UG/L	ND	5	ND .	6	NA ·		NA NA	
2-Chloronaphthalene	UG/L	ND	5	ND	6	NA NA		NA NA	
2-Chlorophenol	UG/L	ND	5	ND	6	NA NA		NA NA	
4-Chlorophenyl phenyl ether	UG/L	ND	5	ND	6	NA NA		NA	
Carbazole	UG/L	ND	5	ND	6	NA		NA	
Chrysene	UG/L	ND	5	ND	6	NA		NA	
Dibenzo(a,h)anthracene	UG/L	ND	5	ND	6	NA		NA	
Dibenzofuran	UG/L	ND	5	ND	6	NA		NA NA	
Di-n-butyl phthalate	UG/L	0.3 BJ	5	0.7 BJ	6	NA		NA NA	
3,3'-Dichlorobenzidine	UG/L	ND ND	5	ND	6	NA		NA NA	
2,4-Dichlorophenol	UG/L	ND	5	ND	6	NA		NA	
Diethyl phthalate	UG/L	ND	5	ND	6	NA NA		NA NA	
2,4-Dimethylphenol	UG/L	ND ND	5	ND	6	NA		NA.	
Dimethyl phthalate	UG/L	ND ND	5	ND ND	6	NA NA		NA NA	
	UG/L	ND ND	9	ND	12	NA NA		NA NA	
4,6-Dinitro-2-methylphenol	UG/L	ND ND	9	ND ND	12	NA NA		NA NA	
2,4-Dinitrophenol		l b	5	ND ND	6	NA NA		NA NA	
2,4-Dinitrotoluene	UG/L	ND	1	1	1			NA NA	
2,6-Dinitrotoluene	UG/L	ND	5	ND	6	NA NA			
Di-n-octyl phthalate	UG/L	0.4 J	5	ND	6	NA NA		NA NA	
Fluoranthene	(UG/L	ND	5	ND	6	, NA	\ .	NA NA	\

Client ID Job No Lab ID Sample Date		MW-6 A07-D055 11/08/2007	A7D05501	MW-7 A07-D055 11/08/2007	A7D05502				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Fluorene	UG/L	ND	5	ND	6	NA		NA	
Hexachlorobenzene	UG/L	ND	5	ND	6	NA NA		NA ·	
Hexachlorobutadiene	UG/L	ND	5	. ND	6	NA NA		NA ·	
Hexachlorocyclopentadiene	UG/L	ND	5	ND	6	NA NA		l NA	,
Hexachloroethane	UG/L	ND	5	ND	6	NA NA		l NA	
Indeno(1,2,3-cd)pyrene	UG/L	ND	5	ND	6	l NA		NA NA	
Isophorone	UG/L	ND	5	ND	6	NA NA		NA	1
2-Methylnaphthalene	UG/L	ND	5	ND	6	l NA		NA NA	
2-Methylphenol	UG/L	ND	5	ND	6	NA		NA NA	
4-Methylphenol	UG/L	ND	5	ND	6	NA NA		NA NA	
Naphthalene	UG/L	ND :	5	ND	6	NA NA		NA NA	
2-Nitroaniline	UG/L	ND	9	ND	12	NA		NA NA	
3-Nitroaniline	UG/L	ND	9	ND	12	NA NA		NA NA	1
4-Nitroaniline	UG/L	ND	9	ND	12	NA NA		NA NA	
Nitrobenzene	UG/L	ND	5	ND	6	NA NA		NA NA	
2-Nitrophenol	UG/L	ND	5	ND	6	NA NA		NA NA	
4-Nitrophenol	UG/L	ND	9	ND	12	NA NA		NA NA	
N-nitrosodiphenylamine	UG/L	ND	, <u>,</u>	ND	6	NA NA		NA NA	
N-Nitroso-Di-n-propylamine	UG/L	ND ND	5	ND	6	NA NA		NA NA	
Pentachlorophenol	UG/L	ND	9	ND ND	12	NA NA		NA NA	
Phenanthrene	UG/L	ND ND	5	ND ND	6	NA NA		NA NA	
Phenol	UG/L	ND ND	5	ND ND	6	NA NA		NA NA	
Pyrene	UG/L	ND	5	ND	6	NA NA		NA NA	
2,4,5-Trichlorophenol	UG/L	ND ND	5	ND	6	NA NA		NA NA	
2,4,6-Trichlorophenol	UG/L	ND	5	ND	6	NA NA		NA NA	
IS/SURROGATE(S)	00/ E	110		ND.	0	NA NA		IVA .	
1,4-Dichlorobenzene-D4	1%	82	50-200	93	50-200	NA		NA NA	
Naphthalene-D8	1%	86	50-200	89	50-200	NA NA		1	
Acenaphthene-D10	%	80	50-200	87	50-200	NA NA		NA NA	1
Phenanthrene-D10	%	85	50-200	90	50-200	NA NA		NA NA	
Chrysene-D12	/% //	85	50-200	88	50-200			NA NA	
Perylene-D12	[^] %	83	50-200	91	50-200	NA NA		NA NA	
Nitrobenzene-D5	/% %	77	46-120	81	46-120	NA NA	,	NA ***	
2-Fluorobiphenyl	/% %	88	48-120	81 87		NA NA		NA NA	
p-Terphenyl-d14	%	97	48-120 24-136		48-120	NA NA		NA	
Phenol-D5	% %		24-136 16-120	99 75	24-136	NA NA		NA	
rnenot-05 2-Fluorophenol		34		35	16-120	NA NA		NA NA	1
•	%	44	20-120	45	20-120	NA		NA NA	
2,4,6-Tribromophenol	%	108	52-132	105	52-132	NA NA	l	NA NA	İ

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client ID Job No Lab ID Sample Date		MW-6 A07-D055 11/08/2007	A7D05501	MW-7 A07-D055 11/08/2007	A7D05502				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Aroclor 1016	UG/L	ND	0.51	ND	0.54	NA		NA	
Aroclor 1221	UG/L	ND	0.51	ND	0.54	NA		NA NA	
Aroclor 1232	UG/L	ND	0.51	ND	0.54	NA		NA NA	
Aroclor 1242	UG/L	ND	0.51	ND	0.54	NA		NA ·	
Aroclor 1248	UG/L	ND	0.51	ND	0.54	· NA		NA NA	
Aroclor 1254	UG/L	ND	0.51	ND	0.54	NA		NA	
Aroclor 1260	UG/L	ND	0.51	ND	0.54	NA NA		NA NA	Į.
SURROGATE(S)							 		
Tetrachloro-m-xylene	%	66	35-136	64	35-136	NA NA		NA NA	
Decachlorobiphenyl	(%	52	12-137	59	12-137	NA NA	.1	NA NA	ļ

Client ID Job No Lab ID Sample Date	,	MW-6 A07-D055 11/08/2007	A7D05501	MW-7 A07-D055 11/08/2007	A7D05502				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Antimony - Soluble	MG/L	ND	0.020	ND	0.020	NA		NA	
Arsenic - Soluble	MG/L	ND	0.010	ND	0.010	NA		NA	
Beryllium - Soluble	MG/L	ND	0.0020	ND	0.0020	NA		NA	
Cadmium - Soluble	MG/L	ND	0.0010	ND ·	0.0010	NA		NA	
Chromium - Soluble	MG/L	. ND	0.0040	ND	0.0040	NA		NA	
Copper - Soluble	MG/L	ND	0.010	ND	0.010	NA		NA	
Lead - Soluble	MG/L	ND	0.0050	ND	0.0050	NA		NA	
Mercury - Soluble	MG/L	ND	0.00020	ND	0.00020	NA		· NA	
Nickel - Soluble	MG/L	ND	0.010	ND	0.010	. NA		NA	
Selenium - Soluble	MG/L	ND	0.015	ND	0.015	NA		NA	,
Silver - Soluble	MG/L	ND	0.0030	ND	0.0030	NA		NA	
Thallium - Soluble	MG/L	ND	0.020	ND	0.020	NA		NA	
Zinc - Soluble	MG/L	ND	0.010	ND	0.010	NA		NA	

Chronology and QC Summary Package

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8260/25 ML - TCL VOLATILES + TICS

Client ID Job No Lab ID Sample Date		VBLK39 A07-D055	A7B1824702	VBLK59 A07-D055	A7B1830602				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/L	ND	5.0	ND	5.0	NA NA		NA	
Benzene	UG/L	ND	1.0	ND	1.0	NA		NA	1
Bromodichloromethane	UG/L	ND	1.0	ND	1.0	NA		NA NA	*
Bromoform	UG/L	ND	1.0	ND	1.0	NA		NA NA	
Bromomethane	UG/L	ND	1.0	ND	1.0	NA NA		NA NA	
2-Butanone	UG/L	ND	5.0	ND	5.0	NA NA		1	
Carbon Disulfide	UG/L	ND ND	1.0	0.83 J		l .		NA	
Carbon Tetrachloride	UG/L	ND ND	1.0		1.0	NA NA		NA	
Chlorobenzene			ł .	ND	1.0	NA		NA	
	UG/L	ND	1.0	ND	1.0	NA		NA	1
Chloroethane	UG/L	ND	1.0	ND	1.0	NA NA		NA	
Chloroform	UG/L	ND	1.0	ND	1.0	NA		NA	
Chloromethane	UG/L	ND	1.0	ND	1.0	NA .		NA	
Cyclohexane	UG/L	ND ·	1.0	ND	1.0	NA		NA	
1,2-Dibromoethane	UG/L	ND	1.0	ND	1.0	NA		NA	
Dibromochloromethane	UG/L	ND	1.0	ND	1.0	NA NA		NA NA	
1,2-Dibromo-3-chloropropane	UG/L	ND	1.0	ND	1.0	NA NA		NA .	
1,2-Dichlorobenzene	UG/L	ND	1.0	ND	1.0	NA NA		NA	
1,3-Dichlorobenzene	UG/L	ND	1.0	ND .	1.0	NA NA		NA	
1,4-Dichlorobenzene	UG/L	ND ND	1.0	ND	1.0	NA NA		NA NA	
Dichlorodifluoromethane	UG/L	. ND	1.0	ND ND	1.0	NA NA		NA NA	
1,1-Dichloroethane	UG/L	ND	1.0	ND	1.0	NA .			
1,2-Dichloroethane	UG/L	ND	1.0	ND ND	1.0	NA NA		NA NA	
1,1-Dichloroethene	UG/L	ND	1.0	ND ND				NA 	
cis-1,2-Dichloroethene	UG/L	ND ND			1.0	NA		NA	
trans-1,2-Dichloroethene			1.0	ND	1.0	NA		NA	
	UG/L	ND	1.0	ND	1.0	NA	·	NA NA	}
1,2-Dichloropropane	UG/L	ND	1.0	ND	1.0	NA		NA	
cis-1,3-Dichloropropene	UG/L	ND	1.0	ND	1.0	NA		NA	
trans-1,3-Dichloropropene	UG/L	ND	1.0	ND	1.0	NA		NA	
Ethylbenzene	UG/L	ND	1.0	ND	1.0	NA		NA	
2-Hexanone	UG/L	. ND	5.0	ND	5.0	NA		NA	
Isopropylbenzene	UG/L	ND	1.0	ND	1.0	NA		NA	
Methyl acetate	UG/L	ND	1.0	ND	1.0	NA		NA	1
Methylcyclohexane	UG/L	ND	1.0	ND	1.0	NA		NA	
Methylene chloride	UG/L	0.73 J	1.0	ND	1.0	NA NA		NA	1
4-Methyl-2-pentanone	UG/L	ND	5.0	ND	5.0	NA NA		NA NA	
Methyl-t-Butyl Ether (MTBE)	UG/L	ND	1.0	ND	1.0	NA NA		NA NA	
Styrene	UG/L	ND	1.0	ND	1.0	NA NA		NA NA	}
1,1,2,2-Tetrachloroethane	UG/L	ND .	1.0	ND	1.0	NA NA		NA NA	1
Tetrachloroethene	UG/L	ND ND	1.0	ND ND	1.0	NA NA			
Toluene	UG/L	ND ND	1.0	ND ND	1.0			NA	
1,2,4-Trichlorobenzene	UG/L	ND ND				NA NA		NA	
1,1,1-Trichloroethane	UG/L		1.0	ND ND	1.0	NA		NA	1
	1 '.	ND	1.0	ND	1.0	NA		. NA	
1,1,2-Trichloroethane	UG/L	ND	1.0	ND	1.0	NA NA		NA	[

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8260/25 ML - TCL VOLATILES + TICS

Client ID Job No Lab ID Sample Date		VBLK39 A07-D055	A7B1824702	VBLK59 A07-D055	A7B1830602				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
,1,2-Trichloro-1,2,2-trifluor richlorofluoromethane richloroethene /inyl chloride Total Xylenes	UG/L UG/L UG/L UG/L UG/L	ND ND ND ND	1.0 1.0 1.0 1.0 3.0	ND ND ND ND	1.0 1.0 1.0 1.0 3.0	NA NA NA NA		NA NA NA NA	
IS/SURROGATE(S) hlorobenzene-D5 ,4-Difluorobenzene ,4-Dichlorobenzene-D4 oluene-D8 b-Bromofluorobenzene ,2-Dichloroethane-D4	% % % % % %	88 87 83 96 89 111	50-200 50-200 50-200 71-126 73-120 66-137	100 102 95 99 95 98	50-200 50-200 50-200 71-126 73-120 66-137	NA NA NA NA NA		NA NA NA NA NA	

DELTA - METHOD 8260/25 ML - TCL VOLATILES + TICS TENTATIVELY IDENTIFIED COMPOUNDS

19/53

Client No.

Lab Name: <u>TestAmerica Laborat</u> Contract:	VBLK39
Lab Code: RECNY Case No.: SAS No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A7B1824702</u>
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID: <u>S8585.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv:
% Moisture: not dec	Date Analyzed: <u>11/13/2007</u>
GC Column: <u>ZB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor:1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
Number TICs found: <u>1</u>	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 91-20-3	NAPHIHALENE	10.92	4	JN

DELTA - METHOD 8260/25 ML - TCL VOLATILES + TICS TENTATIVELY IDENTIFIED COMPOUNDS

20/53

Client No.

				VBLK59		
Lab Name:	: <u>TestAmerica Labor</u>	cat Contract:				
Lab Code:	: <u>RECNY</u> Case No.	: SAS No.:	SDG No.: _			
Matrix: ((soil/water) <u>WATER</u>		Lab Sampl	e ID: <u>A7B183</u>	0602	
Sample wt	c/vol: <u>5.00</u>) (g/mL) <u>ML</u>	Lab File	ID: <u>G1292.</u>	RR	<u> </u>
Level:	(low/med) <u>LOW</u>		Date Samp	/Recv:	· .	
% Moistur	re: not dec.	· -	Date Anal	yzed: <u>11/14/</u>	2007	
GC Column	n: <u>ZB-624</u> D:	0.18 (mm)	Dilution	Factor: 1.	<u>00</u>	
Soil Exti	ract Volume:	(uL)	Soil Alig	uot Volume:		(uL)
Number Ti	ICs found:0		CONCENTRATI (ug/L or u	ON UNITS: g/Kg) <u>UG/L</u>	<u> </u>	
	CAS NO.	Compound Name	RT	Est. Conc.	Q	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8260/25 ML - TCL VOLATILES + TICS

Client ID Job No Lab ID Sample Date		MSB39 A07-D055	A7B1824701	MSB59 A07-D055	A7B1830601				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/L	3.4 J	5.0	120	5.0	NA NA		NA	
Benzene	UG/L	30	1.0	25	1.0	NA NA		NA	
Bromodichloromethane	UG/L	ND	1.0	25	1.0	NA NA	*	NA	
Bromoform	UG/L	ND	1.0	26	1.0	NA NA		NA NA	
Bromomethane	UG/L	ND	1.0	25	1.0	NA NA		NA NA	
2-Butanone	UG/L	ND	5.0	120	5.0	NA NA		NA NA	
Carbon Disulfide	UG/L	ND	1.0	26 B	1.0	NA NA		NA NA	
Carbon Tetrachloride	UG/L	ND	1.0	26	1.0	NA NA		NA NA	
Chlorobenzene	UG/L	24	1.0	25	1.0	NA NA	1	NA NA	
Chloroethane	UG/L	ND	1.0	24	1.0	NA NA		NA NA	
Chloroform	UG/L	ND	1.0	24	1.0	NA NA		NA NA	
Chloromethane	UG/L	ND ND	1.0	21	1.0	NA NA		NA NA	
Cyclohexane	UG/L	ND	1.0	24	1.0	NA NA			
1,2-Dibromoethane	UG/L	ND	1.0	26	1.0	1		NA NA	
Dibromochloromethane	UG/L	ND ND	1.0	27	1.0	NA NA		NA	-
1,2-Dibromo-3-chloropropane	UG/L	ND ND	1.0	24		NA NA		NA 	
1,2-Dichlorobenzene	UG/L	ND	1.0		1.0	NA NA	· .	NA	
1,3-Dichlorobenzene	UG/L		l '	25	1.0	NA		NA	
1,4-Dichlorobenzene	UG/L	ND	1.0	25	1.0	NA NA		NA	
Dichlorodifluoromethane		ND	1.0	25	1.0	NA .		NA ·	
	UG/L	ND	1.0	24	1.0	NA		NA [*]	
1,1-Dichloroethane	UG/L	ND	1.0	24	1.0	NA NA		NA	· .
1,2-Dichloroethane	UG/L	ND	1.0	25	1.0	NA		NA	
1,1-Dichloroethene	UG/L	31	1.0	27	1.0	NA		NA	
cis-1,2-Dichloroethene	UG/L	ND	1.0	25	1.0	· NA		NA	
trans-1,2-Dichloroethene	UG/ _, L	ND	1.0	25	1.0	NA		NA	
1,2-Dichloropropane	UG/L	ND	1.0	24	1.0	NA NA		NA	
cis-1,3-Dichloropropene	UG/L	ND	1.0	24	1.0	NA NA		NA	
trans-1,3-Dichloropropene	UG/L	ND	1.0	24	1.0	NA NA		NA .	
Ethylbenzene	UG/L	ND	1.0	25	1.0	NA NA		NA	
2-Hexanone	UG/L	ND	5.0	130	5.0	NA NA		NA	
Isopropylbenzene	UG/L	ND	1.0	23	1.0	NA NA		NA	
Methyl acetate	UG/L	ND	1.0	24	1.0	NA NA		NA	
Methylcyclohexane	UG/L	ND	1.0	26	1.0	NA .		NA	
Methylene chloride	UG/L	2.1 B	1.0	21	1.0	NA NA		NA NA	
4-Methyl-2-pentanone	UG/L	ND	5.0	130	5.0	NA NA		NA NA	
Methyl-t-Butyl Ether (MTBE)	UG/L	ND	1.0	26	1.0	NA		NA NA	
Styrene	UG/L	ND	1.0	25	1.0	NA NA		NA NA	
1,1,2,2-Tetrachloroethane	UG/L	ND	1.0	26	1.0	NA NA		NA NA	
Tetrachloroethene	UG/L	ND	1.0	26	1.0	NA NA		NA NA	
Toluene	UG/L	24	1.0	25	1.0	NA NA			
1,2,4-Trichlorobenzene	UG/L	0.96 J	1.0	24	1.0	NA NA		NA NA	
1,1,1-Trichloroethane	UG/L	ND	1.0	24 26				NA	· ·
1,1,2-Trichloroethane	UG/L	ND	1.0		1.0	NA NA		NA	
1717 IT TOTALOT OF CHAILE	100/- 1	שאו	1.0	. 26	1.0	NA NA		NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8260/25 ML - TCL VOLATILES + TICS

Client ID Job No Lab ID Sample Date		MSB39 A07-D055	A7B1824701	MSB59 A07-D055	A7B1830601				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
,1,2-Trichloro-1,2,2-trifluor	UG/L	ND	1.0	26	1.0	NA		NA	
richlorofluoromethane	UG/L	ND	1.0	. 27	1.0	NA		NA ·	
richloroethene	UG/L	29	1.0	26	1.0	NA		NA NA	
inyl chloride	UG/L	ND	1.0	24	1.0	NA NA		NA NA	
	UG/L	ND	3.0	75	3.0	NA NA		NA	
IS/SURROGATE(S)			F0 300	407	F0. 200			N.A	1
hlorobenzene-D5	1%	84	50-200	104	50-200	NA		NA NA	
,4-Difluorobenzene	%	85	50-200	101	50-200	NA NA		NA NA	
,4-Dichlorobenzene-D4	%	80	50-200	103	50-200	NA		NA	
oluene-D8	%	104	71-126	102	71-126	NA		NA NA	
-Bromofluorobenzene	%	98	73-120	97	73-120	NA		NA	
,2-Dichloroethane-D4	%	117	66-137	98	66-137	NA NA		NA NA	[

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8260/25 ML - TCL VOLATILES + TICS

Client ID Job No Lab ID Sample Date		Trip Blank A07-D055 11/08/2007	A7D05503						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/L	ND	5.0	NA		NA NA		NA NA	
Benzene	UG/L	ND	1.0	NA NA		NA NA		NA NA	
Bromodichloromethane	UG/L	ND	1.0	NA NA		NA NA		NA NA	1
Bromoform	UG/L	ND	1.0	NA NA		NA		NA NA	
Bromomethane	UG/L	ND	1.0	NA NA		NA		NA NA	
2-Butanone	UG/L	ND	5.0	NA NA		NA NA		NA NA	
Carbon Disulfide	UG/L	1.4 B	1.0	NA NA		NA NA		NA NA	
Carbon Tetrachloride	UG/L	ND	1.0	NA NA		NA NA		NA NA	
Chlorobenzene	UG/L	ND	1.0	NA NA		NA NA		NA NA	
Chloroethane	UG/L	ND	1.0	NA NA		NA NA		NA NA	
Chloroform	UG/L	ND	1.0	NA NA		NA NA		NA NA	
Chloromethane	UG/L	ND	1.0	NA		NA NA		NA NA	
Cyclohexane	UG/L	ND	1.0	NA NA		NA NA		NA NA	1
1,2-Dibromoethane	UG/L	ND	1.0	NA NA		NA NA			
Dibromochloromethane	UG/L	ND	1.0	NA NA		NA NA		NA	
1,2-Dibromo-3-chloropropane	UG/L	ND ND	1.0	NA NA				NA NA	
1,2-Dichlorobenzene	UG/L	ND	1.0	NA NA		NA NA		NA ·	
1,3-Dichlorobenzene	UG/L	ND	1.0	NA NA		NA NA		NA	
1,4-Dichlorobenzene	UG/L	ND ND	1.0	NA NA		NA NA		NA	
Dichlorodifluoromethane	UG/L	ND	1.0	NA NA		NA		NA	
1,1-Dichloroethane	UG/L	ND	1.0			NA		NA NA	
1,2-Dichloroethane	UG/L	ND .	1.0	NA NA		NA		NA	
1,1-Dichloroethene	UG/L	ND ND	1.0	NA NA		NA		NA	
cis-1,2-Dichloroethene	UG/L	ND ND		NA NA		NA		· NA	
trans-1,2-Dichloroethene		***	1.0	NA NA		NA ·		NA NA	
1,2-Dichloropropane	UG/L	ND	1.0	NA		NA		NA NA	
	UG/L	ND	1.0	NA		NA		NA	
cis-1,3-Dichloropropene	UG/L UG/L	ND	1.0	NA 		. NA		NA ·	
trans-1,3-Dichloropropene		ND	1.0	NA NA		NA	•	NA	
Ethylbenzene	UG/L	ND	1.0	NA		NA NA	9.	NA	
2-Hexanone	UG/L	ND	5.0	NA .		NA		NA NA	
Isopropylbenzene	UG/L	ND	1.0	NA NA		NA NA		NA NA	
Methyl acetate	UG/L	ND	1.0	NA	Ì	NA		NA .	
Methylcyclohexane	UG/L	ND	1.0	NA NA		NA		NA NA	
Methylene chloride	UG/L	0.56 J	1.0	NA		NA		NA NA	
4-Methyl-2-pentanone	UG/L	ND ·	5.0	NA		.NA		NA NA	
Methyl-t-Butyl Ether (MTBE)	UG/L	ND	1.0	NA		NA NA		.NA	
Styrene	UG/L	ND	1.0	NA		NA NA	1	NA	
1,1,2,2-Tetrachloroethane	UG/L	ND	1.0	NA		NA		NA NA	
Tetrachloroethene	UG/L	ND	1.0	NA		NA		NA	
Toluene	UG/L	ND	1.0	NA NA		NA		NA	
1,2,4-Trichlorobenzene	UG/L	ND	1.0	NA NA		NA		NA	
1,1,1-Trichloroethane	UG/L	ND	1.0	NA		NA		NA NA	
1,1,2-Trichloroethane	UG/L	ND	1.0	NA .		NA .		NA NA	1

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8260/25 ML - TCL VOLATILES + TICS

Client ID Job No Lab ID Sample Date		Trip Blank A07-D055 11/08/2007	A7D05503						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
,1,2-Trichloro-1,2,2-trifluo	r UG/L	ND	1.0	NA		NA .		NA	
richlorofluoromethane	UG/L	ND	1.0	NA		NA		NA NA	
richloroethene	UG/L	ND	1.0	NA		NA		NA	
'inyl chloride	UG/L	ND	1.0	NA		NA		NA NA	
otal Xylenes	UG/L	ND	3.0	NA .		NA	ļ	NA NA	\
IS/SURROGATE(S)			======			.			
hlorobenzene-D5	1%	95	50-200	NA		NA		NA NA	
,4-Difluorobenzene	1%	.97	50-200	NA		NA		NA	
,4-Dichlorobenzene-D4	%	86	50-200	NA		NA		NA	
oluene-D8	%	102	71-126	NA		NA		NA NA	
-Bromofluorobenzene	1%	94	73-120	NA		NA		NA NA	
,2-Dichloroethane-D4	1%	104	66-137	NA		NA	l	NA ·	

DELTA - METHOD 8260/25 ML - TCL VOLATILES + TICS TENTATIVELY IDENTIFIED COMPOUNDS

25/53

Client No.

Lab Name	: <u>TestAmerica Lab</u> o	rat Contract:		T	rip Blaı	nk 	
	•	.: SAS No.:	SDG No.: _	·			
Matrix:	(soil/water) <u>WATER</u>		Lab Sampi	le ID: 1	A7D05503	3	
Sample w	t/vol: <u>5.0</u>	0 (g/mL) <u>ML</u>	Lab File	ID:	G1293.RI	₹	
Level:	(low/med) <u>LOW</u>		Date Samp	p/Recv: [11/08/20	007 1	1/09/200
% Moistu	re: not dec		Date Ana	lyzed: <u>:</u>	11/14/20	007	
GC Colum	n: <u>ZB-624</u> ID	: <u>0.18</u> (mm)	Dilution	Factor: _	1.00	<u>)</u>	
Soil Ext	ract Volume:	(uL)	Soil Alic	quot Volum	me:	***************************************	(uL)
Number T	ICs found: 0		CONCENTRATI (ug/L or i				
	CAS NO.	Compound Name	RT	Est. Co	onc.	Q	
							

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID Sample Date		SBLK A07-D055	A7B1812103						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
N,N-Dimethyl formamide	UG/L	ND	20	NA		NA		NA	
Acenaphthene	UG/L	. ND	5	NA NA		NA NA	1	NA	
Acenaphthylene	UG/L	ND	5	NA NA		NA NA	1	- NA	
Acetophenone	UG/L	ND	5	NA NA		NA		NA	
Anthracene	UG/L	ND	5	NA I		NA		NA	
Atrazine	UG/L	ND	5	NA NA		NA	1	NA	
Benzaldehyde	UG/L	ND ND	5	NA NA		NA.	1	NA	
Benzo(a)anthracene	UG/L	ND	5	NA NA		NA NA	1	NA.	
		ND	5	NA NA		NA NA		NA	
Benzo(b)fluoranthene	UG/L	ND ND	5	NA NA		NA NA		NA NA	
Benzo(k)fluoranthene	UG/L		5	NA NA	'	NA NA		NA NA	
Benzo(ghi)perylene	UG/L	ND						NA NA	
Benzo(a)pyrene	UG/L	ND	5	NA NA		NA NA			1
Benzoic acid	UG/L	ND	150	NA NA		NA NA		NA NA	
Benzyl alcohol	UG/L	ND	20	NA		NA NA		NA	
3 iphenyl	UG/L	ND .	5	NA .		NA		NA	
Bis(2-chloroethoxy) methane	UG/L	ND	5	NA		NA		NA	
Bis(2-chloroethyl) ether	UG/L	ND	5	NA NA		NA		NA	
2,2'-0xybis(1-Chloropropane)	UG/L	ND	5	NA NA		NA NA		NA 1	
Bis(2-ethylhexyl) phthalate	UG/L	ND	5	NA .		NA NA	1	NA	
4-Bromophenyl phenyl ether	UG/L	ND	5	NA ·		NA NA		NA	*
Butyl benzyl phthalate	UG/L	ND	5	NA		NA		NA	
Caprolactam	UG/L	ND	5	NA		NA	1	NA	
4-Chloroaniline	UG/L	ND	5	NA NA		NA		NA	
4-Chloro-3-methylphenol	UG/L	ND	5	NA NA	4.0	NA NA	l i.	. NA	
2-Chloronaphthalene	UG/L	ND ND	5	NA NA		NA NA		NA	i
2-Chlorophenol	UG/L	ND	5	NA NA		NA NA	1	NA	
4-Chlorophenyl phenyl ether	UG/L	ND	5	NA NA		NA.		NA	
Carbazole	UG/L	ND ND	5	NA NA		NA NA		NA .	
	UG/L	ND	5	NA NA		NA NA		NA '	-
Chrysene		ND ND	5	NA NA		NA NA		NA NA	
Dibenzo(a,h)anthracene	UG/L		5	NA NA		NA NA		NA NA	
Dibenzofuran	UG/L	ND 7	5	NA NA		NA NA	-	NA NA	
Di-n-butyl phthalate	UG/L	0.3 J	5	1		NA NA		NA NA	
3,3'-Dichlorobenzidine	UG/L	ND	1	NA NA		NA NA		NA NA	
2,4-Dichlorophenol	UG/L	ND	5	NA NA					
Diethyl phthalate	UG/L	ND	5	NA		NA NA		NA NA	1
2,4-Dimethylphenol	UG/L	ND	5	NA		NA		NA	
Dimethyl phthalate	UG/L	ND	5	NA		NA NA	1	NA	·
4,6-Dinitro-2-methylphenol	UG/L	ND	10	NA		NA ·		NΑ	
2,4-Dinitrophenol	UG/L	ND .	10	NA		NA	· .	NA	
2,4-Dinitrotoluene	UG/L	ND	5	NA		- NA		NA	1
2,6-Dinitrotoluene	UG/L	ND	5	NA NA		· NA		NA	
Di-n-octyl phthalate	UG/L	ND	5	NA NA		NA		NA	
Fluoranthene	UG/L	ND	5	NA NA		NA NA	1	NA	

Client ID Job No Lab ID Sample Date		SBLK A07-D055	A7B1812103						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Fluorene	UG/L	ND	5	NA		NA		NA NA	
Hexachlorobenzene	UG/L	ND	5	NA		NA		NA NA	
Hexachlorobutadiene	UG/L	ND	5	NA NA		NA		NA NA	1
Hexachlorocyclopentadiene	UG/L	ND	5	NA	·	NA		NA.	
Hexachloroethane	UG/L	ND	5	NA NA		NA		NA NA	
Indeno(1,2,3-cd)pyrene	UG/L	ND	5	NA .		NA		NA	
Isophorone	UG/L	ND	5	NA NA		NA		NA NA	
2-Methylnaphthalene	UG/L	ND	5	NA NA		NA NA		NA NA	
2-Methylphenol	UG/L	ND	5	NA NA		NA		NA NA	
4-Methylphenol	UG/L	ND	5	NA		NA NA		NA NA	
Naphthalene	UG/L	ND	5	NA ·	1	NA NA		NA NA	
2-Nitroaniline	UG/L	, ND	10	NA NA		NA NA		NA NA	
3-Nitroaniline	UG/L	ND	10	NA NA		NA NA		NA NA	1
4-Nitroaniline	UG/L	ND .	10	NA NA		NA NA		NA NA	
Nitrobenzene	UG/L	ND	5	NA.		NA NA		NA NA	
2-Nitrophenol	UG/L	ND	5	NA NA		NA NA		NA NA	
4-Nitrophenol	UG/L	ND	10	NA NA		NA NA			
N-nitrosodiphenylamine	UG/L	ND	5	NA NA		NA NA		NA NA	
N-Nitroso-Di-n-propylamine	UG/L	ND	5	NA		NA NA		NA NA	
Pentachlorophenol	UG/L	ND	10	NA NA		NA NA		NA NA	
Phenanthrene	UG/L	ND	5	NA NA		NA NA		NA	
Phenol	UG/L	ND	5	NA NA		NA NA		NA	
Pyrene	UG/L	ND	5	NA NA		NA NA	, ,	NA NA	
2,4,5-Trichlorophenol	UG/L	ND ND	5	NA NA		NA NA		NA	
2,4,6-Trichlorophenol	UG/L	ND ND	5	NA NA				NA	
IS/SURROGATE(S)		IIV	,	I IVA		NA NA		NA	ļ
1,4-Dichlorobenzene-D4	1%	111	50-200	NA		AI A			
Naphthalene-D8	%	111	50-200	NA NA		. NA		NA	
Acenaphthene-D10	/°	109	50-200	NA NA		NA NA		NA	
Phenanthrene-D10	/%	112	50-200	NA NA	**	NA NA		NA	
Chrysene-D12	%	111	50-200 50-200			NA		NA	
Perylene-D12	°°	112	50-200	NA NA		NA NA		NA	
Nitrobenzene-D5	%	53	46-120	NA NA		NA		NA	
2-Fluorobiphenyl	/°	58	48-120 48-120	NA NA		NA		NA	
p-Terphenyl-d14	°°	76		NA		NA		NA	
Phenol-D5	%	76 26	24-136	NA NA		NA .		NA	
2-Fluorophenol	% %		16-120	NA NA		NA		NA	
2-rtuorophenot 2,4,6-Tribromophenol	/% /%	31	20-120	NA		NA		NA	
->+>o - 1 in comobuetto (\ <i>^</i>	71	52-132	NA NA	1	NA		NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID Sample Date		Matrix Spike E AO7-DO55	Blank A7B1812101	Matrix Spike E AO7-DO55	Blk Dup A7B1812102				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
N,N-Dimethyl formamide	UG/L	ND .	20	ND	20	NA		NA	
Acenaphthene	UG/L	37	5	40	5	NA		. NA	
Acenaphthylene	UG/L	ND.	5	ND	5	NA NA		NA NA	
Acetophenone	UG/L	ND	5	· ND	5	NA		NA NA	
Anthracene	UG/L	ND	5	ND	5	NA		NA	
Atrazine	UG/L	ND	5	ND	5	NA		NA	
Benzaldehyde	UG/L	ND	5	ND	5	NA		NA NA	
Benzo(a)anthracene	UG/L	ND ND	5	ND	5	NA		NA	
Benzo(b)fluoranthene	UG/L	ND ND	5	ND ND	5	NA		NA NA	
Benzo(k) fluoranthene	UG/L	ND	5	ND ND	5	NA NA		NA NA	
Benzo(ghi)perylene	UG/L	ND	5	ND ND	5	NA .		NA NA	
Benzo(giff)perytelle Benzo(a)pyrene	UG/L	ND ND	5	ND ND	5	NA NA		NA NA	1
Benzoic acid	UG/L	ND ND	150	ND	150	NA NA		NA NA	
Benzyl alcohol	UG/L	ND ND	20	ND ND	20	NA NA		NA NA	
		ND ND	5	ND ND	5	NA NA		NA NA	
Biphenyl	UG/L		5	ND ND	5				
Bis(2-chloroethoxy) methane	UG/L	ND	_			NA NA		NA NA	
Bis(2-chloroethyl) ether	UG/L	0.6 J	5	0.7 J	5	NA .		NA	
2,2'-Oxybis(1-Chloropropane)	UG/L	ND	5	ND	5	NA		NA	
Bis(2-ethylhexyl) phthalate	UG/L	ND	5	ND	5	NA NA		NA NA	
4-Bromophenyl phenyl ether	UG/L	ND	5	ND	5	NA NA		NA NA	
Butyl benzyl phthalate	UG/L	ND	5	ND	. 5	NA		NA NA	
Caprolactam	UG/L	ND	5	ND .	5	NA		NA NA	
4-Chloroaniline	UG/L	ND	5	ND	5	NA		NA NA	
4-Chloro-3-methylphenol	UG/L	. 37	5	39	5	NA	1	NA NA	
2-Chloronaphthalene	UG/L	ND	5	ND	5	NA		NA NA	
2-Chlorophenol	UG/L	28	5	31	5	NA NA		NA NA	
4-Chlorophenyl phenyl ether	UG/L	ND	5	ND ND	5	NA	1	NA	
Carbazole	UG/L	ND	5	ND	5	NA	1	NA NA	
Chrysene	UG/L	ND	5	ND	5	NA NA		NA ·	
Dibenzo(a,h)anthracene	UG/L	ND	5	ND	5	NA NA		NA	
Dibenzofuran	UG/L	ND	5	ND	5	NA		NA NA	
Di-n-butyl phthalate	UG/L	0.4 BJ	5	0.4 BJ	5	NA NA		NA NA	
3,3'-Dichlorobenzidine	UG/L	ND	5	ND	5	NA NA		NA NA	
2,4-Dichlorophenol	UG/L	ND ND	5	ND ND	5	NA NA		NA NA	
Diethyl phthalate	UG/L	ND	5	ND ND	5	NA NA		NA NA	
2,4-Dimethylphenol	UG/L	ND ND	5	ND	5	NA NA		l NA	1
Dimethyl phthalate	UG/L	ND ND	5	ND ND	5	NA NA		NA NA	
4,6-Dinitro-2-methylphenol	UG/L	ND ND	10	ND ND	10	NA NA		NA NA	1
2,4-Dinitrophenol	UG/L	7 J	10	7 J	10	NA NA		NA NA	
2,4-Dinitrophenot 2,4-Dinitrotoluene	UG/L	38	5	39	5	NA NA	· ·	NA NA	
			5	0.7 J	5				
2,6-Dinitrotoluene	UG/L	0.7 J			1 - 1	NA NA	1	NA NA	
Di-n-octyl phthalate	UG/L	0.6 J	5	0.5 J	5	NA NA		NA NA	1
Fluoranthene	UG/L	ND	5	ND	5	NA NA	1	NA .	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client ID Job No Lab ID Sample Date		Matrix Spike Blank A07-D055 A7B1812101		Matrix Spike A07-D055	Blk Dup A7B1812102				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Fluorene	UG/L	ND	5	ND				vacue	Limit
Hexachlorobenzene	UG/L	ND	5	ND ND	5	NA		NA NA	1
Hexachlorobutadiene	UG/L	ND	5	ND	5	NA		NA	[-
Hexachlorocyclopentadiene	UG/L	7	5		5	NA		NA	
lexach loroe thane	UG/L	ND '	5	7	5	NA		NA	
ndeno(1,2,3-cd)pyrene	UG/L	ND	5	ND	5	NA		NA	
sophorone	UG/L	ND	5	ND	5	NA NA		NA	ŀ
-Methylnaphthalene	UG/L	ND ND	5	ND	5	NA	1	NA NA	
-Methylphenol	UG/L	ND		ND	5	NA NA		NA NA	
-Methylphenol	UG/L	ND ND	5	ND	5	NA NA		NA NA	
aphthalene	UG/L	ND ·	5	ND	5	NA NA	.	NA NA	
-Nitroaniline	UG/L		5	ND	5	NA NA		NA NA	
-Nitroaniline	UG/L	ND	10	ND	10	NA		NA NA	1
-Nitroaniline	UG/L	ND	10	ND	10	NA			
itrobenzene	UG/L	ND	10	ND	10	NA NA		NA	
-Nitrophenol		ND	5	ND	5	NA		NA	
-Nitrophenol	UG/L	ND	5	ND	5	NA NA		NA NA	
-nitrosodiphenylamine	UG/L	16	10	16	10	NA NA		NA	
-Nitroso-Di-n-propylamine	UG/L	0.9 J	5	0.9 J	5	NA NA		NA	
entachlorophenol	UG/L	31	5	34	5	NA NA		NA	
henanthrene	UG/L	30	10	33	10	NA NA		NA	
henol	UG/L	ND	5	ND	5			NA	
	UG/L	13	5	13	5	NA	1	NA	
yrene	UG/L	43	5	45	5	NA NA		NA	
,4,5-Trichlorophenol	UG/L	ND	5	ND	5	NA		NA	
,4,6-Trichlorophenol	UG/L	ND	5	ND	5	NA	1	NA	
IS/SURROGATE(S)				ND .		NA	Į į	NA	
,4-Dichlorobenzene-D4	[%	105	50-200	102	FO. 200				
aphthalene-D8	%	103	50-200	102	50-200	NA		NA	
cenaph thene-D10	%	101	50-200	101	50-200	NA		NA	
nenanthrene-D10	%	105	50-200	101	50-200	NA		NA	
rysene-D12	%	105	50-200	99	50-200	NA		NA	
erylene-D12	%	105	50-200	102	50-200	NA	-	NA	
itrobenzene-D5	%	63	46-120		50-200	NA	,	NA I	
Fluorobiphenyl	%	70	48-120	66	46-120	NA		NA I	
Terphenyl-d14	%	82	24-136	72	48-120	NA		NA NA	
enol-D5	1%	27		87	24-136	· NA		NA I	
Fluorophenol	2	34	16-120	30	16-120	NA .		NA I	
4,6-Tribromophenol	1%	34 87	20-120	38	20-120	NA		NA NA	
		0/	52-132	90	52-132	NA		NA I	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client ID Job No Lab ID Sample Date		Method Blank A07-D055	A7B1807303						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Aroclor 1016	UG/L	ND	0.50	NA .	-	NA		NA	
Aroclor 1221	UG/L	ND	0.50	NA		NA NA		NA NA	
Aroclor 1232	UG/L	ND	0.50	NA ·		NA NA		NA NA	
Aroclor 1242	UG/L	ND	0.50	NA		NA		. NA	
Aroclor 1248	UG/L	ND	0.50	NA		NA		NA NA	
roclor 1254	UG/L	ND	0.50	NA		NA NA		NA NA	
Aroclor 1260	UG/L	ND	0.50	NA ·		NA NA		NA NA	
SURROGATE(S)									
etrachloro-m-xylene	%	60	35-136	NA		NA		NA NA	
Decachlorobiphenyl	%	57	12-137	NA		NA ·		NA NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client ID Job No Lab ID Sample Date		Matrix Spike Blank A07-D055 A7B1807301		Matrix Spike E AO7-DO55	Matrix Spike Blk Dup A07-D055 A7B1807302				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Aroclor 1016	UG/L	4.8	0.50	4.7	0.50	NA		NA	
Aroclor 1221	UG/L	ND	0.50	ND	0.50	NA		NA	
Aroclor 1232	UG/L	ND	0.50	ND	0.50	NA NA		NA	
Aroclor 1242	UG/L	ND	0.50	ND	0.50	NA NA		NA	
Aroclor 1248	UG/L	· ND	0.50	ND	0.50	NA NA	1	NA	
Aroclor 1254	UG/L	ND -	0.50	ND	0.50	NA		NA	
Aroclor 1260 ————SURROGATE(S)———	UG/L	5.0	0.50	5.4	0.50	NA.		NA	
Tetrachloro-m-xylene	%	80	35-136	70	35-136	NA:		NA	
Decachlorobiphenyl	[%	70	12-137	69	12-137	NA NA	[NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA-SOL PP METALS-SW8463/6010/7470-W

Client ID Job No Sample Date	Lab ID	Method Blank A07-D055	A7B1804102	Method Blank A07-D055	A7B1823002				-
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Arsenic - Soluble	MG/L	ND	0.010	NA NA		NA		NA	
Cadmium - Soluble	MG/L	ND	0.0010	NA	'	NA		NA	
Chromium - Soluble	MG/L	ND	0.0040	· NA		NA NA		NA .	
Copper - Soluble	MG/L	ND	0.010	NA NA		NA	4	NA	
Lead - Soluble	MG/L	ND	0.0050	NA		NA		NA	
Nickel - Soluble	MG/L	ND	0.010	NA		NA		NA	
Silver - Soluble	MG/L	ND ·	0.0030	NA	,	NA		NA NA	
Thallium - Soluble	MG/L	ND	0.020	NA		NA	,	NA NA	
Mercury - Soluble	MG/L	NA		ND	0.00020	NA .		NA	
Antimony - Soluble	MG/L	ND	0.020	NA	-	NA		NA NA	
Beryllium - Soluble	MG/L	ND	0.0020	NA NA		NA ·		NA	
Selenium - Soluble	MG/L	ND -	0.015	NA	-	NA NA		NA	
Zinc - Soluble	MG/L	ND	0.010	NA NA		NA .		NA	

Delta Environmental Consultants, Inc. Cookson site/Tannery Street DELTA-SOL PP METALS-SW8463/6010/7470-W

Client ID Job No Sample Date	Lab ID	LCS A07-D055	A7B1823001	LFB A07-D055	A7B1804101	MW-6 A07-D055 11/08/2007	A7D05501MS	MW-6 A07-D055 11/08/2007	A7D05501SD
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Antimony - Soluble	MG/L	NA		0.20	0.020	NA NA		NA	
Arsenic - Soluble	MG/L	NA	i '	0.20	0.010	NA NA		NA NA	
Beryllium - Soluble	MG/L	NA NA		0.20	0.0020	l · NA		NA NA	
Copper - Soluble	MG/L	NA ·		0.20	0.010	NA NA		NA NA	
Selenium – Soluble	MG/L	NA NA		0.21	0.015	l NA		NA NA	
Thallium - Soluble	MG/L	NA		0.20	0.020	l NA		NA	
Zinc - Soluble	MG/L	NA NA		0.20	0.010	NA NA		NA ·	
Cadmium - Soluble	MG/L	NA NA		0.20	0.0010	NA NA		NA	
Chromium - Soluble	MG/L	NA NA		0.20	0.0040	NA NA		NA	
Lead - Soluble	MG/L	NA NA		0.20	0.0050	NA.		NA NA	
Mercury - Soluble	MG/L	0.0032	0.00020	NA NA		0.0069	0.00020	0.0068	0.00020
Nickel – Soluble	MG/∟	NA NA		0.20	0.010	NA NA		NA NA	
Silver - Soluble	MG/L	NA NA		0.050	0.0030	NA		NA NA	

Client Sample ID: VBLK39 Lab Sample ID: A7B1824702 MSB39 A7B1824701

		Concent	1		
Analyte	Units of Measure	Blank Spike	Spike Amount	% Recovery Blank Spike	QC LIMITS
DELTA - METHOD 8260/25 ML - TCL V	OLATILE				
1,1-Dichloroethene	UG/L	30.7	25.0	123	65-14
Trichloroethene	UG/L	28.8	25.0	116	71-12
Benzene	UG/L	29.8	25.0	120	67-12
Toluene	UG/L	23.6	25.0	95	69-12
Chlorobenzene	UG/L	23.7	25.0	95	73-120

Client Sample ID: VBLK59

MSB59

Lab Sample ID: A7B1830602

A7B1830601

		Concent		.	
Analyte	Units of Measure	Blank Spike	Spike Amount	% Recovery Blank Spike	QC LIMITS
DELTA - METHOD 8260/25 ML - TCL \	OLATILE				
1,1-Dichloroethene	UG/L	27.0	25.0	108	65-142
Trichloroethene	UG/L	25.6	25.0	102	71-120
Benzene	UG/L	24.6	25.0	98	67-126
Toluene	UG/L	25.4	25.0	102	69-120
Chlorobenzene	UG/L	25.3	25.0	102	73-120

Client Sample ID: SBLK

Lab Sample ID: A7B1812103

Matrix Spike Blank

A7B1812101

Matrix Spike Blk Dup

A7B1812102

	Concentration							% Recovery			
	Units of			Spike Amount					%		
Analyte	Measure	Spike Blank	Spike Blank Dup	SB	SBD	SB	SBD	Avg	RPD	25.0 23.0 30.0 20.0 27.0	REC.
ETHOD 8270 - TCL SEMI-VOAS+DIMETHYL	FOR					T				1	
Phenol	UG/L	12.7	13.3	50.0	50.0	25	27	- 26	8	ı	I
2-Chlorophenol	UG/L	28.1	31.2	50.0	50.0	56	62	59	10	33.0	47-12
N-Nitroso-Di-n-propylamine	UG/L	30.9	34.3	50.0	50.0	62	69	66	11	38.0	55-11
4-Chloro-3-methylphenol	UG/L	37.4	38.9	50.0	50.0	75	78	77	4	25.0	64-12
Acenaphthene	UG/L	37.1	40.2	50.0	50.0	74	80	77	8	23.0	60-11
4-Nitrophenol	UG/L	15.8	15.6	50.0	50.0	32	31	32	3	30.0	16-12
2,4-Dinitrotoluene	UG/L	38.2	38.8	50.0	50.0	76	78	77	2	20.0	58-12
Pentachlorophenol	UG/L	30.1	32.7	50.0	50.0	60	66	63	10	27.0	39-13
Pyrene	UG/L	42.8	44.9	50.0	50.0	86	90	88	4	25.0	58-13
·											Į.

Client Sample ID: Method Blank Lab Sample ID: A7B1807303 Matrix Spike Blank A7B1807301 Matrix Spike Blk Dup A7B1807302

	Concentration				!			% Recovery			
Analyte	Units of Measure		Spike Blank Dup	Spike SB	Amount SBD	SB	SBD	Avg	% RPD	QC L:	IMITS REC.
DELTA - METHOD 8082 - POLYCHLORINATED BI Aroclor 1260 Aroclor 1016	UG/L UG/L	5.03 4.78	5.37 4.72	5.00 5.00	5.00 5.00	101 96	108 94	105 95		50.0 50.0	44-141 51-153

SAMPLE DATE 11/08/2007

Rept: ANO364

Client Sample ID: MW-6

Lab Sample ID: A7D05501

MW-6 A7D05501MS MW-6 A7D05501SD

		Concentration			% Recovery							
Analyte	Units of Measure	Sample	Matrix Spike	Spike Duplicate	Spike MS	Amount MSD	MS	MSD	Avg	% RPD	QC L.	IMITS REC.
DELTA-SOL PP METALS-SW8463/6010/7470-W SOLUBLE MERCURY	MG/L	0	0.00688	0.00683	0.00666	0.00666	103	102	103	1	20.0	80-120

Client Sample ID: Method Blank Lab Sample ID: A7B1804102

LFB

A7B1804101

Units of Measure	Blank	Spike	1	
neasure	Spike	Amount	% Recovery Blank Spike	QC LIMITS
MG/L	0.196	0.200	97	80-120
MG/L	0.202	0.200	100	80-120
MG/L	0.202	0.200	101	80-120
MG/L	0.200	0.200	100	80-120
MG/L	0.200	0.200	100	80-120
MG/L	0.201	0.200	100	80-120
MG/L	0.202	0.200	101	80-120
MG/L	0.203	0.200	101	80-120
MG/L	0.209	0.200	104	80-120
MG/L	0.0503	0.0500	101	80-120
MG/L	0.205	0.200	103	80-120
MG/L	0.198	0.200	99	80-120
	MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L	MG/L 0.202 MG/L 0.202 MG/L 0.200 MG/L 0.201 MG/L 0.202 MG/L 0.203 MG/L 0.209 MG/L 0.0503 MG/L 0.205	MG/L 0.202 0.200 MG/L 0.202 0.200 MG/L 0.200 0.200 MG/L 0.200 0.200 MG/L 0.201 0.200 MG/L 0.202 0.200 MG/L 0.203 0.200 MG/L 0.209 0.200 MG/L 0.0503 0.0500 MG/L 0.205 0.200	MG/L 0.202 0.200 100 MG/L 0.202 0.200 101 MG/L 0.200 0.200 100 MG/L 0.200 0.200 100 MG/L 0.201 0.200 100 MG/L 0.202 0.200 101 MG/L 0.203 0.200 101 MG/L 0.209 0.200 104 MG/L 0.0503 0.0500 101 MG/L 0.205 0.200 103

Client Sample ID: Method Blank

Lab Sample ID: A7B1823002

LCS

A7B1823001

		Concentra	ation		
Analyte	Units of Measure	Blank Spike	Spike Amount	% Recovery Blank Spike	QC LIMITS
DELTA-SOL PP METALS-SW8463/6010/7470-W SOLUBLE MERCURY	MG/L	0.00322	0.00333	96	80-120

DELTA ENVIRONMENTAL CONSULTANTS, INC.
SAMPLE CHRONOLOGY

Rept: ANO374 Page: 1

Client Sample ID Job No & Lab Sample ID		MW-7 A07-D055 A7D05502		
Sample Date Received Date Extraction Date	11/08/2007 10:15 11/09/2007 08:45	11/08/2007 11:40 11/09/2007 08:45		
Analysis Date Extraction HT Met?	11/14/2007 06:39	11/14/2007 07:04 -		
Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	YES WATER 1.0 0.005 LITERS	YES Water 1.0 0.005 Liters		

Rept: ANO374

Page:

Client Sample ID Job No & Lab Sample ID	•		
Sample Date Received Date Extraction Date	11/08/2007 11/09/2007 08:45		
Analysis Date Extraction HT Met?	11/14/2007 13:00 -		:
Analytical HT Met? Sample Matrix	YES WATER		
Dilution Factor Sample wt/vol % Dry	1.0 0.005 LITERS		

DELTA ENVIRONMENTAL CONSULTANTS, INC.

QC SAMPLE CHRONOLOGY

Rept: ANO374 Page: 3

Client Sample ID Job No & Lab Sample ID		MSB59 A07-D055 A7B1830601		
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol	11/13/2007 22:27 - - WATER 1.0 0.005 LITERS	11/14/2007 11:06 - - WATER 1.0 0.005 LITERS		

Client Sample ID Job No & Lab Sample ID	VBLK39 A07-D055 A7B1824702	VBLK59 A07-D055 A7B1830602		
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor	11/13/2007 22:51 - - WATER 1.0	11/14/2007 12:26 - - WATER 1.0		
Sample wt/vol % Dry	0.005 LITERS	0.005 LITERS		

DELTA ENVIRONMENTAL CONSULTANTS, INC. SAMPLE CHRONOLOGY

Rept: ANO374

Page:

METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client Sample ID Job No & Lab Sample ID		MW-7 A07-D055 A7D05502		
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	11/08/2007 10:15 11/09/2007 08:45 11/13/2007 08:00 11/20/2007 20:07 YES YES WATER 1.0	11/08/2007 11:40 11/09/2007 08:45 11/13/2007 08:00 11/20/2007 20:30 YES YES WATER 1.0 0.85 LITERS		

DELTA ENVIRONMENTAL CONSULTANTS, INC. QC SAMPLE CHRONOLOGY

Rept: ANO374 Page: 2

METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client Sample ID Job No & Lab Sample ID	Matrix Spike Blank AO7-DO55 A7B1812101	Matrix Spike Blk Dup AO7-DO55 A7B1812102		
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	11/13/2007 08:00 11/20/2007 18:58 - - WATER 1.0 1.0 LITERS	11/13/2007 08:00 11/20/2007 19:20 - - WATER 1.0 1.0 LITERS		

DELTA ENVIRONMENTAL CONSULTANTS, INC.

QC SAMPLE CHRONOLOGY

Rept: ANO374

Page:

METHOD 8270 - TCL SEMI-VOAS+DIMETHYL FORMAMIDE

Client Sample ID Job No & Lab Sample ID			
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	11/13/2007 08:00 11/20/2007 19:44 - - WATER 1.0 1.0 LITERS		

DELTA ENVIRONMENTAL CONSULTANTS, INC.
SAMPLE CHRONOLOGY

Rept: ANO374 Page: 1

DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client Sample ID Job No & Lab Sample ID	MW-6 A07-D055 A7D05501	MW-7 A07-D055 A7D05502		
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	11/08/2007 10:15 11/09/2007 08:45 11/11/2007 07:00 11/12/2007 18:14 YES YES WATER 1.0	11/08/2007 11:40 11/09/2007 08:45 11/11/2007 07:00 11/12/2007 18:28 YES YES WATER 1.0 0.92 LITERS		

DELTA ENVIRONMENTAL CONSULTANTS, INC. QC SAMPLE CHRONOLOGY

Rept: ANO374

Page:

DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client Sample ID Job No & Lab Sample ID	•	Matrix Spike Blk Dup AO7-DO55 A7B1807302		
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol % Dry	11/11/2007 07:00 11/12/2007 17:03 - - WATER 1.0 1.0 LITERS	11/11/2007 07:00 11/12/2007 17:18 - - WATER 1.0 1.0 LITERS		

DELTA ENVIRONMENTAL CONSULTANTS, INC.
QC SAMPLE CHRONOLOGY

Rept: ANO374 Page: 3

DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS

Client Sample ID Job No & Lab Sample ID			
Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor	11/11/2007 07:00 11/12/2007 17:32 - - WATER 1.0		
Sample wt/vol % Dry	1.0 LITERS		

DELTA ENVIRONMENTAL CONSULTANTS, INC. SAMPLE CHRONOLOGY

Rept: ANO369

Dilution Sample Receive TCLP Analysis Lab ID Sample ID Units Analyte Method Factor Date Date Date THT Date AHT | Matrix MG/L A7D05501 MW-6 Antimony - Soluble 6010 1.00 11/08/2007 10:15 11/09 08:45 11/13 08:38 Yes WATER NA MG/L Arsenic - Soluble 6010 1.00 11/08/2007 10:15 11/09 08:45 11/13 08:38 Yes WATER NA NA MG/L Beryllium - Soluble 6010 1.00 11/08/2007 10:15 11/09 08:45 NA NA 11/13 08:38 Yes WATER MG/L Cadmium - Soluble 6010 1.00 11/08/2007 10:15 11/09 08:45 11/13 08:38 Yes WATER NA NA MG/L Chromium - Soluble 6010 1.00 11/08/2007 10:15 11/09 08:45 11/13 08:38 Yes WATER NΑ MG/L Copper - Soluble 6010 1.00 11/08/2007 10:15 11/09 08:45 11/13 08:38 Yes WATER NA MG/L Lead - Soluble 6010 1.00 11/08/2007 10:15 11/09 08:45 11/13 08:38 Yes WATER NA MG/L Mercury - Soluble 7470 1.00 11/08/2007 10:15 11/09 08:45 11/14 13:36 Yes WATER NA NA MG/L Nickel - Soluble 6010 1.00 11/08/2007 10:15 11/09 08:45 11/13 08:38 Yes WATER NA MG/L Selenium - Soluble 6010 1.00 11/08/2007 10:15 11/09 08:45 NA NA 11/13 08:38 Yes WATER MG/L Silver - Soluble 6010 1.00 11/08/2007 10:15 11/09 08:45 11/13 08:38 Yes WATER NA NA MG/L Thallium - Soluble 6010 1.00 11/08/2007 10:15 11/09 08:45 11/13 08:38 Yes WATER NA NA MG/L Zinc - Soluble 6010 1.00 11/08/2007 10:15 11/09 08:45 NA NA 11/13 08:38 Yes WATER A7D05502 MW-7 MG/L Antimony - Soluble 6010 1.00 11/08/2007 11:40 11/09 08:45 11/13 08:47 Yes WATER NA MG/L Arsenic - Soluble 6010 1.00 11/08/2007 11:40 11/09 08:45 NA NA 11/13 08:47 Yes WATER MG/L Beryllium - Soluble 6010 1.00 11/08/2007 11:40 11/09 08:45 11/13 08:47 Yes WATER NA NA MG/L Cadmium - Soluble 6010 1.00 11/08/2007 11:40 11/09 08:45 11/13 08:47 Yes WATER NA NA MG/L Chromium - Soluble 6010 1.00 11/08/2007 11:40 11/09 08:45 NA 11/13 08:47 Yes WATER NA MG/L Copper - Soluble 6010 1.00 11/08/2007 11:40 11/09 08:45 11/13 08:47 Yes WATER NA MG/L Lead - Soluble 6010 1.00 11/08/2007 11:40 11/09 08:45 NΑ NA 11/13 08:47 Yes WATER MG/L Mercury - Soluble 7470 1.00 11/08/2007 11:40 11/09 08:45 11/14 13:41 Yes WATER NΑ NA MG/L Nickel - Soluble 1.00 11/08/2007 11:40 11/09 08:45 6010 11/13 08:47 Yes WATER NA NA MG/L Selenium - Soluble 6010 1.00 11/08/2007 11:40 11/09 08:45 11/13 08:47 Yes WATER NA MG/L Silver - Soluble 6010 1.00 11/08/2007 11:40 11/09 08:45 11/13 08:47 Yes WATER NA MG/L Thallium - Soluble 6010 1.00 11/08/2007 11:40 11/09 08:45 NA NA 11/13 08:47 Yes WATER MG/L Zinc - Soluble 6010 1.00 11/08/2007 11:40 11/09 08:45 11/13 08:47 Yes WATER NA

TestAmerica Laboratories Inc.

Date: 11/23/2007 15:48:01 Jobno: A07-D055

DELTA ENVIRONMENTAL CONSULTANTS, INC. QC CHRONOLOGY

Rept: ANO369

Lab ID	Sample ID	Units	Analyte		Method	Dilution Factor	Sample Date	Receive Date	TCLP Date	ТНТ	Analysis Date	AHT Matrix
A7D05501MS	MW-6	MG/L	Mercury - Soluble		7470	1.00	11/08/2007 10:15	11/09 08:45	NA	NA	11/14 13:38	Yes WATER
A7D05501SD		MG/L	Mercury - Soluble		7470	1.00	11/08/2007 10:15	11/09 08:45	NA	NA	11/14 13:40	Yes WATER
A7B1804102	Method Blank	MG/L	Antimony - Soluble	·	6010	1.00	-	- 08:45	NA ·	NA	11/13 06:46	Yes WATER
	· ·	MG/L	Arsenic - Soluble		6010	1.00	-	- 08:45	NA	NA	11/13 06:46	
		MG/L	Beryllium - Soluble		6010	1.00	-	- 08:45	NA	NA	11/13 06:46	
		MG/L	Cadmium - Soluble		6010	1.00	-	- 08:45	NA	NA	11/13 06:46	Yes WATER
	· ·	MG/L	Chromium - Soluble		6010	1.00	_	- 08:45	NA	NA	11/13 06:46	Yes WATER
		MG/L	Copper - Soluble	·	6010	1.00		- 08:45	NA .	NA	11/13 06:46	Yes WATER
		MG/L	Lead - Soluble		6010	1.00		- 08:45	NA	NA	11/13 06:46	
		MG/L	Nickel - Soluble		6010	1.00	-	- 08:45	NA	NA	11/13 06:46	Yes WATER
		MG/L	Selenium - Soluble		6010	1.00	` -	- 08:45	NA	NA	11/13 06:46	
		MG/L	Silver - Soluble		6010	1.00		- 08:45	NA	NA	11/13 06:46	Yes WATER
		MG/L	Thallium - Soluble		6010	1.00		- 08:45	NA	NA	11/13 06:46	
		MG/L	Zinc - Soluble		6010	1.00		- 08:45	NA	NA	11/13 06:46	Yes WATER
A7B1823002	Method Blank	MG/L	Mercury - Soluble		7470	1.00	_	- 08:45	NA	NA	11/14 13:59	
A7B1823001	LCS	MG/L	Mercury - Soluble		7470	1.00	-	- 08:45	NA	NA	11/14 13:57	Yes WATER
A7B1804101	LFB	MG/L	Antimony - Soluble		6010	1.00	-	- 08:45	NA	NA	11/13 06:51	Yes WATER
		MG/L	Arsenic - Soluble		6010	1.00	<u>-</u>	- 08:45	- NA	NA	11/13 06:51	
		MG/L	Beryllium - Soluble		6010	1.00	-	- 08:45	NA	NA	11/13 06:51	
		MG/L	Cadmium - Soluble		6010	1.00	-	- 08:45	NA	NA	11/13 06:51	
		MG/L	Chromium - Soluble	:	6010	1.00	_	- 08:45	NA	NA	11/13 06:51	Yes WATER
		MG/L	Copper - Soluble	*	6010	1.00	_	- 08:45	NA	NA	11/13 06:51	
		MG/L	Lead - Soluble		6010	1.00	-	- 08:45	NA	NA	11/13 06:51	
		MG/L	Nickel - Soluble		6010	1.00	_	- 08:45	NA	NA	11/13 06:51	
		MG/L	Selenium - Soluble		6010	1.00	_	- 08:45	NA	NA	11/13 06:51	
		MG/L	Silver - Soluble		6010	1.00	_	- 08:45	NA.	NA	11/13 06:51	
		MG/L	Thallium - Soluble	· ·	6010	1.00	_	- 08:45	NA	NA	11/13 06:51	
		MG/L	Zinc - Soluble		6010	1.00		- 08:45	NA	NA	11/13 06:51	

Chain of Custody Record

3TL-4124 (0901)									<i>"</i>								<u> </u>													
DELTA CONSULTANT S Address 185 JORDAN ROAD		Projec		ager O		·	2	2√	An	y T	, 					for		Dai	е					Cha		ustody 26		mber 5 7		***************************************
Address Tooland DoA			hone l	Vumb	er (A	rea C							:	٠,		\$		Lat	Num	ber						<u>. </u>		<u> </u>		
City State Zip			18		20	<u> </u>								*		3								Pag	ge	_		of _	_1_	
TROY NY &	Code 12180	Site C	ontac	t				ab C	Contac	et				S		श्र	A CO	alysis e spa	(Atta	ach li nee	st if ded)		. 1.							
Project Narije and Location (State)		Carrie	r/Way	bill N	lumbe	ər								S ACTA	N	n. pk	x 71	•						.	s	pecia	al In	struc	tions/	
DELTA PLOTAT # 8A 070	,	,-		٨	/atri	x					ners vativ			700		Ŋ	Mode			}					Ç	onditi	ions	of R	eceipt	ŀ
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	¥	Aqueous	Sed.	Soil		Sac	H2SO4	3 2	NaOH	ZnAc/ NaOH		705	88	22	3260													
MW-6	11/8/07	1015		X			4	1	1	13				X	X	X	X			1 -					X F	TIC	1 1	FLIT	ne	<u>~</u>
MW-7	11/8/07	1140		X		T	l	1	1	3	3			X	X	X	X								•			• • •		
Trip Blank	10/30/07	3.						Ì																						 .
	er '														ĺĺ															
					. [T										\top	\top											
						\top		1			1	1							+	T	П		\dashv	\dagger						
								Ī											T				\top	\top						
							-												T											
								T			1		П							T				1	,					
																			T	<u> </u>			1							
								T			7	1						\top					1	\top						
	-							\dagger	1		1	1						\top	\top	1	T			\forall		*** **				
Possible Hazard Identification	· · · · · · · · · · · · · · · · · · ·		\ s	ampl	e Dis	posal		+					<u>l</u>	لننا		L		L_	Щ	ــــــــــــــــــــــــــــــــــــــ										
	Poison B	Unknow	n [] Re	turn	To Cli	ient		Disp					Arch	ive F	or _		м	onths	lon	ree m ger th	ay be an 1	asse monti	issea h)	i it san	ipies a	re re	tained		
Turn Around Time Required: 24 Hours	ys 🗌 21 Day	rs 🗆 Ot	her					1	C Re	quire	emen	ts (Sp	ecify)					,							/	1				
1. Relinguished By Man 4 1		Date	18/8	07	Tim	20	0	1	Rec	eived	d By	\overline{C}											,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	D.	ate/	05	1	Time	ያ አ	 /
2. Relingeished By		Date	=/ (<u> </u>	Tim		-	12	Rec	eivec	d By												.,	10	ale	10)	<u> </u>	Time	OY	ں ک
3. Relinquished By		Date			Tim			1.	. Rec	oi co	1 D.								-, :					<u></u>			\bot			%
		Daie			'"	re		ا	. riec	eivec	υσу	÷.,			:					•					ate		1	Time		3
Comments		<u> </u>			-		1 1		. ::			1					_	, ,	<u>ー</u>				. 1							·
NSTRIBUTION: WHITE Poturned to Client with Percent	DAMAGN. GL	with the C-				44.0											<u> </u>	- '												

SUSTAINABLE STRATEGIES FOR GLOBAL LEADERS

15 October 2008

RECEIVED MILITES

OCT 2 3 2008

Mr. Tom Beaulieu New Hampshire Department of Environmental Services Oil Remediation & Compliance Bureau 29 Hazen Drive P.O. Box 95

Oil Remediction & Compliance Summy

RE: **UST Closure Report**

Cookson Electronics – Polyclad Laminates Inc.

45 Tannery Street

Concord, New Hampshire 03302-0095

Franklin, New Hampshire 03235 Delta Project No. 8A0704268P

Dear Mr. Beaulieu:

Delta Consultants (Delta) has prepared the following report describing the underground storage tank (UST) closure activities completed at the Cookson Electronics - Polyclad Laminates (Cookson) facility, located at 45 Tannery Street in Franklin, Merrimack County, New Hampshire, as depicted in Figure 1. The UST closure activities were conducted in August 2008 and the following report provides a brief description of the Cookson property followed by a summary of the UST closure activities and results.

PROPERTY DESCRIPTION AND HISTORY

The property owned by Cookson consists of three non-contiguous parcels at the northeastern end of Tannery Street in the northwestern portion of Franklin, New Hampshire (Figure 1), as further described below.

- Parcel 1 (Tax Map 001-097, Lot 105): A long, narrow, one-acre property along the northwestern side of Tannery Street. The central portion of this property consists of a paved parking lot and the northeastern and southwestern portions of this property are wooded.
- Parcel 2 (Tax Map 001-116, Lot 171): An irregularly shaped 1.97-acre property at the northeastern end of Tannery Street. The former manufacturing building was located on this property along with paved roadways, parking areas and exterior materials storage areas. Both USTs removed during these closure activities were located on this property.
- Parcel 3 (Tax Map 001-096, Lot 402): An irregularly shaped 2.12-acre property approximately 400 feet north of Parcel 2. This property consists of an open area formerly used as a sand and gravel pit as well as undeveloped wooded land.

These three parcels are connected via a 75-foot wide easement granted by the City of Franklin. In addition, there are a number of other easements and/or lease arrangements with the City of Franklin, including various parking areas, roadways, the former drum storage building and an exterior materials storage area, all of which are associated with Parcel 2. Figure 2 depicts Parcels 1 and 2 as well as the locations of the two USTs removed during these activities.

Inogen'

185 Jordan Road Troy, NY 12180 USA Phone: 518.203.0050 / 800.477.7411 Fax: 518.203.0051

www.deltaenv.com

The property is situated in an area comprised of undeveloped wooded land along with various residential, commercial and light industrial properties. More specifically, property to the east consists of undeveloped wooded land along a steep downslope to the Pemigewasset River. Property to the west is also wooded along a steep upslope to various residential and commercial properties along both sides of North Main Street (New Hampshire Route 3A). Property to the north consists of undeveloped wooded land along an old railroad bed and property to the south consists of wooded land followed by a recreational boat launch and some light industrial properties along Tannery Street.

PREVIOUS SITE INVESTIGATION ACTIVITIES

Previous site investigation activities included a Phase I Environmental Assessment (EA) and Limited Compliance Review performed by Delta in August 2005. Subsequent investigative activities onsite included an onsite meeting in January 2007 followed by a Phase II Environmental Site Assessment (ESA) completed between May and November 2007. The Phase II ESA scope of work included the site-wide characterization of soil and groundwater quality, GPR surveying, test pitting, soil borings, soil sampling, groundwater monitoring well installation and collection of groundwater samples as well as the completion of additional due diligence activities at the site.

During the course of these previous investigative activities, Delta identified as many as ten USTs present or formerly present on the site. Based on available information, eight of these ten USTs were either removed from the site or were closed-in-place by others. The two remaining USTs are briefly described below.

- 13,500-gallon UST: This tank was reportedly a 13,500-gallon, three-compartment fiberglass tank located near the southwestern comer of the building (Figure 2) used for storing epoxy resins in two of the compartments and dimethylformamide in the third compartment. This tank was reportedly installed in 1998 and replaced three other smaller tanks that were located under the building and were reportedly closed-in-place in accordance with NHDES requirements. According to available information, this UST was taken out of service in early 2007 and was reportedly cleaned by Clean Harbors on behalf of Isola, a former tenant at the site.
- Previously Unknown UST: This tank was discovered during Delta's Phase II ESA activities completed
 in 2007. Based on the results of GPR surveys, this UST appeared to be a 1,000 to 2,000-gallon tank
 located beneath the southeastern portion of the building (Figure 2). The installation date, purpose,
 integrity and contents of this tank were not known prior to the UST removal activities completed by
 Delta. As further described below, this UST was discovered to be an 8,000-gallon, single-walled steel
 tank; however, the exact purpose of this UST has not been confirmed.

UST REMOVAL ACTIVITES

The UST removal activities were completed in August 2008. CRS Environmental of Wallingford, CT, was retained to complete the UST excavation and disposal activities under the supervision of Delta's onsite representative. Delta's onsite representative also performed all field screening, sample collection and documentation for the UST removal activities. All UST removal activities were completed in accordance with the procedures outlined in the New Hampshire Code of Administrative Rules, titled "Guidelines For Underground Storage Tank Closure, Sampling & Reporting, revised September 2006", (NHDES Regulations). The appropriate NHDES UST closure notifications (Appendix C, NHDES Regulations) were submitted to the NHDES on August 1, 2008 for the 13,500-gallon UST and on August 25, 2008 for the 8,000-gallon UST. Copies of the closure forms are included in Appendix A. The following paragraphs present a detailed description of the procedures and results for the removal activities for each UST. Selected photographs of the tank removal activities are included in Appendix B.

13,500-gallon UST

The removal activities associated with this UST commenced on August 6, 2008. The UST was located approximately five feet below ground surface (bgs), measured eight feet in diameter by 37 feet in length with three separate compartments and was constructed of fiberglass coated steel. This tank appeared to be in

good condition with no holes, leaks, overflow or other evidence of a potential release. A minor amount of residual product was noted in the bottom of each compartment, which was cleaned up and contained using absorbent pads.

Soil from the excavation was field screened for volatile organic compounds (VOCs) using a photo-ionization detector (PID) at multiple points throughout the excavation process. No odors or staining was observed and no PID readings were noted on any of the samples from the excavation. Following excavation and removal of the UST, a total of five soil samples were collected for confirmation purposes, one from each sidewall and one from the bottom of the excavation as depicted in Figure 3. These five samples were delivered to Alpha Analytical (Alpha), under proper chain of custody documentation, for VOC, semi-volatile organic compound (SVOC) and priority pollutant (PP) metals analysis per NHDES requirements. Following sample collection, the excavation was backfilled and compacted to grade using the onsite equipment using the excavated material along with clean fill as necessary. Groundwater was not encountered during these excavation activities.

8,000-gallon UST

The removal activities associated with this UST also commenced on August 6, 2008 with the removal of the concrete floor to access the tank. Upon exposure and inspection, this UST was discovered to be approximately 8,000-gallons in capacity and was nearly half full of an unknown product. Based on these observations, closure activities associated with this tank ceased and a sample of the product in the tank was collected for characterization purposes. This sample was submitted to Alpha and analyzed for RCRA metals, pH, ignitability, Total Solids, PCB's, pesticides, VOCs and SVOCs. Following sample collection, the UST was capped and the excavation temporarily backfilled until these results were available.

The analytical results for the unknown product in the 8,000 gallon UST showed the presence of one or more VOCs and SVOCs as summarized below along with the results for some of the other parameters analyzed. No PCBs, metals or pesticides were detected in this sample. Based on analytical results and petroleum identification, the unknown liquid was classified as waste petroleum distillates. The laboratory analytical report for this sample is included in Appendix C.

	UNKNOWN PRODUCT
PARAMETER	SAMPLE
pH	6.8
Flash Point (°F)	112
Total Solids (%)	<0.01
BTU/Lb	19,772
VOCs	ug/kg
Ethylbenzene	950,000
p/m-Xylene	5,600,000
o-Xylene	3,900,000
n-Butylbenzene	2,300,000
sec-Butylbenzene	1,300,000
Isopropylbenzene	1,500,000
p-Isopropyltoulene	1,700,000
n-Propylbenzene	4,300,000
1,3,5-Trimethylbenzene	12,000,000
1,2,4-Trimethylbenzene	29,000,000
SVOCs	ug/kg
Naphthalene	1,700,000

Notes:

ug/kg Micrograms per kilogram or parts per million

VOCs Volatile Organic Compounds

SVOCs Semi-volatile Organic Compounds

On August 28, 2008, Delta and CRS returned to the site to excavate and dispose of the 8,000-gallon UST and the product within this tank. Triumvirate Environmental (Triumvirate) of Somerville, Massachusetts, was retained to remove and properly dispose of the UST contents. A total of 3,840 gallons of waste petroleum distillates were removed via a vacuum truck and transported to Safety-Kleen in Linden, New Jersey for disposal. The uniform hazardous waste manifest for these disposal activities is included as Appendix D.

Following waste product removal, CRS vented the UST of any remaining vapors and monitored the interior atmosphere until the UST was safe to enter for cleaning. CRS then cleaned the interior of the UST using a pressure washer before removing the UST for visual inspection. This UST measured 8.5 feet in diameter by 26 feet in length and tank appeared to be in very good condition with no holes, leaks, overflow or other evidence of a potential release.

Soil from the excavation was field screened for VOCs using a PID at multiple points throughout the excavation process similar to the methods used for the 13,500-gallon UST. No odors or staining was observed and no PID readings were noted on any of the samples from the excavation. Following excavation and removal of the UST, a total of five soil samples were collected for confirmation purposes, one from each sidewall and one from the bottom of the excavation as depicted in Figure 4. These five samples were delivered to Alpha, under proper chain of custody documentation, for VOC and Total Petroleum Hydrocarbons – Gasoline Range Organics (TPH-GRO) analysis per NHDES requirements. Following sample collection, the excavation was backfilled and compacted to grade using the onsite equipment using the excavated material along with clean fill as necessary. Groundwater was not encountered during these excavation activities.

It is important to note that the present owner was not aware of the presence of this UST until Phase II activities were performed and therefore this UST was not registered with the NHDES. As such, appropriate documentation was completed during these activities to properly register this UST with the NHDES. The completed registration documents are included as Appendix E.

ANALYTICAL RESULTS - CONFIRMATION SAMPLES

As previously stated, a total of five soil samples were collected from each UST excavation for confirmation purposes. The following paragraphs present the analytical results for the samples collected from each tank excavation.

13.500-Gallon UST

Four sidewall samples (13.5-SW-1 through 13.5-SW-4) and one bottom sample (13.5-B) were collected from this excavation as shown on Figure 3. Per NHDES Regulations, these samples were analyzed for VOCs, SVOCs and PP Metals. The analytical results for these samples showed that no VOCs or SVOCs were detected in any of the samples. One or more metals were detected in each of the samples; however, none of the reported concentrations exceeded the NHDES Remediation Standards for metals in soil. Analytical results for these samples are summarized on Table 1 and the laboratory analytical report is included as Appendix F.

8,000-Gallon UST

Four sidewall samples (8K-SW-1 through 8K-SW-4) and one bottom sample (8K-B) were collected from this excavation as shown on Figure 4. Per NHDES Regulations, these samples were analyzed for VOCs and TPH-GRO. The analytical results for these samples showed that VOCs and TPH-GRO were not detected in any of the samples. The laboratory analytical report for these samples is included as Appendix G.

CONCLUSIONS

Based on the observations made during the course of the UST removal activities and the analytical results for the soil confirmation samples from each excavation, Delta concludes that the presence of these two USTs do not appear to have had an adverse impact on soil and/or groundwater quality at the site. It is Delta's opinion that all NHDES UST closure requirements have been met for these two USTs and, as such, Delta respectfully requests formal closure on this matter from the NHDES.

If you have any questions or comments regarding this letter report, please contact the undersigned at 518-203-0059.

Sincerely,

DELTA CONSULTANTS

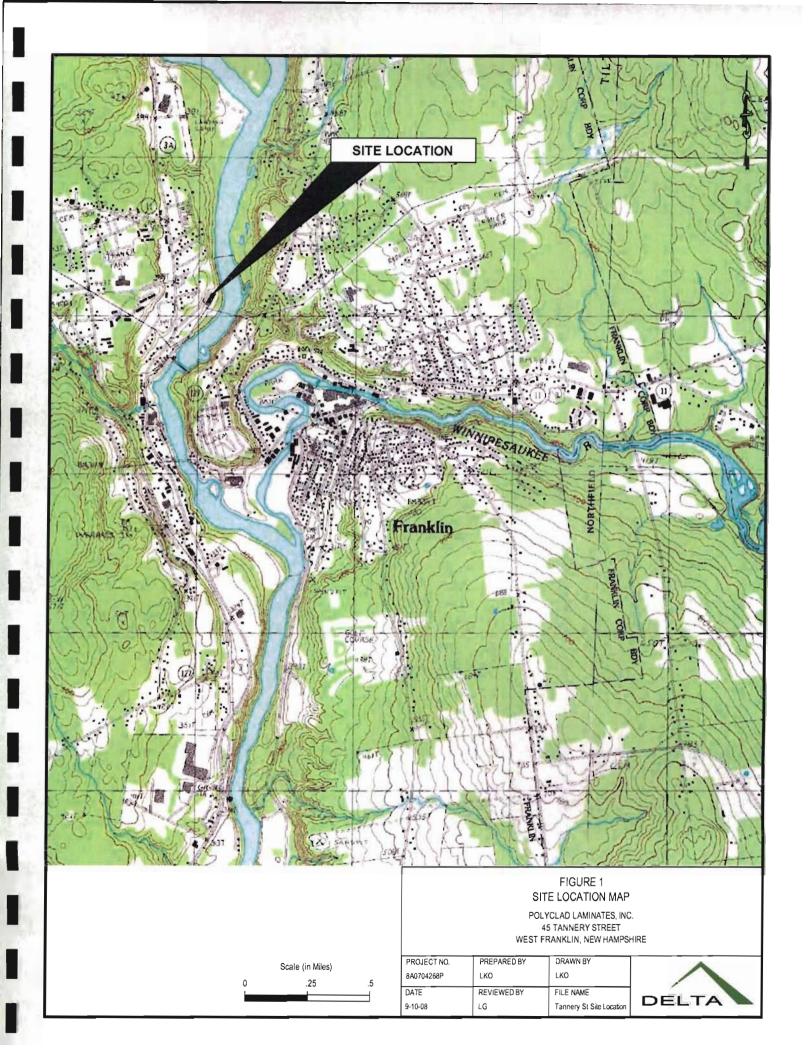
Scott K. Bryant, P.G. Sr. Project Manager

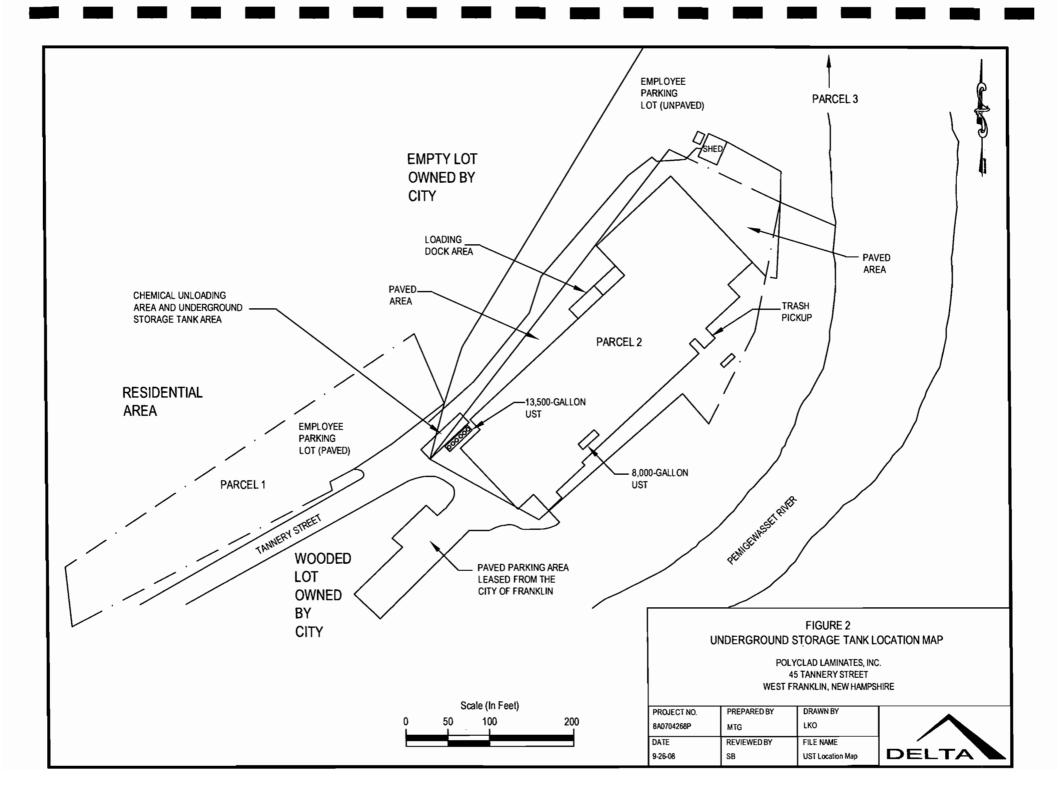
cc: James Kalanta, Cookson Electronics

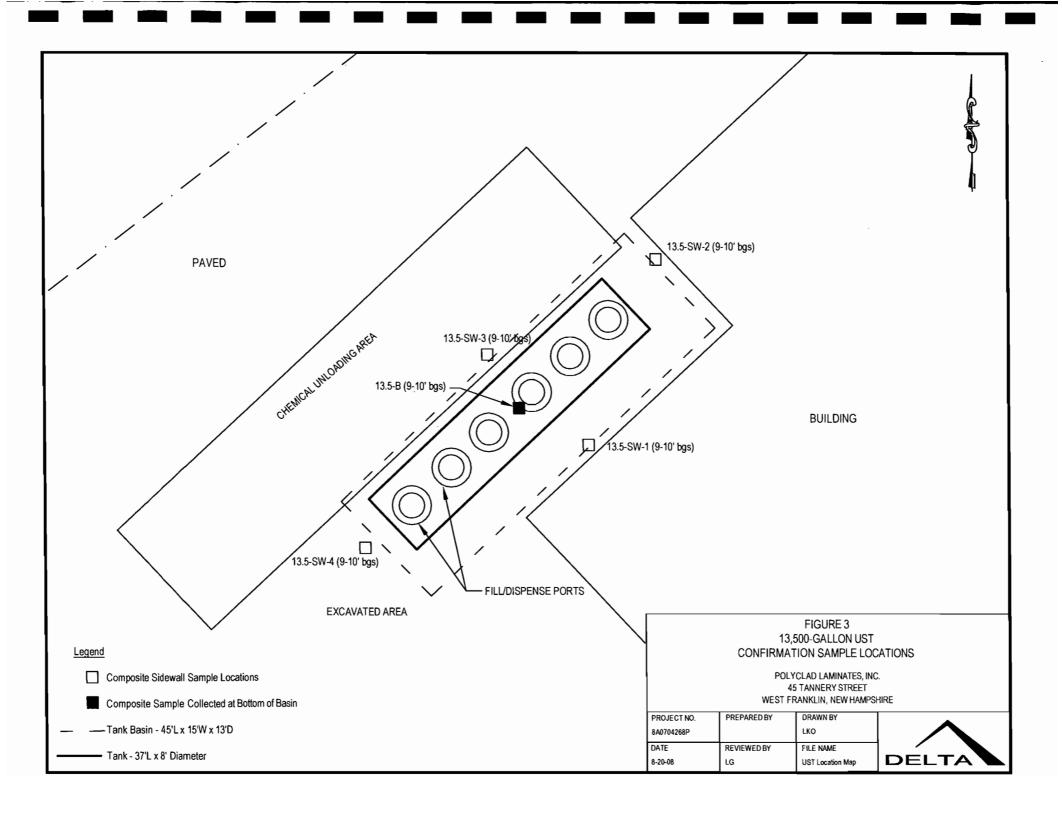
Appendix A - UST Closure Notifications

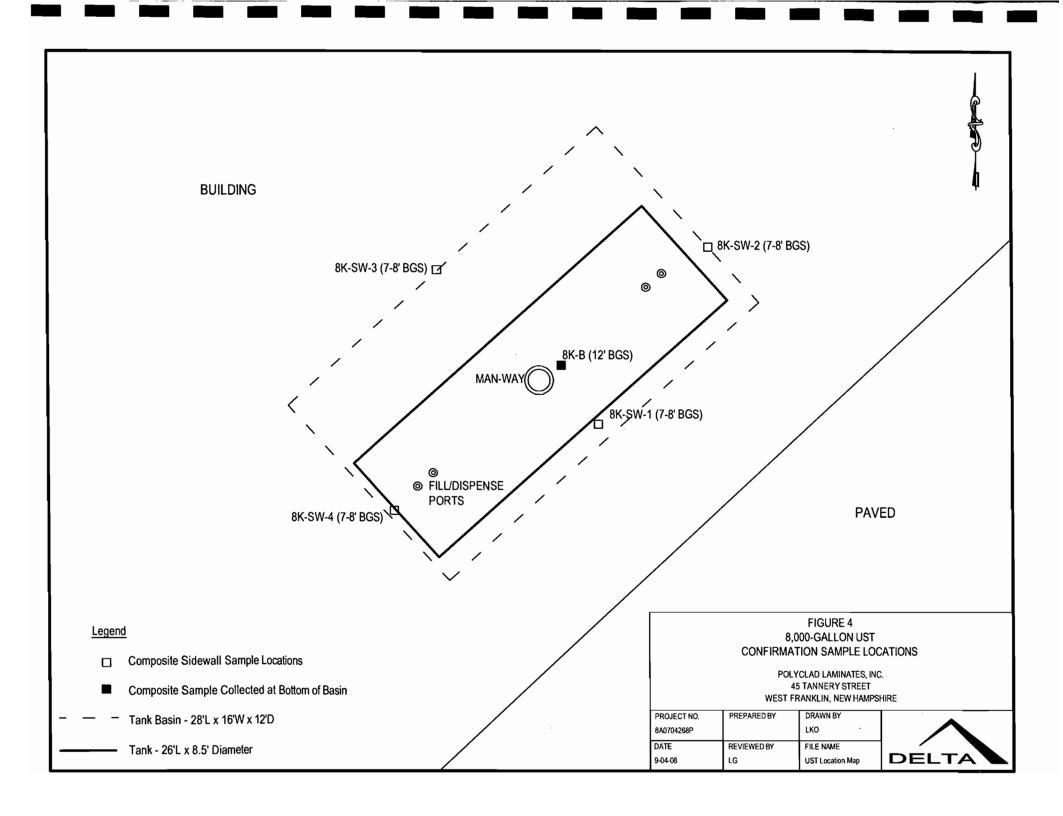
Appendix B - Photo-documentation

Appendix C - Laboratory Analytical Report - Unknown Product


Appendix D - Uniform Hazardous Waste Manifest


Appendix E - Registration for Underground Storage Tank Systems


Appendix F - Laboratory Analytical Report - 13,500-Gallon UST Confirmation Samples


Appendix G - Laboratory Analytical Report - 8,000-Gallon UST Confirmation Samples

FIGURES

TABLES

Table 1
Summary of Analytical Results - Soil Confirmation Samples - 13,500 Gallon UST
Cookson Electronics - Tannery Street - Franklin, NH
August 7, 2008

	NHDES Soil	SAMPLE IDENTIFICATION AND DEPTH (ft)									
PARAMETER	Remediation Standards (mg/kg)*	13.5-SW-1 (9'-10' bgs)	13.5-SW-2 (9'-10' bgs)	13.5-SW-3 (9'-10' bgs)	13.5-SW-4 (9'-10' bgs)	13.5-B (13'-14' bgs)					
Total Metals (mg/kg)	AUTHOR STOLER	BOOK MARKET		E PER PROPERTY AND THE	LE BATTE						
Arsenic	11	3.0	6.4	2.0	3.0	2.3					
Beryllium	1	0.27	0.79	0.31	0.37	0.50					
Chromium	1,000/130	5.4	19	8.0	6.0	8.5					
Copper	NS	7.2	8.5	5.1	9.1	7.1					
Lead	400	ND	4.0	ND	2.8	13					
Nickel	400	4.2	9.7	6.6	4.4	7.0					
Zinc	1,000	12	31	21	19	66					
Total VOC's		ND	ND	ND	ND	ND					
Total SVOC's		ND	ND	ND	ND	ND					

Notes:

* - NH Code of Administrative Rules - Chapter Env-Or 600, Table 600-2;

Concentrations that exceed identified standards are bolded;

VOCs - Volatile Organic Compounds;

SVOCs - Semivolatile Organic Compounds;

mg/kg - Milligrams per kilogram or parts per million;

ND - Compound or analyte not detected;

bgs - Below ground surface.

APPENDIX A UST CLOSURE NOTIFICATIONS

Appendix C

comp New Hampshire Department of Environmental Services (603) 271-3644 FAX (603) 271-2181

UST CLOSURE NOT	IFICATION
Telephone Message Name Street	Initial Date: Telephone:
City	Fex #
2. Facility Registration Number: 199962667	
Name Polyclad Laminates, TNC. Street 45 Tannery Street	City West Franklin, NH Telephone (603) 370-8790
3. Owner Name	
Name Paul Durkin City Ravidence, R	Telephone: (401) 228-8813
4. Tank Removal Information *****L-Leaker Suspect	cted; R=Removal; F=Filled to Place
L R F L R F Tank # 7AOC Size Size Size Product	L R F L R F Tank #
Will tank be replaced Will tank be replaced will tank be replaced underground? Yes No underground? Yes No	Will tank be replaced underground? Yes No underground? Yes No
5. Consultant/Contractor: Dolta Consultants	IFCI Certification: 109W84-V2
	epartment
7. Inspector Luke Gladue 8. Field Screening Methods (tank and piping):	Date 8/6/08
PID	
9. Sample Information	
tank # 13.5 K 5 0 tank # tank #	tank #
Soil Water Soil Water Soil Water	Soil Water Soil Water
Taken By. LVKy Coladure	·
10. Tank Condition:	
tank # 13,500 941 tank # tank #	tank #
11. Indicate tank and sample locations by sketching on back of this re	eport.
12. Include photographs of the excavation and tank(s) condition if av	aliable.
13. Estimated cubic yards of stock pfled contaminated soil:	cubic yards
14 Verification	

I have inspected the site of the removed tank(s), including the entire excavation area. I am knowledgable in field observation techniques to determine regulated substance contamination in soils and groundwater. There is no evidence of soil or groundwater contamination at the site. I have also inspected the excavated tank(s) and found no evidence of leakage.

Date:

Appendix C

Town Wast Fighlin Date of Closure Flow 168

Mailed 8/05/u8

	SURE NOT	1 (603) 271-3644 FA	N
	JOUREZ I (O)	THE CTAIN	
Telephone Message Name		Initial	
Street	. ·	Telephone:	<u> </u>
City	· .	Fax #	
2. Facility Registration Number: 1997	102162		
Name Cocker - Public Can	nin AS	ciry Wast Fra	phlin
Street 45 Tankong St	_	Telephone 603	5708790
3. Owner Name	0. 1		
Name / Gul / Northin	City Couldnes (E)	Telephone: 263 -	795-0559 ·
4. Tank Removal Information	*****L~Leaker Suspe		-Filled in Place
L R F	L R F	L R F	L R F
Size 8,000 gd Size	Size	Size	Size
Product Mihan Sports Product	Product	Product	Product
Will tank be replaced Will tank be replaced underground? Yes No underground? Yes N	Will tank be replaced underground? Yes No	Will tank be replaced underground? Yes N	will tank be replaced underground? Yes No
5. Consultant/Contractor: Delta / C	RS	IFCI Certification :	1096684-12
6. Local Fire Dept. Notified Franklin	Fire Pepart	Let 8/25/6	·
			-
7. Inspector Luke Coloduce 8. Field Screening Methods (tank and piping):	· · ·	Date 8/28	<u>/0 ප</u>
P. C.D. P. C.D.			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
9. Sample Information	tank #	tank #	tank #
Soil Water Soil Water	Soil Water	Soil Water	Soil Water
Taken By: Like Colonda			. *
10. Tank Condition:	tank #	tank #	tank #
600 d	taria, y		18418 77
11. Indicate tank and sample locations by sketc			
12. Include photographs of the excavation and	tank(s) condition if av	aliable.	
13. Estimated cubic yards of stock piled conf	aminated soil:		cubic yards
14 . Verification		<u> </u>	·
I have inspected the size of the removed tank(s), incluse techniques to determine regulated substance contamination at the site. I have also inspected the exc	nation in soils and ground	water. There is no evidence	n field observation te of soil or groundwater
	avated tank(s) and found	to exidence of reagage.	

APPENDIX B PHOTO-DOCUMENTATION

Site Photographs

Index

Photo 1	View of 13,500-gallon UST before removal.
Photo 2	View of 13,500-gallon UST uncovered.
Photo 3	View of 13,500-gallon UST removed.
Photo 4	View of bottom of 13,500-gallon UST.
Photo 5	View of 13,500-gallon UST with fiberglass coating removed
Photo 6	View of 13,500-gallon UST basin.
Photo 7	View of 13,500-gallon UST basin backfilled.
Ph <u>oto 8</u>	View of 8,000-gallon UST uncovered.
Photo 9	View of northeastern end of 8,000-gallon UST.
Photo 10	View of southwestern end of 8,000-gallon UST.
<u> Photo 11</u>	View of southeastern side of 8,000-gallon UST.
Photo 12	View of northwestern side of 8,000-gallon UST.
Photo 13	View of bottom of 8,000-gallon UST.
Photo 14	View of 8,000-gallon UST basin.
Photo 15	View of 8,000-gallon UST basin backfilled.

Photo 1 – View of 13,500-gallon UST before removal.

Photo 2 - View of 13,500-gallon UST uncovered.

Photo 3 – View of 13,500-gallon UST removed.

Photo 4 – View of bottom of 13,500-gallon UST.

Photo 5- View of 13,500-gallon UST with fiberglass coating removed.

Photo 6 - View of 13,500-gallon UST basin.

Photo 7 - View of 13,500 gallon-UST basin backfilled.

Photo 8 - View of 8,000 gallon-UST uncovered.

Photo 9 – View of northeastern end of 8,000-gallon UST.

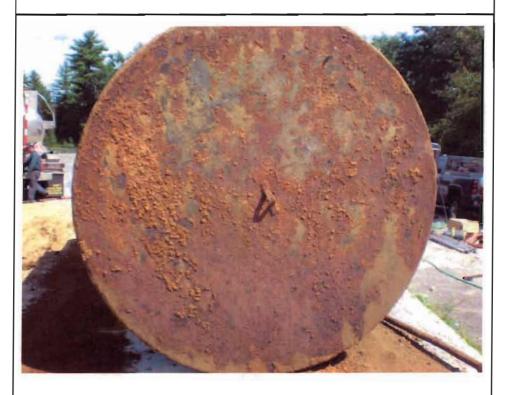


Photo 10 – View of southwestern end of 8,000-gallon UST.

Photo 11 – View of southeastern side of 8,000-gallon UST.

Photo 12 – View of northwestern side of 8,000-gallon UST.

Photo 13 – View of bottom of 8,000-gallon UST.

Photo 14 - View of 8,000-gallon UST basin.

100

Photo 15 – View of 8,000-gallon UST basin backfilled.

APPENDIX C LABORATORY ANALYTICAL REPORT – UNKNOWN PRODUCT

ALPHA ANALYTICAL

Eight Walkup Drive

Westborough, Massachusetts 01581-1019

(508) 898-9220

www.alphalab.com

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

CERTIFICATE OF ANALYSIS

Client: Delta Environmental

Laboratory Job Number: L0811602

Address: 185 Jordan Road

Date Received: 07-AUG-2008

Troy, NY 12180

Date Reported: 13-AUG-2008

Attn: Mr. Patrick Storz

Delivery Method: Alpha

Project Number: 8A0704268P

Site: FRANKLIN (COOPER)

ALPHA SAMPLE NUMBER

CLIENT IDENTIFICATION

SAMPLE LOCATION

L0811602-01

UKP

FRANKLIN, NH

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized by:

Technical Representative

08130817:40

Page 1 of 17

ALPHA ANALYTICAL NARRATIVE REPORT

Laboratory Job Number: L0811602

The samples were received in accordance with the chain of custody and no significant deviations were encountered during preparation or analysis unless otherwise noted below.

Report Submission

Due to the sample matrix, the requested TCLP analyses, as well as the Herbicide analysis, could not be performed.

Due to the sample matrix, the analysis of Total solids was subcontracted, and the results will be issued under separate cover.

TPH-PHI

The analysis of TPH-PHI is being performed at our Mansfield facility, and the results will be issued under separate cover.

Sample Receipt

Headspace was noted in the sample containers submitted for Volatile Organics. The analysis was performed at the client's request.

The sample was received above the appropriate pH for the metals analysis. The laboratory added additional HNO3; however, the pH would not adjust into the proper range.

Volatile Organics

L0811602-01: The pH of the sample was greater than two; however, the sample was analyzed within the method required holding time.

L0811602-01 has elevated detection limits due to the 1250x dilution required by the elevated concentrations of target compounds in the sample.

Semivolatile Organics

L0811602-01 has elevated detection limits due to the 10x dilution required by the elevated concentrations of non-target compounds in the sample.

The surrogate recoveries for L0811602-01 are below the acceptance criteria for 2-Fluorophenol, Phenol-d6, Nitrobenzene-d5, 2-Fluorobiphenyl, 2,4,6-Tribromophenol, and 4-Terphenyl-d14 (all ND) due to the dilution required to quantitate the sample. Reextraction is not required; therefore, the results of the original analysis are reported.

The WG332165-2/-3 LCS/LCSD recoveries, associated with L0811602-01, were above the acceptance criteria for 2,4-Dinitrotoluene (114%/117%), 2-Nitrophenol (140%/141%), and 2,4-Dinitrophenol (317%/328%); however, the associated samples were non-detect for these target compounds. The results of the original analysis are reported.

ALPHA ANALYTICAL CERTIFICATE OF ANALYSIS

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LAO00065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0811602-01

UKP

Sample Matrix:

OIL

Date Collected: 06-AUG-2008 17:00

Date Received: 07-AUG-2008 Date Reported: 13-AUG-2008

Condition of Sample:

Satisfactory

Field Prep:

None

Number & Type of Containers: 7-Amber, 3-Plastic, 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	D2	TE	ID
						PREP	ANAL	
pH	6.8	SU	-	1	9045C		0807 20:05	5 LR
Flash Point	112	deg F	70.0	1	1010		0807 15:00) ST
rotal Metals								調問
Arsenic, Total	ND	mg/kg	2.0	1	6010B	0809 14:30	0812 16:08	B MG
Barium, Total	ND	mg/kg	2.0	1	6010B	0809 14:30	0812 16:08	MG
Cadmium, Total	ND	mg/kg	2.0	1	6010B	0809 14:30	0812 16:08	MG
Chromium, Total	ND	mg/kg	2.0	1	6010B	0809 14:30	0812 16:08	MG
Lead, Total	ND .	mg/kg	9.8	1	6010B	0809 14:30	0812 16:08	MG
Mercury, Total	ND .	mg/kg	0.08	1	7471A	0808 21:30	0809 11:32	HG.
Selenium, Total	ND	mg/kg	3.9	1	6010B	0809 14:30	0812 16:08	MG
Silver, Total	ND	mg/kg	2.0	1	6010B	0809 14:30	0812 16:08	MG
ecisia in lottuby cc.				21		0011017:00	0812 20 15	SH
Aroclor 1016	ND	mg/kg	5.0					
Aroclor 1221	ND	mg/kg	5.0					
Aroclor 1232	ND	mg/kg	5.0					
Aroclor 1242	ND	mg/kg	5.0					
Aroclor 1248	ND	mg/kg	5.0		•			
Aroclor 1254	ND	mg/kg	5.0					
Aroclor 1260	ND	mg/kg	5.0					
Aroclor 1262	ND.	mg/kg	5.0		•	,		
Aroclor 1268	ND	mg/kg	5.0					
Surrogate(s)	Recovery		QC Cri					
2,4,5,6-Tetrachloro-m-xylene	110	8	30-150					
Decach1orobiphenyl	86	8	30-150					
volatile (Organics by ICC/MS=82					8260B# 5		0898 11:47	PD
Methylene chloride	ND	ug/kg	620000	0				
1,1-Dichloroethane	ND .	ug/kg	940000					
Chloroform	ND	ug/kg	940000					
Carbon tetrachloride	ND	ug/kg	620000					
1,2-Dichloropropane	ND	ug/kg	220000	0				
Dibromochloromethane	ND	ug/kg	620000					
1,1,2-Trichloroethane	ND ·	ug/kg	940000					
Tetrachloroethene	ND	ug/kg	620000					

Comments: Complete list of References and Glossary of Terms found in Addendum I

08130817:40 Page 3 of 17

ALPHA ANALYTICAL CERTIFICATE OF ANALYSIS

Laboratory Sample Number: L0811602-01

UKP

PARAMETER	RESULT	UNITS	RDL REF METH		ID
				PREP ANAL	
Olderde Ozoanis Edvingo AMS = 02	68 cont.d				
Chlorobenzene	ND	ug/kg	620000		
richlorofluoromethane	ND	ug/kg	3100000		
,2-Dichloroethane	ND	ug/kg	620000		
1,1,1-Trichloroethane	ND	ug/kg	620000		
Bromodichloromethane	ND	ug/kg	620000		
rans-1,3-Dichloropropene	ND	ug/kg	620000		
cis-1,3-Dichloropropene	ND	ug/kg	620000		
L,1-Dichloropropene	ND	ug/kg	3100000		
Bromoform	ND	ug/kg	2500000		
l,1,2,2-Tetrachloroethane	ND	ug/kg	620000		
Benzene	ND	ug/kg ug/kg	620000		
Coluene	ND	ug/kg	940000		
Ethylbenzene	950000	ug/kg ug/kg			
Chloromethane	ND		620000	•	
Bromomethane	ND	ug/kg	3100000		
Jinyl chloride		ug/kg	1200000		
Chloroethane	ND .	ug/kg	1200000		
l,1-Dichloroethene	ND .	ug/kg	1200000		
•	ND	ug/kg	620000		
trans-1,2-Dichloroethene	ND	ug/kg	940000	· ·	
Frichloroethene	ND	ug/kg	620000		
1,2-Dichlorobenzene	ND	ug/kg	3100000		
1,3-Dichlorobenzene	ND	ug/kg	3100000		
l,4-Dichlorobenzene	ND	ug/kg	3100000		
Methyl tert butyl ether	ND	ug/kg	1200000	•	
o/m-Xylene	5600000	ug/kg	1200000	•	
o-Xylene	3900000	ug/kg	1200000	·	
cis-1,2-Dichloroethene	ND	ug/kg	620000		
Dibromomethane	ND	ug/kg	6200000		
l,2,3-Trichloropropane	ND .	ug/kg	6200000		
Styrene	ND	ug/kg	1200000		
Dichlorodifluoromethane	ND	ug/kg	6200000		
Acetone	ND .	ug/kg	6200000		
Carbon disulfide	ND	ug/kg	6200000		
2-Butanone	ND	ug/kg	6200000		
4-Methy1-2-pentanone	ND	ug/kg	6200000		
2-Hexanone	ND.	ug/kg	6200000		
Bromochloromethane	ND	ug/kg	3100000		
Tetrahydrofuran	ND	ug/kg	12000000		
2,2-Dichloropropane	ND	ug/kg	3100000		
1,2-Dibromoethane	ND	ug/kg	2500000		
1,3-Dichloropropane	ND	ug/kg	3100000		
1,1,1,2-Tetrachloroethane	ND	ug/kg	620000		
Bromobenzene	ND	ug/kg	3100000		
n-Butylbenzene	2300000	ug/kg	620000		
sec-Butylbenzene	1300000	ug/kg	620000		
tert-Butylbenzene	ND	ug/kg	3100000		
o-Chlorotoluene	ND	ug/kg	3100000		
p-Chlorotoluene	ND ·	ug/kg	3100000		

Comments: Complete list of References and Glossary of Terms found in Addendum I

ALPHA ANALYTICAL CERTIFICATE OF ANALYSIS

Laboratory Sample Number: L0811602-01

UKP

PARAMETER	RESULT	UNITS	RDL REF METHOD	DATE ID
				PREP ANAL
TOTAL CONTROL OF THE PROPERTY	Trace of the section where	APTHROSPINATION AND ADDRESS AN		1919 a 491-las
volatile Organics by GC/MS 8			B2608	0808 11-47 PD
Hexachlorobutadiene	. ND	ug/kg	31,00000	
Isopropylbenzene	1500000	ug/kg	620000	
p-Isopropyltoluene	1700000	ug/kg	620000	
Naphthalene	ND .	ug/kg	3100000	
n-Propylbenzene	4300000	ug/kg	620000	•
1,2,3-Trichlorobenzene	ND .	.ug/kg	3100000	•
1,2,4-Trichlorobenzene	ND	ug/kg	3100000	
1,3,5-Trimethylbenzene	12000000	ug/kg	3100000	
1,2,4-Trimethylbenzene	29000000	ug/kg	3100000	
Ethyl ether	ND ·	ug/kg	3100000	•
Isopropyl Ether	ND	ug/kg	2500000	
Tert-Butyl Alcohol	ND	ug/kg	62000000	
Ethyl-Tert-Butyl-Ether	ND	ug/kg	2500000	•
Tertiary-Amyl Methyl Ether	ND	ug/kg	2500000	•
Surrogate(s)	Recovery		QC Criteria	
1,2-Dichloroethane-d4	107	8	70-130	
Toluene-d8	100	S ₆	70-130	
4-Bromofluorobenzene	104	8	70-130	•
Dibromofluoromethane	99.0	8	70-130	
	8270C			
Semivolata te Organics by FPA. Acenaphthene	ND	ug/kg	50000	HINNEY THE HAND OF TAKE TO THE WITH
Benzidine	ND	ug/kg ug/kg	500000	
1,2,4-Trichlorobenzene	ND	ug/kg ug/kg	500000	
Hexachlorobenzene	ND	ug/kg	500000	
Bis(2-chloroethyl)ether	ND	ug/kg	500000	•
2-Chloronaphthalene	ND	ug/kg	600000	
1,2-Dichlorobenzene	ND	ug/kg ug/kg	500000	•
1,3-Dichlorobenzene	ND .	ug/kg ug/kg	500000	
1,4-Dichlorobenzene	ND	ug/kg ug/kg	500000	•
3,3'-Dichlorobenzidine		ug/kg ug/kg	1000000	
•	ND		•	
2,4-Dinitrotoluene	ND	ug/kg	500000	•
2,6-Dinitrotoluene Azobenzene	ND ND	ug/kg	500000 500000	
Fluoranthene		ug/kg	500000	
	ND	ug/kg	500000	
4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether	ND	ug/kg	500000	
Bis (2-chloroisopropyl) ether	ND	ug/kg	500000	
	ND	ug/kg	500000	
Bis (2-chloroethoxy) methane	ND	ug/kg		
Hexachlorobutadiene	ND	ug/kg	1000000	
Hexachlorocyclopentadiene	ND ND	ug/kg	1000000	
Hexachloroethane	ND ND	ug/kg	500000 500000	
Isophorone	ND	ug/kg	500000	
Naphthalene	1700000	ug/kg		
Nitrobenzene	ND .	ug/kg	500000	
NitrosoDiPhenylamine(NDPA)/DF		ug/kg	1500000	
n-Nitrosodi-n-propylamine	ND	ug/kg	500000	•
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	1000000	

Comments: Complete list of References and Glossary of Terms found in Addendum I

08130817:40 Page 5 of 17

ALPHA ANALYTICAL CERTIFICATE OF ANALYSIS

Laboratory Sample Number: L0811602-01

UKP

PARAMETER	RESULT	UNITS	RDL RE	EF METHOD	DATE PREP ANAL	ID
Seminorative organics by PPA I	1270d cont	d.		1, 10270c	041 18:30 08:3:16	
Butyl benzyl phthalate	ND	ug/kg	500000	The state of the s		Chaleman
Di-n-butylphthalate	ND	ug/kg	500000			
Di-n-octylphthalate	ND	ug/kg .	500000			
Diethyl phthalate	ND	ug/kg	500000			
Dimethyl phthalate	ND	ug/kg	500000			
Benzo(a)anthracene	ND	ug/kg	500000	•		
Benzo(a)pyrene	ND .	ug/kg	500000	,		
Benzo(b)fluoranthene	ND	ug/kg	500000			
Benzo(k)fluoranthene	ND	ug/kg	500000			
Chrysene	ND	ug/kg	500000			
Acenaphthylene	ND	ug/kg	500000			
Anthracene	ND	ug/kg	500000			
Benzo(ghi)perylene	ND	ug/kg	500000		,	
Fluorene	ND	ug/kg	500000			
Phenanthrene	ND	ug/kg	500000		•	
Dibenzo(a,h)anthracene	ND	ug/kg	500000			
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	500000			
Pyrene	ND	ug/kg	500000			
Aniline	ND	ug/kg	1000000			
4-Chloroaniline	ND	ug/kg	500000			
1-Methylnaphthalene	ND	ug/kg	500000			
2-Nitroaniline	ND	ug/kg	500000			
3-Nitroaniline	ND	ug/kg	500000			
4-Nitroaniline	ND	ug/kg	700000		•	
Dibenzofuran	ND	ug/kg	500000			
2-Methylnaphthalene	ND.	ug/kg	500000			
n-Nitrosodimethylamine	ND	ug/kg	5000000			
2,4,6-Trichlorophenol	ND	ug/kg	500000			
P-Chloro-M-Cresol	ND	ug/kg	500000		•	
2-Chlorophenol	ND	ug/kg	600000			
2,4-Dichlorophenol	ND	ug/kg	1000000		•	
2,4-Dimethylphenol	ND	ug/kg	500000			
2-Nitrophenol	ND	ug/kg	2000000			
4-Nitrophenol	ND	ug/kg	1000000			
2,4-Dinitrophenol	ND .	ug/kg	2000000			
4,6-Dinitro-o-cresol	ND	ug/kg	2000000			
Pentachlorophenol	ND	ug/kg	2000000			
Phenol	ND	ug/kg	700000			
2-Methylphenol	ND	ug/kg	600000			
3-Methylphenol/4-Methylphenol	ND	ug/kg	600000			
2,4,5-Trichlorophenol	ND	ug/kg	500000			
Benzoic Acid	ND	ug/kg	5000000			
Benzyl Alcohol	ND	ug/kg	1000000			
Carbazole	ND	ug/kg	500000			
Pyridine	ND	ug/kg	5000000			
Surrogate(s)	Recovery		QC Criter	ia .		
2-Fluorophenol	ND	8	25-120			
Phenol-d6	ND	8	10-120			

Comments: Complete list of References and Glossary of Terms found in Addendum I

ALPHA ANALYTICAL CERTIFICATE OF ANALYSIS

Laboratory Sample Number: L0811602-01

UKP

PARAMETER	RESULT	UNITS	RDL	REF METHOD	PREP	E ANAL	ID
Semi volati i Le Torgani ca syljeta	8270C Font	ila ili		# 8270E #	041048 30		J AK
Nitrobenzene-d5	ND	8	23-120				
2-Fluorobiphenyl	ND	8	30-120				
2,4,6-Tribromophenol	ND .	*	. 19-120				
4-Terphenyl-d14	ND	. 8	18-120				
Organoch Lozene Pestil des				E-1 SoatE2 (M)	0811 19 00 C	813 D94	2 78
Delta-BHC	ND	ug/kg	10.0				
Lindane	ND	ug/kg	10.0				
Alpha-BHC	ND	ug/kg	10.0				
Beta-BHC	ND	ug/kg	10.0				
Heptachlor	ND	ug/kg	10.0				
Aldrin	ND	ug/kg	10.0				
Heptachlor epoxide	ND	ug/kg	10.0				•
Endrin	ND	ug/kg	10.0				
Endrin aldehyde	ND	ug/kg	10.0	•			
Endrin ketone	ND .	ug/kg	10.0				
Dieldrin	ND	ug/kg	10.0				
4,4'-DDE	ND .	ug/kg	10.0				
4,4'-DDD	ND	ug/kg	10.0				
4,4'-DDT	ND	ug/kg	10.0				
Endosulfan I	ND	ug/kg	10.0				
Endosulfan II	ND	ug/kg	10.0				
Endosulfan sulfate	ND	ug/kg	10.0				
Methoxychlor	ND	ug/kg	40.0				
Toxaphene	ND	ug/kg	100.				
Chlordane	ND	ug/kg	100.		•		
cis-Chlordane	ND	ug/kg	10.0				
trans-Chlordane	ND	ug/kg	10.0				
Surrogate(s)	Recovery		QC Crit	eria			
2,4,5,6-Tetrachloro-m-xylene	80.0	ક	30-150				
Decachlorobiphenyl	83.0	용	30-150				

Parameter	Value 1	Value 2	Units	RPD	RPD Limits
A CONTRACTOR OF THE PROPERTY O	or sample(s	LOL KLOSLI	602-01 WG	382015-2	
рн	6.8	6.4	SU	6	COLD INCIDENTAL AREA OF PREPRESENTATION OF THE PROPERTY OF THE
ung tash pe	nt for san	ple(s):01	10811602-0		
Flash Point	112	115	deg F	3	
Service Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Co	ils for sar	pletaj Ol.(E0811602-0	1, WG332	第5-1993年
Arsenic, Total	ND .	ND	mg/kg	NC	35
Barium, Total	ND	ND	mg/kg	NC	35
Cadmium, Total	ND	ND	mg/kg	NC	35
Chromium, Total	ND	ND	mg/kg	NC	35
Lead, Total	ND	ND	mg/kg	NC	35
Selenium, Total	ND	ND	mg/kg	NC	35
Silver, Total	ND	ND	mg/kg	NC	35
en Grotal Met	ils for san	pie(s) 01 (±0811602≓0	l, WGB31	994251)
Mercury, Total	ND	ND	mg/kg	NC	35
File Bill DOBNSUST ON	by cc for	sample (se	un (+1008) = 46	6401) we	992154-4)/
Aroclor 1016	ND	ND	mg/kg	NC	The transfer of the second of
Aroclor 1221	ND	ND	mg/kg	NC	
Aroclor 1232	ND	ND	mg/kg	NC	
Aroclor 1242	ND.	ND .	mg/kg	NC	•
Aroclor 1248	ND	ND	mg/kg	NC	
Aroclor 1254	ND	ND	mg/kg	NC	
Aroclor 1260	ND	ND .	mg/kg	NC	
Aroclor 1262	ИD	ND	mg/kg	, NC	
Aroclor 1268	ND	ND .	mg/kg	NC	
Surrogate(s)	Reco	very			QC Criteria
2,4,5,6-Tetrachloro-m-xylene	90	80	ક		30-150
Decachlorobiphenyl	90	81	8		30-150

Parameter	% Recovery	QC Criteria
pH tcs for sample(a) 01 (NGS320	
рн	100	
Fliash Point ICS for sam	olezskiol Awc	3223721
Flash Point	102	AND AND AND AND AND AND AND AND AND AND
Total Metals LCS for sa	mple(s) 01 (W	G332055-4)
Arsenic, Total	92	75-125
Barium, Total	90	75-125
Cadmium, Total	94	75-125
Chromium, Total	92	75-125
Lead, Total	92	75-125
Selenium, Total	92	75-125
Silver, Total	86	75-125
Total-metals ics for san	oplé(s) 01 (wo	5331 994 - 20 3 4 4 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Mercury, Total	108	80-120
POBLE IN BY ISE TOSE FOR	sample(s) 01	(WG332154#2)
Aroclor 1016	74	
Aroclor 1260	80 ·	
Surrogate(s)		
2,4,5,6-Tetrachloro-m-xylene	85	30-150
Decachlorobiphenyl	95	30-150
Total Metals Serve For sample(s)	01 (10811602	E01; WG332055-2)
Arsenic, Total	99	75-125
Barium, Total	93	75-125
Cadmium, Total	97	75-125
Chromium, Total	93 -	75-125
Lead, Total	95	75-125
Selenium, Total	95	75-125
Silver, Total	89	75-125
Total Wetals SPIKE for sample(s)	10 11 (E08 E 602	#61; W6391993 25 FFR PURE
Mercury, Total	110	70-130
PCB's in On by CC SPIKE for sample	THE PROPERTY OF STREET AND ADDRESS OF THE PARTY OF THE PA	7.66±01/EnG352154=35=0.00
Aroclor 1016	54 · ·	
Aroclor 1260	60	
Surrogate(s)		
2,4,5,6-Tetrachloro-m-xylene	61	30-150
Decachlorobiphenyl	63	30-150

					ta de la companya de la companya de la companya de la companya de la companya de la companya de la companya de
Volatile Organicstby CC/MS 8	260 for samp	leys)501. (Wo	39221641	WG332216=21::::	
Chlorobenzene	96	103	7	30	60-133
Benzene	95	103	8	30	66-142
Toluene	95	101	. 6	30	59-139
1,1-Dichloroethene	89	96	8	30	59-172
Frichloroethene	91	100	9	30	62-137
Surrogate(s)		·			
1,2-Dichloroethane-d4	102	103	1		70-130
Toluene-d8	101	100	1		70-130
4-Bromofluorobenzene	102	101	. 1	•	70-130
Dibromofluoromethane	. 101	102	. 1		70-130
Semivelatile Organics by EPAS	8270C for sa	mple(s) UL	(WGB32165=	2, WG332165-3]	
Acenaphthene	86	. 83	4	50	31-137
1,2,4-Trichlorobenzene	106	99	7	50	38-107
2-Chloronaphthalene	100	91	9	50 .	40-140
1,2-Dichlorobenzene	97	. 102	5	50	40-140
1,4-Dichlorobenzene	92	102	10	50 ·	28-104
2,4-Dinitrotoluene	114	117	3	50	28-89
2,6-Dinitrotoluene	· 97	91	6	50	40-140
Fluoranthene	99	97	2	50	40-140
4-Chlorophenyl phenyl ether	96	97	1	50	40-140
n-Nitrosodi-n-propylamine	74	66	11	50	41-126
Butyl benzyl phthalate	77	. 77	. 0	50	40-140
Anthracene	94	96	2	50	40-140
Pyrene	88	91	3	50	35-142
P-Chloro-M-Cresol	92	97	5	50	26-103
2-Chloropheno1	96	99	3	50	25-102
2-Nitrophenol	140	141	1	50	30~130
4-Nitrophenol	98	111	12	50	11-114
2,4-Dinitrophenol	317	328	3	50	30-130
Pentachlorophenol	68	78	14	50	17-109
Phenol	86	89	3	50	26-90
Inchor	00	. 03	3	. 30	20-90
Surrogate(s)					-
2-Fluorophenol	96	97	1		25-120
Phenol-d6	87	92	6		10-120
Nitrobenzene-d5	88	88	0		23-120
2-Fluorobiphenyl	92	95	3		30-120
2,4,6-Tribromophenol	117	119	2		19-120
4-Terphenyl-d14	86	81	6	• .	18-120
		(s): 01 - (WG33	2171-2), WS	39217.16.30	
Delta-BHC	72	73	1	•	30-150
Lindane	82	83	1		30-150
Blaka DUA	82	81	1		30-150
Alpha-BHC					
Beta-BHC	77	78	1		30-150

Laboratory Job Number: L0811602

Parameter	LCS %	LCSD %	RPD	RPD Limit	QC Limits
Organochlorine Pesticides	for sample	(s) (0) (wg32	2171-2- we	382171 31	
Aldrin	80	81	1	Company of the Compan	30-150
Heptachlor epoxide	80	82	2		30-150
Endrin	82	84	2	•	30-150
Endrin aldehyde	64	76	17		30-150
Endrin ketone	81	84	4		30-150
Dieldrin	80	81	1		30-150
4,4'-DDE	78	78	0	•	30-150
4,4'-DDD	83	83	0		30-150
4,4'-DDT	93	101	8		30-150
Endosulfan I	78	75	4		30-150
Endosulfan II	78	79	1		30-150
Endosulfan sulfate	76	78	3		30-150
Methoxychlor	96	108	12		30-150
cis-Chlordane	80	81	1		30-150
trans-Chlordane	80	80	0		30-150
Surrogate(s)					
2,4,5,6-Tetrachloro-m-xylene	74	75	1		30-150
Decachlorobiphenyl	71 .	84	17		30-150

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE II PREP ANAL
				een ee	
in Blank Analy.	sis lon sa	ampie(s) U	(WG332U	90-5)	
	N.D.	/1	2.0		
Arsenic, Total	ND	mg/kg	2.0	1 6010B .	0809 14:30 0812 15:52 M
Barium, Total	ND	mg/kg	2.0	1 6010B	0809 14:30 0812 15:52 M
Cadmium, Total	ND	mg/kg	2.0	1 6010B	0809 14:30 0812 15:52 M
Chromium, Total	ND	mg/kg	2.0	1 6010B	0809 14:30 0812 15:52 M
Lead, Total	ND	mg/kg	10	1 6010B	0809 14:30 0812 15:52 M
Selenium, Total	ND	mg/kg	4.0	1 6010B	0809 14:30 0812 15:52 M
Silver, Total	ND	mg/kg	2.0	1 6010B	0809 14:30 0812 15:52 M
the state of the s	sis for s	ample(s)=0.	E (WG331S	94=32門。[計]	
rotal Metals	5) 1 (1-1)		i di		
Mercury, Total	ND .	mg/kg	0.08	1 7471A	0808 21:30 0809 11:29 H
	sis for s	ample[[s] 0.	WG3321	54-11	
POBLETIN GIT by GC				21 2	0817 17:00 08:32 22539 S
Aroclor 1016	ND	mg/kg	5.0	AND AND AND AND AND AND AND AND AND AND	ACCOUNTS AND ACCOU
Aroclor 1221	ND ·	mg/kg	5.0		
Aroclor 1232	ND	mg/kg	5.0		•
Aroclor 1242	ND	mg/kg	5.0		
Aroclor 1248	ND	mg/kg	5.0	•	
Aroclor 1254	ND	mg/kg	5.0		
Aroclor 1260	ND	mg/kg	5.0		
Aroclor 1262	ND .	mg/kg	5.0		
Aroclor 1268	ND	mg/kg	5.0		•
Surrogate(s)	Pegatraru		QC Cri	torin	
2,4,5,6-Tetrachloro-m-xylene	Recovery	¥			
Decachlorobiphenyl	100	8	30-150 30-150		•
Blank Apaly	a a a a a a a a a a a a a a a a a a a		THE PROPERTY OF THE	aleus)	
Volatite Organics by GC/MS-82		amprensi u	1 (WG332)		0808 09157
Methylene chloride	ND	ug/kg	5.0	The second second	
1,1-Dichloroethane	ND	ug/kg	0.75		
Chloroform	ND	ug/kg	0.75		
Carbon tetrachloride	ND	ug/kg	0.50		
1,2-Dichloropropane	ND	ug/kg	1.8		
Dibromochloromethane	ND	ug/kg	0.50		,
1,1,2-Trichloroethane	ND	ug/kg	0.75		
Tetrachloroethene	ND .	ug/kg	0.50		
Chlorobenzene	ND	ug/kg	0.50		
Trichlorofluoromethane	ND	ug/kg	2.5		
1,2-Dichloroethane	ND	ug/kg	0.50		
	ND	ug/ka	0.30		
1,1,1-Trichloroethane Bromodichloromethane	ND ND	ug/kg ug/kg	0.50 0.50		

Laboratory Job Number: L0811602

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
· · · · · · · · · · · · · · · · · · ·					
	ysis, for s		L (WG332	216-3)	0808-09-57-727
Volatile Organics by GC/MS 8				02 008 M.M. A.	· ·
cis-1,3-Dichloropropene	ND	ug/kg	0.50		
1,1-Dichloropropene	ND	ug/kg	2.5		
Bromoform	ND	ug/kg	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/kg	0.50	•	•
Benzene	ND	ug/kg	0.50		
Toluene	ND .	ug/kg	0.75		* *
Ethylbenzene	ND	ug/kg	0.50		
Chloromethane	ND	ug/kg	2.5		
Bromomethane	ND	ug/kg	1.0		
Vinyl chloride	ND	ug/kg	1.0		
Chloroethane	ND	ug/kg	1.0		
1,1-Dichloroethene	ND	ug/kg	0.50		•
trans-1,2-Dichloroethene	ND	ug/kg	0.75		
Trichloroethene	ND	ug/kg	0.50		
1,2-Dichlorobenzene	ND	ug/kg	2.5		•
1,3-Dichlorobenzene	ND	ug/kg	2.5		
1,4-Dichlorobenzene	ND	ug/kg	2.5	• .	
Methyl tert butyl ether	ND	ug/kg	1.0		
p/m-Xylene	ND	ug/kg	1.0		
o-Xylene	ND	ug/kg	1.0		
cis-1,2-Dichloroethene	ND	ug/kg	0.50	•	*.
Dibromomethane	ND	ug/kg	5.0		
1,2,3-Trichloropropane	ND	ug/kg	5.0		
Styrene	ND	ug/kg	1.0		
Dichlorodifluoromethane	ND .	ug/kg	5.0		:
Acetone	ND	ug/kg	5.0		
Carbon disulfide	ND	ug/kg	5.0		
2-Butanone	ND	ug/kg	5.0		•
4-Methyl-2-pentanone	ND	ug/kg	5.0		
2-Hexanone	ND	ug/kg	5.0		
Bromochloromethane	ND ·	ug/kg	2.5		
Tetrahydrofuran	ND	ug/kg	10.		
2,2-Dichloropropane	ND	ug/kg	2.5		
1,2-Dibromoethane	ND	ug/kg	2.0		•
1,3-Dichloropropane	ND	ug/kg	2.5		
1,1,1,2-Tetrachloroethane	ND .	ug/kg	.0.50		•
Bromobenzene	ND	ug/kg	2.5		
n-Butylbenzene	ND	ug/kg	0.50		•
sec-Butylbenzene	ND	ug/kg	0.50		
tert-Butylbenzene	ND	ug/kg	2.5		
o-Chlorotoluene	ND .	ug/kg	2.5		
p-Chlorotoluene	ND	ug/kg	2.5		
1,2-Dibromo-3-chloropropane	ND	ug/kg	2.5		
Hexachlorobutadiene	ND .	ug/kg	2.5		
Isopropylbenzene	ND	ug/kg	0.50		
p-Isopropyltoluene	ND	ug/kg	0.50		

Laboratory Job Number: L0811602

PARAMETER	RESULT	UNITS	RDL I	REF METHOD	DATE ID PREP ANAL
Elank Arial	sis for sa	mple(s) 01	∭(WG33221₁	6-8) (# X 5) -	
Volatide Organics by GC/MS 82	60 contid			1 8260B	10808-09587-PD
Naphthalene	ND	ug/kg	2.5		
n-Propylbenzene	ND	ug/kg	0.50		
1,2,3-Trichlorobenzene	ND	ug/kg	2.5		
1,2,4-Trichlorobenzene	ND	ug/kg	2.5		
1,3,5-Trimethylbenzene	ND	ug/kg	2.5		
1,2,4-Trimethylbenzene	ND	ug/kg	2.5		
Ethyl ether	ND ·	ug/kg	2.5		
Isopropyl Ether	ND	ug/kg	2.0		
Tert-Butyl Alcohol	ND	ug/kg	50.		
Ethyl-Tert-Butyl-Ether	ND .	ug/kg	2.0		
Tertiary-Amyl Methyl Ether	ND .	ug/kg	2.0		•
Surrogate(s)	Recovery		QC Crit	eria	
1,2-Dichloroethane-d4	105	8	70-130		
Toluene-d8	100	8	70-130		
4-Bromofluorobenzene	103	8	70-130		
Dibromofluoromethane	100	*	70-130		:
The Thermody of the Thermody of the Thermody		Market Market Market	400000000000000000000000000000000000000		
Bhankianal Semivolatile Organics by FPA		umple(s) U	1 (WG33216	5-1)(0210 18:30 0813 12:32 88
		ııa/ka	50000	***************************************	and the second s
Acenaphthene	ND	ug/kg ug/kg	50000 500000	ann an a' an air an air an air an an an an air an an an an an air an an an an an an an an an an an an an	TO THE STATE OF TH
Acenaphthene Benzidine	ND ND	ug/kg	500000	and the second s	A A Marie Carlo Ca
Acenaphthene Benzidine 1,2,4-Trichlorobenzene	ND ND ND	ug/kg ug/kg	500000 50000		THE CONTRACTOR OF THE CONTRACT
Acenaphthene Benzidine 1,2,4-Trichlorobenzene Hexachlorobenzene	ND ND ND ND	ug/kg ug/kg ug/kg	500000 50000 50000		The second secon
Acenaphthene Benzidine 1,2,4-Trichlorobenzene Hexachlorobenzene Bis(2-chloroethyl)ether	ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	500000 50000 50000 50000		The second second second second second second second second second second second second second second second se
Acenaphthene Benzidine 1,2,4-Trichlorobenzene Hexachlorobenzene Bis (2-chloroethyl) ether 2-Chloronaphthalene	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg	500000 50000 50000 50000 60000		The second second second second second second second second second second second second second second second se
Acenaphthene Benzidine 1,2,4-Trichlorobenzene Hexachlorobenzene Bis(2-chloroethyl)ether 2-Chloronaphthalene 1,2-Dichlorobenzene	ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	50000 50000 50000 50000 60000 50000		
Acenaphthene Benzidine 1,2,4-Trichlorobenzene Hexachlorobenzene Bis(2-chloroethyl)ether 2-Chloronaphthalene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	500000 50000 50000 50000 60000 50000 50000		
Acenaphthene Benzidine 1,2,4-Trichlorobenzene Hexachlorobenzene Bis(2-chloroethyl)ether 2-Chloronaphthalene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	500000 50000 50000 50000 60000 50000 50000		
Acenaphthene Benzidine 1,2,4-Trichlorobenzene Hexachlorobenzene Bis(2-chloroethyl)ether 2-Chloronaphthalene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine	ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	500000 50000 50000 50000 60000 50000 50000 100000		
Acenaphthene Benzidine 1,2,4-Trichlorobenzene Hexachlorobenzene Bis(2-chloroethyl)ether 2-Chloronaphthalene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene	ND ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	500000 50000 50000 50000 60000 50000 50000 100000 50000		
Acenaphthene Benzidine 1,2,4-Trichlorobenzene Hexachlorobenzene Bis(2-chloroethyl)ether 2-Chloronaphthalene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene 2,6-Dinitrotoluene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	500000 50000 50000 50000 60000 50000 50000 100000 50000		
Acenaphthene Benzidine 1,2,4-Trichlorobenzene Hexachlorobenzene Bis(2-chloroethyl)ether 2-Chloronaphthalene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene 2,6-Dinitrotoluene Azobenzene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	500000 50000 50000 50000 60000 50000 50000 100000 50000 50000		
Acenaphthene Benzidine 1,2,4-Trichlorobenzene Hexachlorobenzene Bis(2-chloroethyl)ether 2-Chloronaphthalene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene 2,6-Dinitrotoluene Azobenzene Fluoranthene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	500000 50000 50000 60000 50000 50000 100000 50000 50000 50000		
Acenaphthene Benzidine 1,2,4-Trichlorobenzene Hexachlorobenzene Bis(2-chloroethyl)ether 2-Chloronaphthalene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene 2,6-Dinitrotoluene Azobenzene Fluoranthene 4-Chlorophenyl phenyl ether	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	500000 50000 50000 60000 50000 50000 100000 50000 50000 50000 50000		
Acenaphthene Benzidine 1,2,4-Trichlorobenzene Hexachlorobenzene Bis(2-chloroethyl)ether 2-Chloronaphthalene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene 2,6-Dinitrotoluene Azobenzene Fluoranthene 4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	500000 50000 50000 60000 50000 50000 100000 50000 50000 50000 50000 50000		
Acenaphthene Benzidine 1,2,4-Trichlorobenzene Hexachlorobenzene Bis(2-chloroethyl)ether 2-Chloronaphthalene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene 2,6-Dinitrotoluene Azobenzene Fluoranthene 4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether Bis(2-chloroisopropyl)ether	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	500000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000		
Acenaphthene Benzidine 1,2,4-Trichlorobenzene Hexachlorobenzene Bis(2-chloroethyl)ether 2-Chloronaphthalene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene 2,6-Dinitrotoluene Azobenzene Fluoranthene 4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether Bis(2-chloroisopropyl)ether Bis(2-chloroethoxy)methane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	500000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000		
Acenaphthene Benzidine 1,2,4-Trichlorobenzene Hexachlorobenzene Bis(2-chloroethyl)ether 2-Chloronaphthalene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene 2,6-Dinitrotoluene Azobenzene Fluoranthene 4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether Bis(2-chloroisopropyl)ether Bis(2-chloroethoxy)methane Hexachlorobutadiene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	500000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000		
Acenaphthene Benzidine 1,2,4-Trichlorobenzene Hexachlorobenzene Bis(2-chloroethyl)ether 2-Chloronaphthalene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene 2,6-Dinitrotoluene Azobenzene Fluoranthene 4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether Bis(2-chloroisopropyl)ether Bis(2-chloroethoxy)methane Hexachlorobutadiene Hexachlorocyclopentadiene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	500000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 100000 100000		
Acenaphthene Benzidine 1,2,4-Trichlorobenzene Hexachlorobenzene Bis(2-chloroethyl)ether 2-Chloronaphthalene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,4-Dinitrotoluene 2,6-Dinitrotoluene Azobenzene Fluoranthene 4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether Bis(2-chloroisopropyl)ether Bis(2-chloroethoxy)methane Hexachlorocyclopentadiene Hexachloroethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	500000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000		
Acenaphthene Benzidine 1,2,4-Trichlorobenzene Hexachlorobenzene Bis(2-chloroethyl)ether 2-Chloronaphthalene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene 2,6-Dinitrotoluene Azobenzene Fluoranthene 4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether Bis(2-chloroisopropyl)ether Bis(2-chloroethoxy)methane Hexachlorocyclopentadiene Hexachloroethane Isophorone	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	500000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 100000 100000		
Acenaphthene Benzidine 1,2,4-Trichlorobenzene Hexachlorobenzene Bis(2-chloroethyl)ether 2-Chloronaphthalene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,4-Dinitrotoluene 2,6-Dinitrotoluene Azobenzene Fluoranthene 4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether Bis(2-chloroisopropyl)ether Bis(2-chloroethoxy)methane Hexachlorocyclopentadiene Hexachloroethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	500000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000		
Acenaphthene Benzidine 1,2,4-Trichlorobenzene Hexachlorobenzene Bis(2-chloroethyl)ether 2-Chloronaphthalene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene 2,6-Dinitrotoluene Azobenzene Fluoranthene 4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether Bis(2-chloroisopropyl)ether Bis(2-chloroethoxy)methane Hexachlorocyclopentadiene Hexachloroethane Isophorone	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg	500000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000		
Acenaphthene Benzidine 1,2,4-Trichlorobenzene Hexachlorobenzene Bis(2-chloroethyl)ether 2-Chloronaphthalene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene 2,6-Dinitrotoluene Azobenzene Fluoranthene 4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether Bis(2-chloroisopropyl)ether Bis(2-chloroethoxy)methane Hexachlorocyclopentadiene Hexachloroethane Isophorone Naphthalene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg	500000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000		

Laboratory Job Number: L0811602

Parameter	RESULT	UNITS	RDL	REF METHOD	DATE PREP ANAL	ID
Blank Analy			L¥ (WG3821	65-14		
emivolatile Organics by EPA				3 8270C	0411-18:30 D813-61:3	AK
sis(2-Ethylhexyl)phthalate	ND	ug/kg	100000			•
Butyl benzyl phthalate	ND	ug/kg	50000			
i-n-butylphthalate	ND	ug/kg	50000			
i-n-octylphthalate	ND	ug/kg	50000			
iethyl phthalate	ND	ug/kg	50000			
imethyl phthalate	ND	ug/kg	50000	:		
enzo(a)anthracene	ND	ug/kg	50000			
enzo(a)pyrene	ND	ug/kg	50000			
enzo(b)fluoranthene	ND	ug/kg	50000			
enzo(k)fluoranthene	ND	ug/kg	50000			
hrysene	ND	ug/kg	50000		•	
cenaphthylene	ND	ug/kg	50000			
nthracene	ND	ug/kg	50000			
enzo(ghi)perylene	ND	ug/kg	50000			
luorene	ND	ug/kg	50000			
henanthrene	ND	ug/kg	50000			
ibenzo(a,h)anthracene	ND	ug/kg	50000			
ndeno(1,2,3-cd)Pyrene	ND ·	ug/kg	50000			
yrene	ND	ug/kg	50000			
niline	ND	ug/kg	100000			
-Chloroaniline	ND	ug/kg	50000	•		
-Methylnaphthalene	ND	ug/kg	50000	6		
-Nitroaniline	ND	ug/kg	50000			
-Nitroaniline	ND	ug/kg	50000	•		
-Nitroaniline	ND	ug/kg	70000			
ibenzofuran	ND	ug/kg	50000			
-Methylnaphthalene	ND	ug/kg	50000			
-Nitrosodimethylamine	ND	ug/kg	500000		•	
,4,6-Trichlorophenol	ND	ug/kg	50000			
-Chloro-M-Cresol	ND	ug/kg	50000			
-Chlorophenol	ND	ug/kg	60000			
,4-Dichlorophenol	ND	ug/kg	100000	•		
,4-Dimethylphenol	ND	ug/kg	50000			
-Nitrophenol	ND	ug/kg	200000			
-Nitrophenol	ND	ug/kg	100000			
,4-Dinitrophenol	ND	ug/kg	200000	,		
,6-Dinitro-o-cresol	ND	ug/kg	200000			
entachlorophenol	ND	ug/kg	200000			
henol	ND	ug/kg	70000			
-Methylphenol	ND .	. ug/kg	60000			
-Methylphenol/4-Methylphenol		ug/kg	60000			,
,4,5-Trichlorophenol	ND	ug/kg	50000			
enzoic Acid	ND	ug/kg	500000			
enzyl Alcohol	ND	ug/kg	100000			
arbazole	ND	ug/kg ug/kg	50000			
yridine	ND	ug/kg ug/kg	50000			

Laboratory Job Number: L0811602

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA	TE	ID
					PREP	ANAL	
Blank Analy	re sell facilities		- Arabasa				
Semivolatile Organics by EPA			1 (WG3321	DICTION OF COLUMN			
Surrogate(s)	Recovery	READER STATES	QC Cri	ri ezybc	714041111118:30	0813;11:3	TAK
2-Fluorophenol	94.0	8	25-120	rerra			
Phenol-d6	91.0	8	10-120				
Nitrobenzene-d5	87.0	48	23-120				
2-Fluorobiphenyl	96.0	8	30-120		•		
2,4,6-Tribromophenol	106	9.	19-120				
4-Terphenyl-d14	82.0	e E	18-120			:	
Blank Anal	sis for sa	mole/si O	March 191	are a la la la la la la la la la la la la l			TO THE LITTLE
Organochlorine Pesticides				mer Land and the second second second	0811 19:00	0012500.0	2 70
Delta-BHC	ND	ug/kg	10.0	The second secon		BATTAN	Salven Bl
Lindane	ND .	ug/kg	10.0				
Alpha-BHC	ND	ug/kg	10.0				
Beta-BHC	ND	ug/kg	10.0				
Heptachlor	ND	ug/kg	10.0				
Aldrin	ND	ug/kg	10.0	•			
Heptachlor epoxide	ND	ug/kg	10.0				
Endrin	ND	ug/kg	10.0				
Endrin aldehyde	ND ·	ug/kg	10.0				
Endrin ketone	ND	ug/kg	10.0				
Dieldrin	ND	ug/kg	10.0				
4,4'-DDE	ND	ug/kg	10.0				
4,4'-DDD	ND	ug/kg	10.0				
4,4'-DDT	ND	ug/kg	10.0				
Endosulfan I	ND	ug/kg	10.0				
Endosulfan II	ND	ug/kg	10.0	`			
Endosulfan sulfate	ND	ug/kg	10.0				
Methoxychlor	NĎ	ug/kg	40.0				
Toxaphene	ND	ug/kg	100.				
Chlordane	ND	.ug/kg	100.				
cis-Chlordane	ND	ug/kg	10.0				
trans-Chlordane	ND	ug/kg	10.0				
Surrogate(s)	Recovery		OC Cri	teria			
2,4,5,6-Tetrachloro-m-xylene	73.0	8	30-150				
Decachlorobiphenyl	70.0	e E	30-150				

ALPHA ANALYTICAL ADDENDUM I

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IIIA, 1997.
- 21. Determination of Polychlorinated Biphenyls in Transformer Fluid and Waste Oils. USEPA 600/4-81-045. September 1982.

GLOSSARY OF TERMS AND SYMBOLS

REF Reference number in which test method may be found.

METHOD Method number by which analysis was performed.

ID Initials of the analyst.

ND Not detected in comparison to the reported detection limit.

NI Not Ignitable.

ug/cart Micrograms per Cartridge.

H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

LIMITATION OF LIABILITIES

Alpha Analytical, Inc. performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical, Inc., shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical, Inc. be held liable for any incidental consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical, Inc.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding times and splitting of samples in the field.

08130817:40 Page 17 of 17

APHA	CHAIN O	F CUSTO	DY PA	GE	OF_	Der	te Re	¢o in	Lab:		8/	Ilb	b		U.PH	A Job#: \D	81160	58
WESTBORO, MA TEL: 508-898-9193	MANSFIELD, MA TEL: 508-822-8300 FAX: 508-822-3288	Project Informa	Tankliv	$\overline{}$	أعوض	ج (PFAX ADE		-	D Add	AJL.		• •			Information es Client info	PO#: 8 #	1070 YZ
Address: IBS TYPE Phone: 518 - Fax: 518 - Email: Stayer These samples have	a Consultante Tordan Rd	Project Manager: ALPHA Quote #: Turn-Around T CI Standard Date Due:	SAPUSH (my mo 1	426 Bry	ent	Reg State	MC Yes	ory R	equi gram ESUI	MPTIV	its/Re	eport Crit RTAI	Methopriable	- CT I	uired?	Filtrat. Doi: Not	d? LE HANDL on ne needed to do vation	ī
ALPHA Lab ID (Lab Use Only)	Sample ID	Col Date	lection Time	Sample Matrix	Sampler's	/ F	र्दे	7	70			ולן,		7/		Sample Spe	recitly below)	unts s
7602.1	UKP	8/6/08	700	-	16	1			2	2 1	<u>ا</u>	2	-					-
PLEASE ANSWER	QUESTIONS ABOVE				iner Type	2	7	P	V I	NG DA	6 00	4 .	R			Please print cle	arly, legibly	and com-
IS YOUR PR MA MCP or FORM NO: 01-01 (rev. 14-00T	CT RCP?	Relinquished By.			Time	- C	1	Rec	my Z	By:	cl		\$/)	Jos Jos	78	in and/turnarou spirit until any e viti samples au Alpha's Terms See reverse si	nd time cloc imbiguities a imitted ans and Condition	ck will not are resolved subject to

APPENDIX D UNIFORM HAZARDOUS WASTE MANIFEST

P	ease	print or type. (Form designed for use on elite (12-pitch) typewriter.)					For	m Approved	I. OMB No	. 2050-00
		WASTE MANIFEST V H D 0-8 0 0 2 7 0 4 8	2. Page 1 of 1	3. Emergency Respons 800 966 9282	e Phone	4. Manifest	Tracking N	202	20 J	JK
	6	Generator's Name and Mailing Address Cookson Electronics One Cookson Place Providence, RI 02909 Interactor's Phone: (603)934-5642		Generator's Site Address Cooksor 49 incus Franklin	Floriter	nan mailing addressics - NH Drivel	ss)			
П	6.	Transporter 1 Company Name				U.S. EPAID	Number	286		Я
Ш		Triumvirate Environmental, Inc. Transporter 2 Company Name				U.S. EPA ID I				
ווי	")				10111001			
	Î	Designated Facility Name and Site Address Safety-Kleen Systems, Inc. 1200 Sylvan Street Linden, NI '07036				U.S. EPAID		18	289	7
ıll	9a			10. Contai	_	11. Total	12. Unit		Waste Code	3S
וןי	ĤN	1	· .	No.	Туре	Quantity	Wt./Vol.	D001		
GENERATOR	k L	Waste Petroleum distillates, n.o.s. 3, UN1268, III (RQ: D001)		00/	тт	C3840	G			
PEN.		2.								
Ш	<u> </u>	3.	•						_	·
Ш	Ŀ	· · · · · · · · · · · · · · · · · · ·								
Ш		4.								
									1	
П	14.	Special Handling Instructions and Additional Information		7				•		,
П	1	- (/ x Tanker) 40288032 2- 3-	4-	•	•					
П	45	CONTRACTOR OF THE OF TH		- 6.11 4 1-1-1-1					-if-dlu	4
	15.	GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this of marked and labeled/placarded, and are in all respects in proper condition for transport according to the contents of this consignment conform to the terms of the attached to the contents of the conformation of the contents of the attached to the contents of the attached to the contents of the conformation of the attached to the contents of the contents of the attached to the contents of the contents of the attached to the contents of the c	rding to applica EPA Acknowle	ble international and natk dgment of Consent.	onal governme	ntal regulations.				
Н	Gen	I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large egitor's/Offigror's Printed/Typed Name	quantity gener	abire	quantity gene	erator) is true.		Mon		Year
<u>↓</u>	1	Jones Kalanta		Junto 1	36.60	20-		b!	\$ D&	१८
F	Trar	International Shipments Import to U.S.	Export from U.	S Port of ent					·	
TRANSPORTER	17. 1 Tran	Transporter Acknowledgment of Receipt of Materials sporter 1 Printed/Typed Name	Signa	huro/	111			Mont	h Day	Year
lg R	""	Seal / Martia	ر ا	82///	A.			· 10	: F126	15 F.
ZANS	Tran	sporter 2 Printed Typed Name	Signa	ture V /V	W.		•	Mont	h Day	Year
Ë	_	Discrepancy		<u> </u>						
\prod	⊢	Discrepancy Indication Space Quantity Type		Residue		Partial Rejec	tion .	. [Full Reje	ction
		accounty and type						_		
-	18b.	Alternate Facility (or Generator)		Manifest Reference I	Number:	U.S. EPA ID Nu	mber			
FACILITY										,
Ü		ity's Phone: Signature of Alternate Facility (or Generator)						Mont	th Day	Year
DESIGNATED									1	
SIG	19. H	lazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment	- i-	nd recycling systems)						
<u> </u>	1.		3.		•.	4.				·
		Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered	by the manifes	t except as noted in Item	18a					······································
	Printe	ed/Typed Name	Signat	ure				Mont	h Day	Year
₩						•				

www.triumvirate.com 800.966.9282 New England 800.427.3320 Mid-Atlantic

	• • •	, .				minary				
lob & Wo	ork Order No. 540	.43								
lob Name	Cecksen -	Figati:								
Date 8 1	868 Arrival	Time 913	·					•		
Site Supe	rvisor Soun M									
Down Tir	ne Y N Reason	;	<u> </u>							
	t Lodging No. of Ni	ghts				3				
	200823		•							
			٠.	Waste Ir	ıformati	on	4			
· .	State Manifest No.		Appro	val Code	·	Fac	ility		Gallons	Tons
005	062020		40288	7937	3	-K	-		3840	
,	- O AC AC		7.5	<u> </u>	-				00,0	
				<u> </u>		· .		-		
	· · · · · · · · · · · · · · · · · · ·					· ·				· ·
	·			<u> </u>						
			•	ĭ,	bor					
Data	Position	Ema	-1	Load/	Onsite	Lunch/	Travel/	Onsite	Office/	Total
Date	Position	Em	ployee		Client	Break	Unload	TSDF	Compliance	Time
-61	D1	-	11.	Travel		Бгеак	_ ~	ISDF	Compliance	1,11116
528-B	Driver 1	Sach	Martn	J./3	25		2.5		. ~5	
	Tractor#:4cc4			<u> </u>		-	_			
· .	Trailer# (xc)					<u> </u>			7	1
: -: -;	Driver 2	1	(·		<u>.</u>	1 3	<u> </u>	, , , , , , , , , , , , , , , , , , ,	1.
	Tractor#:	ļ .		,						ļ [.] —
	Trailer#	 		,				_		
	Driver 3									├-
. "	Tractor#:							,		ļ <u>.</u>
	Trailer#						·			
										. 7.
			· -		es Used			<u>_</u>	O *** **	
_ + _	Equipment		Quantity L	sed		Equipm	ent		Quantity Used	<u> </u>
	system/unit					dge-hepa				
Air bott	les					dge-merso		· ·		
SCBA						dge-combo		<u> </u>		
Tyvek –						dge-organi	.c		<u> </u>	
	Level 2				Oil bo		<u> </u>	 - -		
Tyvek -					3M pa					
Level D					Samp			<u> </u>		<u></u>
Gloves					Speed					
CSE gea	r'				Other					
anker cle Iotes	aned? Y N	Rece	ipt attache	d? ` `	Y . N	Clea	ning facilit	y		
<u> </u>					·					
	<u> </u>			1		·			- 3	
•			_						0// /	
	500		\mathcal{V}	Δ.	111.	1. 1			Il last	
Date:	18 66	Conc	rator:	Am)	4156	X/InNI	Superv	isor:	K /////	

Thiumvirate copy Yellow-Generator copy

APPENDIX E REGISTRATION FOR UNDERGROUND STORAGE TANK SYSTEMS

New Hampshire Department of Environmental Services 29 Hazen Drive P. O. Box 95

1-mar-2005

P. O. Box 95 Concord, New Hampshire 03301 (603) 271-3644 FAX (603) 271-2181

Registration for Undergrou	ınd Storag	e Tank Systems
Type of Registration		State Use Only
Instructions: Please type or print in ink all items except "signature" in Se must be completed for each location containing undergrour more than four (4) USTs are owned at this location, photoc sheets, and staple additional sheets to this form. Also, provand facility layout. (May be an accurate hand sketch).	nd storage tanks. If opy the following	ID Number: Site Number Date Received: Active Tanks: Closed Tanks
I. Facility Owner (Tank System Owner)	II. Location of Tank	« Systems
Cookson Electronics Inc. Owner Name One Cookson Place Mailing Address Providence Rhode Island 02903 City State Zip Code 203-795-0554 Phone Number (include area code) Extension	Cookson Ele Facility Name	retronics - Polyclad Laminahs Ty Street TUSE POST OFFICE BOX) NH 03235 State Zip Code
III. Land Owner	IV. Stored Product (Owner
Cookson Electronics, Inc. Land Owner Name One Cookson Place Mailing Address Providence Rhode Island 22903 City State Zlp Code 203-795-0554 Phone Number (include area code) Extension	Stored Product Owner National Mailing Address	CSON Place Rhodo Island 02903 State Zip Code
V. Type of Owner	VI. Type of Facility	
Federal Gov't. Commercial State Gov't. Private Local Gov't.	Gas Station Local Government Contractor Petroleum Distribut State Government Trucking / Transpor Air Taxi Federal - Military Federal - Non-Milita	rtation Railroad Industrial Commercial Other (Explain)
VII. Certification		
As facility owner I certify under penalty of law that I have pe		al and familian with the information
submitted in this and all attached documents, and that base for obtaining the information, I believe that the submitted info	d on my inquiry of thos	se individuals immediately responsible

VIII. Description of Underground Storage Ta List Compartment Tank System No. as 1a, 1b; 2a, 2b etc 1. Status of Tank System: Currently in Use	Tank System No.	Tank System No.	Tank System	Tank
Currently in Use			No.	No.
•	1			-
	1/4			+
Date Temporary Closed (less than 1" of substance stored)	NA	· .	·	
Date Permanently Closed (Removed or filled in place)	8/28/08			
Amended Information	<u> </u>			
2. Date of Installation:	N/A			1.
3. Compartment Tank: List Each Tank's Compartment (gallons) in Separate Column.	No			
4. Estimated Total Capacity (gallons):	8,000			
(Identify tanks that are siphoned together) 5. Substance Stored:	0,		<u> </u>	+ -
	ner!	,		[.
2HO - #2 Heating Oil GAS - Gasoline 4HO - #4 Heating Oil JET - Jet Fuel	OTH			
6HO - #6 Heating Oil KER - Kerosene DSL - Diesel MOT - Motor Oil				
EMG - Emergency OTH - Other Generator Fuel Substance	Mineral Spints			
EMP – Empty UNK - Unknown Substance	Spirits			
HAZ - Hazardous USE - Used / Waste Oil Substance				
6. Tank Material: Single wall (SW) / Double wall (DW)				
	SW DW	SW DW	SW DW	SW
Cathodically Protected Steel				
Composite Fiberglass	·			\vdash
Steel	~			
Jacketed				
Concrete		·		\vdash
Lined				<u> </u>
Unknown				\vdash
Other, Please Specify	· .			<u> </u>
7. Piping Material: Designate Primary (Prim) or Secondary				
(Sec) piping. Single wall (SW) / Double wall (DW)	sw Dw	sw Dw	SW DW	sw
Cathodically Protected Steel	Prim. Sec.	Prim. Sec.	Prim. Sec.	Prim.
Flexible	Prim. Sec.	Prim. Sec.	Prim. Sec.	Prim.
, / Fiberglass	Prim. Sec.	Prim. Sec.	Prim. Sec.	Prim.
N/P Copper	Prim. Sec.	Prim. Sec.	Prim. Sec.	Prim.
Q = 1	Prim. Sec.	Prim. Sec.	Prim. Sec.	Prim.
D) (0	Prim. Sec.	Prim: Sec.	Prim. Sec.	Prim.
'. · ·	Prim. Sec.	Prim. Sec.	Prim. Sec.	Prim.
HDPE	Frim. Dec.	Frim. 1. Dec.	Frim 3ec	I FIFT

0 0: 1 0 1				T	T
8. Piping Syster	m:		·	. :	·
	Suction (No Check Valve at Tank)			·	
\mathcal{N}/A	Suction (Check Valve at Tank)				
	Pressure	·			
	Gravity				
	Siphon				
	Line Leak Detector (manufacturer) Date installed:				
9. Spill Buckets	Installed (Date): Identify all Remote Fills				
10. Primary Ove	rfill Device (Date):				
Bal			<u> </u>		· -
1 1 1	Automatic Shut Off Valve			·	
	Audible High Level Alarm		· · ·	·	
·	Other				
	onitoring is Being Done:	Yes (No	Yes No	Yes No	Yes No
12. Release Dete		<u>.</u>			
Au	tomatic Tank Gauge (date & manufacturer)		·	<u> </u>	
\mathcal{N}/A	Tank Interstitial Monitor (manufacturer)				
1.	Piping Interstitial Monitor (manufacturer)		· ·		
-	Vapor Monitoring Groundwater Monitoring				
	Line Tightness test				
	Manual Tank Gauging		_		٠.
	Other				
13. Corrosion Pro	otection: Flex Conn or Fiittngs =F)				
NA	Sacrificial Anodes	TPF	<u> T P F </u>	T P F	TPF
1-14	Impressed Current	TPF	TPF	TPF	TPF
	Other	TPF	TPF	TPF	TPF
14. Tightness Tes	sting: Tank (Date / Results)				
1 117	Piping (Date / Results)	#H*			
15. System:					
N/A	Has Tank been repaired?				
1-7-1	Has piping been repaired?				

IX. Owners Financial Responsibility

I have met the financial responsibility requirements in accordance with NH Code of Administrative Rules (Env-Wm 1401.10).

Env-Wm 1401.10 Financial Responsibility.

(a) Owners of underground storage facilities for oil shall maintain financial responsibility for costs associated with the cleanup of releases from systems, the implementation of corrective measures, and compensation for third party damages in the amount equal to or greater than \$1,000,000 per occurrence.

(b) The amount of financial responsibility required shall not limit an owner's or operator's liability for damages caused by a release.

(c) The requirement for financial responsibility may be satisfied if the owner of a facility is eligible for reimbursement of costs associated with cleanup of releases from systems, under RSA 146-D.

X. Person Responsible	e for Maintenance and Re	gulatory Compliance		
	Kalanta			
Name .	tedgefield	(0.30)	•	
Mailing Address	recgerie	Court		·
^	. 0	(L.	1 ~ () 7	1 M
City		<u>Connecti</u>	CUT OGY	† †
	795-0554	State	21p C00e	
Phone Number (include area		xtension	•	
		<u> </u>		· · · ·
XI. Contractor Certific	ation			
OATH: I certify that the	information concerning the	inetallation provided in Se	ction VIII is true to the best of my be	elief and
			ig UST systems regulated by Env-W	
NI	· · · · · · · · · · · · · · · · · · ·		g co. cyclemo regulated; by Live I	
Installer: / //k			Date:	
Type or Pr	int Name	Signature		
ICC:				
Number	Expiration Date	Company		
			· · · · · · · · · · · · · · · · · · ·	
XII. Stage I / Stage II V	apor Recovery (Gasoline S)	ystems Only)		
	apor Recovery (Gasoline S) ghput – All Grades of gasolin			
			Total Throughput (gal)	·
Annual Gasoline Throug	ghput – All Grades of gasolin	ne (only)	Total Throughput (gal)	
Annual Gasoline Throug	ghput – All Grades of gasolin	ne (only)	Total Throughput (gal)	
Annual Gasoline Throug	ghput – All Grades of gasolin	ne (only)	Total Throughput (gal)	
Annual Gasoline Throug	ghput – All Grades of gasolin	ne (only)	Total Throughput (gal)	
Annual Gasoline Throug	ghput – All Grades of gasolin	ne (only)	Total Throughput (gal)	
Annual Gasoline Throug	ghput – All Grades of gasolin	ne (only)	Total Throughput (gal)	
Annual Gasoline Throug	ghput – All Grades of gasolin	ne (only)	Total Throughput (gal)	
Annual Gasoline Throug	ghput – All Grades of gasolin Total Throughput (gal)	ne (only) Year		
Annual Gasoline Throug	ghput – All Grades of gasolin	ne (only) Year	Total Throughput (gal) Equipment	
Annual Gasoline Through	ghput – All Grades of gasolin Total Throughput (gal) Stage II	ne (only) Year	Equipment	
Annual Gasoline Through	ghput – All Grades of gasolin Total Throughput (gal)	ne (only) Year		
Annual Gasoline Through	ghput – All Grades of gasolin Total Throughput (gal) Stage II	ne (only) Year	Equipment	
Annual Gasoline Through	ghput – All Grades of gasolin Total Throughput (gal) Stage II	ne (only) Year	Equipment Total # of Dispensers Total # of Nozzles	
Annual Gasoline Through	ghput – All Grades of gasolin Total Throughput (gal) Stage II	ne (only) Year	Equipment Total # of Dispensers	
Annual Gasoline Through Marian Stage I Stage I Dry: Break on Man	ghput – All Grades of gasolin Total Throughput (gal) Stage II axial	ne (only) Year	Equipment Total # of Dispensers Total # of Nozzles	
Annual Gasoline Through Mar Year Stage I Dry Break on Man Tee on	ghput – All Grades of gasolin Total Throughput (gal) Stage II axial Gifold Vent	Year Type Equipment	Equipment Total # of Dispensers Total # of Nozzles	
Annual Gasoline Through Marian Stage I Stage I Dry: Break on Man	ghput – All Grades of gasolin Total Throughput (gal) Stage II axial Gifold Vent	ne (only) Year	Equipment Total # of Dispensers Total # of Nozzles	
Annual Gasoline Through Mar Year Stage I Dry Break on Man Tee on	ghput – All Grades of gasolin Total Throughput (gal) Stage II axial Gifold Vent	rype Equipment	Equipment Total # of Dispensers Total # of Nozzles	

APPENDIX F

LABORATORY ANALYTICAL REPORT – 13,500-GALLON UST CONFIRMATION SAMPLES

ALPHA ANALYTICAL

Eight Walkup Drive

Westborough, Massachusetts 01581-1019

(508) 898-9220

www.alphalab.com

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

CERTIFICATE OF ANALYSIS

Client: Delta Environmental

Laboratory Job Number: L0811749

Address: 185 Jordan Road

Date Received: 08-AUG-2008

Troy, NY 12180

Date Reported: 15-AUG-2008

Attn: Mr. Scott Bryant

Delivery Method: FedEx

Project Number: 8A0704268P

Site: FRANKLIN (COOKSON)

ALPHA SAMPLE NUMBER	CLIENT IDENTIFICATION	SAMPLE LOCATION
L0811749-01	13.5-SW-1	FRANKLIN, NH
L0811749-02	13.5-SW-2	FRANKLIN, NH
L0811749-03	13.5-SW-3	FRANKLIN, NH
L0811749-04	13.5-SW-4	FRANKLIN, NH
L0811749-05	13.5-B	FRANKLIN, NH

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized by:

Technical Representative

08150810:57 Page 1 of 30

ALPHA ANALYTICAL NARRATIVE REPORT

Laboratory Job Number: L0811749

The samples were received in accordance with the chain of custody and no significant deviations were encountered during preparation or analysis unless otherwise noted below.

Sample Receipt

The Trip Blank was listed on the chain of custody, but not received at the laboratory. At the client's request, a Trip Blank was not analyed.

Metals

L0811749-01, -02, and -04 have elevated detection limits for Thallium due to the 2x dilutions required by matrix interferences encountered during analysis.

The WG332104-2 MS recoveries for Antimony and Copper are below method acceptance criteria. A post digestion spike was performed with an acceptable recovery for Antimony of 115% and Copper of 111%.

MA:M-MA086 NE:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0811749-01

Date Collected: 07-AUG-2008 10:20

13.5-SW-1

Date Received: 08-AUG-2008

Sample Matrix:

SOIL

Date Reported: 15-AUG-2008

Condition of Sample:

Satisfactory

Field Prep:

None

Number & Type of Containers: 1-Amber, 3-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD		TE I
					PREP	ANAL
Solids, Total	96	8	0.10	30 2540G		0811 16:20 N
Total Metals						
Antimony, Total	ND	mg/kg	2.4	1 6010B	0811 11:00	0812 16:30 M
Arsenic, Total	3.0	mg/kg	0.47	1 6010B		0812 16:30 M
Beryllium, Total	0.27	mg/kg	0.24	1 6010B		0912 16:30 M
Cadmium, Total	ND	mg/kg	0.47	1 6010B		0812 16:30 M
Chromium, Total	5.4	mg/kg	0.47			0812 16:30 M
Copper, Total	7.2	mg/kg	0.47	1 6010B		0812 16:30 M
Lead, Total	ND	mg/kg	2.4	1 6010B		0812 16:30 MG
Mercury, Total	· ND	mg/kg	0.08	1 7471A		0812 15:30 HG
Nickel, Total	4.2	mg/kg	1.2	1 6010B		0812 16:30 MG
Selenium, Total	ND	mg/kg	0.95	1 6010B		0812 16:30 MG
Silver, Total	ND ;	mg/kg	0.47	1 6010B		0812 16:30 MG
Thallium, Total	ND	mg/kg	1.9	1 6010B		0813 10:44 MG
Zinc, Total	12	mg/kg	2.4	1 6010B		0812 16:30 MG
volatile Organics by 82608/				e e e e e e e e e e e e e e e e e e e		AND STREET
Methylene chloride	ND	ug/kg	8.3	3. 2.7. L 84095		08 LL, 1162 LAMPL
1,1-Dichloroethane	ND	ug/kg	1.2			
Chloroform	ND	ug/kg	1.2			
Carbon tetrachloride	ND	ug/kg	0.83			
1,2-Dichloropropane	ND	ug/kg	2.9			
Dibromochloromethane	ND .	ug/kg	0.83			
1,1,2-Trichloroethane	ND	ug/kg	1.2			
Tetrachloroethene	ND	ug/kg	0.83			
Chlorobenzene	ND	ug/kg	0.83			
					•	
Trichlorofluoromethane	ND	ug/kg	4.1			
Trichlorofluoromethane 1,2-Dichloroethane	ND ND	ug/kg ug/kg	4.1 0.83			
Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane	ND ND ND	ug/kg ug/kg ug/kg	4.1 0.83 0.83			
Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	4.1 0.83 0.83 0.83		· .	
Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane 3romodichloromethane trans-1,3-Dichloropropene	ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg	4.1 0.83 0.83 0.83 0.83			
Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene	ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	4.1 0.83 0.83 0.83 0.83 0.83			
Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene 1,1-Dichloropropene	ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	4.1 0.83 0.83 0.83 0.83 0.83 4.1		· ·	
Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene 1,1-Dichloropropene Bromoform	ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	4.1 0.83 0.83 0.83 0.83 0.83 4.1 3.3		· ·	
Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene 1,1-Dichloropropene Bromoform 1,1,2,2-Tetrachloroethane	ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	4.1 0.83 0.83 0.83 0.83 0.83 4.1 3.3 0.83			
Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene	ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	4.1 0.83 0.83 0.83 0.83 0.83 4.1 3.3			

Laboratory Sample Number: L0811749-01

13.5-SW-1

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE II	0
					PREP ANAL	
					· ·	
Wolatile Organics by 8260B/5	035-Soil=A	nalysis/co	atid	9 - 1 - 8260B	0811.16717.00	
Ethylbenzene	ND	ug/kg	0.83			
Chloromethane	ND	ug/kg	4.1			
Bromomethane	ND	ug/kg	1.6			
Vinyl chloride	ND	ug/kg	1.6			
Chloroethane	ND	ug/kg	1.6			
1,1-Dichloroethene	ND	ug/kg	0.83		*	
trans-1,2-Dichloroethene	ND	ug/kg	1.2			
Trichloroethene	ND	ug/kg	0.83			٠.
1,2-Dichlorobenzene	ND	ug/kg	4.1			
1,3-Dichlorobenzene	ND	ug/kg	4.1		·	
1,4-Dichlorobenzene	ND	ug/kg	4.1		•	
Methyl tert butyl ether	ND	ug/kg	1.6			
p/m-Xylene	ND	ug/kg	1.6		•	
o-Xylene	ND	ug/kg	1.6			
cis-1,2-Dichloroethene	ND	ug/kg	0.83			
Dibromomethane	ND	ug/kg	8.3			
1,4-Dichlorobutane	ND	ug/kg	8.3			
1,2,3-Trichloropropane	ND	ug/kg	8.3		•	
Styrene	ND .	ug/kg	1.6			
Dichlorodifluoromethane	ND	ug/kg	8.3			
Acetone	ND	ug/kg	8.3			
Carbon disulfide	ND	ug/kg	8.3			
2-Butanone	ND	ug/kg	8.3			
Vinyl acetate	ND	ug/kg	8.3			
4-Methyl-2-pentanone	ND	ug/kg	8.3			
2-Hexanone	ND	ug/kg	8.3			
Ethyl methacrylate	ND	ug/kg	8.3		•	
Acrylonitrile	ND					
Bromochloromethane	ND	ug/kg	3.3		•	
Tetrahydrofuran		ug/kg	4.1			
-	ND	ug/kg	16.			
2,2-Dichloropropane	ND	ug/kg	4.1			
1,2-Dibromoethane	ND	ug/kg	3.3			
1,3-Dichloropropane	ND	ug/kg	4.1			
1,1,1,2-Tetrachloroethane	ND	ug/kg	0.83			
Bromobenzene	ND	ug/kg	4.1			
n-Butylbenzene	ND	ug/kg	0.83			
sec-Butylbenzene	ND	ug/kg	0.83			
tert-Butylbenzene	ND	ug/kg	4.1			
o-Chlorotoluene	ND	ug/kg	4.1			
p-Chlorotoluene	ND	ug/kg	4.1	•		
1,2-Dibromo-3-chloropropane	ND	ug/kg	4.1			
Hexachlorobutadiene	ND	ug/kg	4.1			
Isopropylbenzene	ND	ug/kg	0.83			
p-Isopropyltoluene	ND	ug/kg	0.83			
Naphthalene	ND	ug/kg	4.1			
n-Propylbenzene	ND	ug/kg	0.83			
1,2,3-Trichlorobenzene	ND	ug/kg	4.1	-		
1,2,4-Trichlorobenzene	ND .	ug/kg	4.1			
1,3,5-Trimethylbenzene	ND	ug/kg	4.1			

Laboratory Sample Number: L0811749-01 13.5-SW-1

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA!	ľE	ID
					PREP	ANAL	
Volatile Organics by 82608/5	Nales exches	alvsis co	. sein				
1,2,4-Trimethylbenzene	ND	ug/kg	4.1	ar and the payon of the second second second second second second second second second second second second se	A STREET	POTENTOR	HT PU
trans-1,4-Dichloro-2-butene	ND	ug/kg	4.1				
Ethyl ether	ND	ug/kg	4.1				
nenyi eenei		ug/kg	3				
Surrogate(s)	Recovery		QC Cri	iteria			
1,2-Dichloroethane-d4	113	8	70-130)	•		
Toluene-d8	100	· 8 ·	70-130)			
4-Bromofluorobenzene	120	*	70-130)			
Dibromofluoromethane	93.0	8	70-130	· . · ·			
	85306	N ORTH AREAS					
Semilyotatile Organics by EPA Acenaphthene	ND	ug/kg	350	FEPHEL 1982/OCH CHICAGO	0809:09:12	A STATE OF THE STATE OF	ALUSI
Benzidine	ND	ug/kg ug/kg	3500				
1,2,4-Trichlorobenzene	ND	ug/kg	350				
Hexachlorobenzene	ND	ug/kg	350				
Bis(2-chloroethyl)ether	ND	ug/kg	350				
2-Chloronaphthalene	ND	ug/kg	420	•			
1,2-Dichlorobenzene	ND	ug/kg	350				
1,3-Dichlorobenzene	ND .	ug/kg	350				
l.4-Dichlorobenzene	ND ND		350				
3,3'-Dichlorobenzene	ND	ug/kg	690	•			
•	-	ug/kg	350				
2,4-Dinitrotoluene	ND	ug/kg					
2,6-Dinitrotoluene	ND	ug/kg	350				
Azobenzene	ND	ug/kg	350				
Fluoranthene	ND	ug/kg	350				
4-Chlorophenyl phenyl ether	ND	ug/kg	350				
4-Bromophenyl phenyl ether	ND	ug/kg	350				
Bis (2-chloroisopropyl) ether	ND	ug/kg	350				
Bis (2-chloroethoxy) methane	ND	ug/kg	350	•			
Mexachlorobutadiene	ND	ug/kg	690				
Hexachlorocyclopentadiene	ND	ug/kg	690				
Hexachloroethane	ND	ug/kg	350				
Sophorone	ND .	ug/kg	350				
Naphthalene	ND	ug/kg	350				
Vitrobenzene	ND	ug/kg	350				
NitrosoDiPhenylAmine(NDPA)/DP		ug/kg	1000		•		
n-Nitrosodi-n-propylamine	ND	ug/kg	350				
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	690				
Butyl benzyl phthalate	ND	ug/kg	350				
Di-n-butylphthalate	ND	ug/kg	350				
Di-n-octylphthalate	ND	ug/kg	350				
Diethyl phthalate	ND	ug/kg	350		*		
Dimethyl phthalate	ND .	ug/kg	350. 350.				
Benzo(a)anthracene	ND	ug/kg	350				
Senzo(a)pyrene	ND .	ug/kg	350				
Benzo(b)fluoranthene	ND	ug/kg	350				
Benzo(k)fluoranthene	ND	ug/kg	350				
Chrysene	ND	ug/kg	350				
Acenaphthylene	ND	ug/kg	350				

Comments: Complete list of References and Glossary of Terms found in Addendum I

08150810:57 Page 5 of 30

Laboratory Sample Number: L0811749-01 13.5-SW-1

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DAT PREP	E ANAL	ID
			and produced by the action of the section of				THE STATE OF
Semivolatite Drganics by EPA.8 Anthracene	270G cont	mail::::::::::::::::::::::::::::::::::::		## 1 8270CH (1-1)	0809 09:15	06524153	l PS
Benzo(ghi)perylene	ND.	ug/kg	350				
Fluorene	ND	ug/kg	350				
Phenanthrene	ND	ug/kg	350	•			
	ND	ug/kg	350				
Dibenzo(a,h) anthracene	ND	ug/kg	350				
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	350				
Pyrene	ND	ug/kg	350				
Aniline	ND	ug/kg	690				
4-Chloroaniline	ND	ug/kg	350				
l-Methylnaphthalene	ИD	ug/kg	350				
2-Nitroaniline	ND .	ug/kg	350				
3-Nitroaniline	ND	ug/kg	350				
4-Nitroaniline	ND	ug/kg	490	•			
Dibenzofuran	ND	ug/kg	350				
2-Methylnaphthalene	ND	ug/kg	350				
n-Nitrosodimethylamine	ND	ug/kg	3500				
2,4,6-Trichlorophenol	ND	ug/kg	350		•		
P-Chloro-M-Cresol	ND	ug/kg	350				
2-Chlorophenol	ND	ug/kg	420				
2,4-Dichlorophenol	ND	ug/kg	690				
2,4-Dimethylphenol	ND .	ug/kg	350	•			
2-Nitrophenol	ND	ug/kg	1400				
4-Nitrophenol	ND ·	ug/kg	690				
2,4-Dinitrophenol	ND	ug/kg	1400				
4,6-Dinitro-o-cresol	ND	ug/kg	1400				
Pentachlorophenol	ND	ug/kg	1400				
Phenol	ND	ug/kg	490				
2-Methylphenol	ND	'ug/kg	420				
3-Methylphenol/4-Methylphenol		ug/kg	420				
2,4,5-Trichlorophenol	ND	ug/kg	350				
Benzoic Acid	ND	ug/kg	3500				
Benzyl Alcohol	ND		690				
Carbazole	ND .	ug/kg					
Pyridine	ND	ug/kg ug/kg	350 3500	·.			
-1	110	ug/kg	3300				
Surrogate(s)	Recovery		OC Cri	iteria			
2-Fluorophenol	61.0	8	25-120				
Phenol-d6	58.0	8	10-120				
Nitrobenzene-d5	55.0	8	23-120				
2-Fluorobiphenyl	57.0	9.	30-120				
2,4,6-Tribromophenol	74.0	8 8	19-120				
-, -,	, 4.0	•	エラーエスし	,			

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0811749-02

13.5-SW-2

Sample Matrix: SOIL

Date Collected: 07-AUG-2008 11:45

Date Received: 08-AUG-2008 Date Reported: 15-AUG-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 1-Amber, 3-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	D	TE .	II
*.					PREP	ANAL	
Solids, Total	95	· ;;	0.10	30 2540G		0811 16:20	NM
Total Metals							
Antimony, Total	ND	mg/kg	2.5	1 6010B	0811 11:00	0812 16:38	MG
Arsenic, Total	6.4	mg/kg	0.49	1 6010B	0811 11:00	0812 16:38	MG
Beryllium, Total	0.79	mg/kg	0.25	1 6010B	0811 11:00	0812 16:38	MG
Cadmium, Total	ND	mg/kg	0.49	1 6010B	0811 11:00	0812 16:38	MG
Chromium, Total	19	mg/kg	0.49	1 6010B	0811 11:00	0812 16:38	MG
Copper, Total	8.5	mg/kg	0.49	1 6010B	0811 11:00	0812 16:38	MG
Lead, Total	4.0	mg/kg	2.5	1 6010B	0811 11:00	0812 16:38	MG
Mercury, Total	ND	mg/kg	0.08	1 7471A	0811 16:00	0812 15:35	НG
Nickel, Total	9.7	mg/kg	1.2	1 6010B	0811 11:00	0812 16:38	MG
Selenium, Total	ND	mg/kg	0.99	1 6010B	0811 11:00	0812 16:38	MG
Silver, Total	ND	mg/kg	0.49	1 6010B	0811 11:00	0812 16:38	MG
Thallium, Total	ND	mg/kg	2.0	1 6010B ·	0811 11:00	0813 10:54	MG
Zinc, Total	31	mg/kg	2.5	1 6010B	0811 11:00	0812 16:38	MG
volatile organice by 82608/	5035#Soil Ar	allysis		1 82608		08 12 116 5W	PD.
Methylene chloride	ND	ug/kg	8.1.				
l,1-Dichloroethane	ND	ug/kg	1.2				
Chloroform	ND	ug/kg	1.2				
Carbon tetrachloride	ND	ug/kg	0.81				
l,2-Dichloropropane	ND	ug/kg	2.8				
Dibromochloromethane	ND	ug/kg	0.81				
1,1,2-Trichloroethane	ND	ug/kg	1.2				
letrachloroethene	ND	ug/kg	0.81				
Chlorobenzene	ND	ug/kg	0.81		•		
[richlorofluoromethane	ND	ug/kg	4.0			•	
TICHIOLOTIMOLOMECHANE	ND .	~9, ~9					
	ND .	ug/kg	0.81				
1,2-Dichloroethane							
1,2-Dichloroethane 1,1,1-Trichloroethane	ND .	ug/kg	0.81				
1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane	ND . ND	ug/kg ug/kg	0.81 0.81				
1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene	ND ND ND	ug/kg ug/kg ug/kg	0.81 0.81 0.81				
1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	0.81 0.81 0.81 0.81 0.81 4.0				
1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene 1,1-Dichloropropene Bromoform	ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	0.81 0.81 0.81 0.81				
1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene 1,1-Dichloropropene	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	0.81 0.81 0.81 0.81 0.81 4.0				
1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene 1,1-Dichloropropene Bromoform	ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	0.81 0.81 0.81 0.81 0.81 4.0 3.2				

Comments: Complete list of References and Glossary of Terms found in Addendum I

08150810:57 Page 7 of 30

Laboratory Sample Number: L0811749-02

13.5-SW-2

PARAMETER	RESULT	ÚNITS	RDL	REF METHOD	DATE PREP ANA	ID
Volatile Ofganics by 8260B/5	12.5 <u>2.9561</u>	nalysis co				
Ethylbenzene	ND	ug/kg	0.81	4818 BL 750BC	6	20
Chloromethane	ND	ug/kg ug/kg	4.0		•	
Bromomethane	ND					
Vinyl chloride	ND	ug/kg	1.6 1.6			
Chloroethane	ND	ug/kg	1.6			
1,1-Dichloroethene	ND	ug/kg ug/kg				
trans-1,2-Dichloroethene	ND .		0.81 1.2			
Trichloroethene	ND	ug/kg				
1,2-Dichlorobenzene	ND	ug/kg	0.81			
1,3-Dichlorobenzene	ND	ug/kg	4.0			
1,4-Dichlorobenzene		ug/kg	4.0			
Methyl tert butyl ether	ND	ug/kg	4.0	,		
p/m-Xylene	ND	ug/kg	1.6			
o-Xylene	ND	ug/kg	1.6			
cis-1,2-Dichloroethene	ND	ug/kg	1.6			
Dibromomethane	ND	ug/kg	0.81			
	ND	ug/kg	8.1			
1,4-Dichlorobutane	ND ·	ug/kg	8.1			
1,2,3-Trichloropropane	ND	ug/kg	8.1			
Styrene	ND	ug/kg	1.6			
Dichlorodifluoromethane	ND	ug/kg	8.1			
Acetone	ND	ug/kg	8.1			
Carbon disulfide	ND	ug/kg	8.1			
2-Butanone	ND	ug/kg	8.1			-
Vinyl acetate	ND	ug/kg	8.1			
4-Methyl-2-pentanone	ND .	ug/kg	8.1			
2-Hexanone	ND	ug/kg	8.1			
Ethyl methacrylate	ND	ug/kg	8.1			
Acrylonitrile	ND ·	ug/kg	3.2			
Bromochloromethane	ND	ug/kg	4.0			•
Tetrahydrofuran	ND .	ug/kg	16.			
2,2-Dichloropropane	ND	ug/kg	4.0			
1,2-Dibromoethane	ND	ug/kg	3.2			•
1,3-Dichloropropane	ND	ug/kg	4.0			
1,1,1,2-Tetrachloroethane	ИĎ	ug/kg	0.81			
Bromobenzene	ND	ug/kg	4.0			
n-Butylbenzene	ND	ug/kg	0.81			
sec-Butylbenzene	ND	ug/kg	0.81			
tert-Butylbenzene	ND	ug/kg	4.0			
o-Chlorotoluene	ND	ug/kg	4.0			
p-Chlorotoluene	ND	ug/kg	4.0			•
1,2-Dibromo-3-chloropropane	ND	ug/kg	4.0			
Hexachlorobutadiene	ND	ug/kg	4.0			
Isopropylbenzene	· ND	ug/kg	0.81			
p-Isopropyltoluene	ND	ug/kg	0.81			
Naphthalene	ND	ug/kg	4.0	•		
n-Propylbenzene	ND	ug/kg	0.81			
1,2,3-Trichlorobenzene	ND	ug/kg	4.0			
1,2,4-Trichlorobenzene	ND	ug/kg	4.0			
1,3,5-Trimethylbenzene	ND					

Laboratory Sample Number: L0811749-02

13.5-SW-2

PARAMETER	RESULT	UNITS	RDL REF METHOD	DATE ID
		.		
Volatile Organies by 8260B	/5085-Sot L⊨An	alysia,co	nt/directors i 82608	MARKET ATTOBUT NEWS PARE
1,2,4-Trimethylbenzene	, ND	ug/kg	4.0	
trans-1,4-Dichloro-2-butene	ND .	ug/kg	4.0	
Ethyl ether	ND	ug/kg	4.0	
Surrogate(s)	Recovery		QC Criteria	
1,2-Dichloroethane-d4	97.0	ક	70-130	
Toluene-d8	85.0	€	70-130	
4-Bromofluorobenzene	100 .	8	70-130	
Dibromofluoromethane	80.0	8	70-130	
Semivolatile Organics by G	A 8270C		1,10 (8270 č	0609.09.05 0812 15.46 25
Acenaphthene	ND	ug/kg	350	
Benzidine	ND	ug/kg	.3500	
1,2,4-Trichlorobenzene	N D	ug/kg	350	
Hexachlorobenzene	ND	ug/kg	350	
Bis(2-chloroethyl)ether	ND .	ug/kg	350	
2-Chloronaphthalene	ND	ug/kg	420	
1,2-Dichlorobenzene	ND	ug/kg	350	
1,3-Dichlorobenzene	ND	ug/kg	350	
1,4-Dichlorobenzene	ND	ug/kg	350	
3,3'-Dichlorobenzidine	ND .	ug/kg	700	
2,4-Dinitrotoluene	ND	ug/kg	350	•
2,6-Dinitrotoluene	ND	ug/kg	350	•
Azobenzene	ND	ug/kg	350	
Fluoranthene	ND	ug/kg	350	
4-Chlorophenyl phenyl ether	ND	ug/kg	350	
4-Bromophenyl phenyl ether	ND	ug/kg	350	
Bis(2-chloroisopropyl)ether	ND	ug/kg	350 .	
Bis(2-chloroethoxy)methane	. ND	ug/kg	350	
Hexachlorobutadiene	· ND	ug/kg	700	
Hexachlorocyclopentadiene	ND	ug/kg	· 700	
Hexachloroethane	ND .	ug/kg	350	
Isophorone	ND	ug/kg	350	
Naphthalene	ND .	ug/kg	350	
Nitrobenzene	ND	ug/kg	350	
NitrosoDiPhenylAmine(NDPA)/	DPA ND	ug/kg	1000	•
n-Nitrosodi-n-propylamine	ND	ug/kg	350	•
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	700	
Butyl benzyl phthalate	ND .	ug/kg	350	
Di-n-butylphthalate	ND	ug/kg	350	•
Di-n-octylphthalate	ND	ug/kg	350	
Diethyl phthalate	ND	ug/kg	350	•
Dimethyl phthalate	ND	ug/kg	350	•
Benzo(a) anthracene	ND .	ug/kg	350	
Benzo (a) pyrene	ND	ug/kg	350	
Benzo(b) fluoranthene	ND	ug/kg	350	
Benzo(k)fluoranthene	ND	ug/kg	350	
Chrysene	ND	ug/kg	350	
Acenaphthylene	ND	ug/kg	350	

Laboratory Sample Number: L0811749-02

13.5-SW-2

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE	ANAL	ID
	·						
Semivolatile Organics by EPA	8270¢ cont	d in the		1 82700	0809.09:15:00	12 15:4	6 PS
Anthracene	ND .	ug/kg	350		*		
Benzo(ghi)perylene	ND	ug/kg	350				
Fluorene	ND	ug/kg	350				
Phenanthrene	ND	ug/kg	350				•
Dibenzo(a,h)anthracene	ND	ug/kg	350	•			
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	350				
Pyrene	ND	ug/kg	350		•		
Aniline	ND	ug/kg	700				
4-Chloroaniline	ND	ug/kg	350				
1-Methylnaphthalene	ND	ug/kg	350				
2-Nitroaniline	ND	ug/kg	350				
3-Nitroaniline	ND	ug/kg	350				
4-Nitroaniline	ND	ug/kg	490				
Dibenzofuran	ND ·	ug/kg	350				
2-Methylnaphthalene	ND	ug/kg	350				
n-Nitrosodimethylamine	ND .	ug/kg	3500				
2,4,6-Trichlorophenol	ND ·	ug/kg	350	•			
P-Chloro-M-Cresol	ND	ug/kg	350				
2-Chlorophenol	ND	ug/kg	420				
2,4-Dichlorophenol	ND	ug/kg	700				
2,4-Dimethylphenol	ND	ug/kg	350				:
2-Nitrophenol	ND	ug/kg	1400				
4-Nitrophenol	ND	ug/kg	700				
2,4-Dinitrophenol	ND ·	ug/kg	1400				
4,6-Dinitro-o-cresol	ND .	ug/kg	1400				
Pentachlorophenol	ND	ug/kg	1400				
Phenol	ND	ug/kg	490				
2-Methylphenol	ND	ug/kg	420				
3~Methylphenol/4-Methylphenol		ug/kg	420	•			
2,4,5-Trichlorophenol	ND	ug/kg	350				
Benzoic Acid	ND	ug/kg	3500				
Benzyl Alcohol	ND	ug/kg	700				
Carbazole	ND	ug/kg	350				
Pyridine	ND	ug/kg	3500				
Surrogate(s)	Recovery		QC Cr	iteria		-	
2-Fluorophenol	63.0	€	25-120				
Phenol-d6	63.0	윰	10-120)			
Nitrobenzene-d5	57.0	*	23-120				
2-Fluorobiphenyl	62.0	8	30-120		•		
2,4,6-Tribromophenol	71.0	8	19-120				
4-Terphenyl-d14	70.0	ę.	18-120				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LAO00065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0811749-03

Date Collected: 07-AUG-2008 10:40

13.5-SW-3

Date Received: 08-AUG-2008
Date Reported: 15-AUG-2008

Sample Matrix: S

Condition of Sample:

Satisfactory Field Prep: None

Number & Type of Containers: 1-Amber, 3-Vial

RESULT	UNITS	RDL	REF METHOD	DI	TE	ID
			•	PREP	ANAL	
81	÷	0.10	30 2540G		0811 16:20	NM
ND	mg/kg	3.0	1 6010B	0811 11:00	0812 16:41	MG
2.0	mg/kg	0.59	1 60103	0811 11:00	0812 16:41	MG
0.31	mg/kg	0.30	1 6010B	0811 11:00	0812 16:41	MG
ND	mg/kg	0.59	1 6010B	0811 11:00	0812 16:41	MG
8.0	mg/kg	0.59	· 1 6010B	0811 11:00	0812 16:41	MG
5.1	mg/kg	0.59	1 6010B	0811 11:00	0812 16:41	MG
ND	mg/kg	3.0	1 6010B	0811 11:00	0812 16:41	MG
ND	mg/kg	0.09	1 7471A	0811 16:00	0812 15:37	EG
6.6	mg/kg	1.5	1 6010B	0811 11:00	0812 16:41	MG
ND	mg/kg	1.2	1 6010B	0811 11:00	0812 16:41	MG
ND	mg/kg	0.59	1 60103	0811 11:00	0812 16:41	MG
ND	mg/kg	1.2	1 6010B	0811 11:00	0812 16:41	MG
21	mg/kg	3.0	1 60103	0811 11:00	0812 16:41	MG
5035#Soil Ar	atvars -		1 22 22 22 22 22 22 22 22 22 22 22 22 22		0811 17-31	
ND	ua/ka	7.7	ionessicalements representation	Out to the transfer of the tra		
ND		1.2				
		2.7				
		0.77				
		0.77				
ND '	ug/kg	0.77				
ND ND	ug/kg ug/ka	0.77 3.8				
ND	ug/kg	3.8				
ND ND	ug/kg ug/kg	3.8 0.77				
ND ND ND	ug/kg ug/kg ug/kg	3.8 0.77 0.77				
ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	3.8 0.77 0.77				
ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg	3.8 0.77 0.77 0.77				
ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	3.8 0.77 0.77 0.77 0.77				
ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	3.8 0.77 0.77 0.77 0.77 0.77 3.8				
ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	3.8 0.77 0.77 0.77 0.77 0.77 3.8 3.1				
ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	3.8 0.77 0.77 0.77 0.77 0.77 3.8				
	81 ND 2.0 0.31 ND 8.0 5.1 ND ND 0.6.6 ND ND 21	ND mg/kg 2.0 mg/kg 0.31 mg/kg ND mg/kg 8.0 mg/kg 5.1 mg/kg ND mg/kg	ND mg/kg 3.0 2.0 mg/kg 0.59 0.31 mg/kg 0.59 8.0 mg/kg 0.59 8.0 mg/kg 0.59 5.1 mg/kg 0.59 ND mg/kg 3.0 ND mg/kg 3.0 ND mg/kg 0.09 6.6 mg/kg 1.5 ND mg/kg 1.2 ND mg/kg 0.59 ND mg/kg 1.2 ND mg/kg 0.77 ND mg/kg 0.77 ND mg/kg 0.77 ND mg/kg 0.77 ND mg/kg 0.77 ND mg/kg 0.77 ND mg/kg 0.77 ND mg/kg 0.77 ND mg/kg 0.77 ND mg/kg 1.2	ND mg/kg 3.0 1 6010B 2.0 mg/kg 0.59 1 6010B 0.31 mg/kg 0.59 1 6010B ND mg/kg 0.59 1 6010B 8.0 mg/kg 0.59 1 6010B 5.1 mg/kg 0.59 1 6010B ND mg/kg 0.59 1 6010B ND mg/kg 0.09 1 7471A 6.6 mg/kg 1.5 1 6010B ND mg/kg 1.2 1 6010B ND mg/kg 0.59 1 6010B ND mg/kg 1.2 1 6010B ND mg/kg 1.2 1 6010B ND mg/kg 1.2 1 6010B ND mg/kg 3.0 1 6010B ND mg/kg 1.2 1 6010B ND mg/kg 1.2 1 6010B ND mg/kg 1.2 1 6010B ND mg/kg 1.2 1 6010B ND mg/kg 1.2 1 6010B ND mg/kg 1.2 1 6010B ND mg/kg 1.2 1 6010B ND mg/kg 1.2 1 6010B 21 mg/kg 3.0 1 6010B	ND mg/kg 0.59 1 6010B 0811 11:00 8.0 mg/kg 0.59 1 6010B 0811 11:00 8.0 mg/kg 0.59 1 6010B 0811 11:00 8.0 mg/kg 0.59 1 6010B 0811 11:00 5.1 mg/kg 0.59 1 6010B 0811 11:00 ND mg/kg 0.59 1 6010B 0811 11:00 ND mg/kg 0.59 1 6010B 0811 11:00 ND mg/kg 0.59 1 6010B 0811 11:00 ND mg/kg 0.09 1 747LA 0811 16:00 ND mg/kg 1.5 1 6010B 0811 11:00 ND mg/kg 1.5 1 6010B 0811 11:00 ND mg/kg 1.2 1 6010B 0811 11:00 ND mg/kg 1.2 1 6010B 0811 11:00 ND mg/kg 0.59 1 6010B 0811 11:00 ND mg/kg 1.2 1 6010B 0811 11:00 ND mg/kg 1.2 1 6010B 0811 11:00 ND mg/kg 1.2 1 6010B 0811 11:00 ND mg/kg 1.2 1 6010B 0811 11:00 ND mg/kg 1.2 1 6010B 0811 11:00 ND mg/kg 1.2 1 6010B 0811 11:00 ND mg/kg 1.2 1 6010B 0811 11:00 ND mg/kg 1.2 1 6010B 0811 11:00 ND mg/kg 1.2 1 6010B 0811 11:00 ND mg/kg 1.2 1 6010B 0811 11:00 ND mg/kg 1.2 1 6010B 0811 11:00 ND mg/kg 1.2 1 6010B 0811 11:00 ND mg/kg 1.2 1 6010B 0811 11:00 ND mg/kg 1.2 1 6010B 0811 11:00	ND mg/kg 0.59 1 6010B 0811 11:00 0812 16:41 0.31 mg/kg 0.59 1 6010B 0811 11:00 0812 16:41 0.31 mg/kg 0.59 1 6010B 0811 11:00 0812 16:41 0.31 mg/kg 0.59 1 6010B 0811 11:00 0812 16:41 0.31 mg/kg 0.59 1 6010B 0811 11:00 0812 16:41 0.31 mg/kg 0.59 1 6010B 0811 11:00 0812 16:41 0.31 mg/kg 0.59 1 6010B 0811 11:00 0812 16:41 0.31 mg/kg 0.59 1 6010B 0811 11:00 0812 16:41 0.31 mg/kg 0.59 1 6010B 0811 11:00 0812 16:41 0.31 mg/kg 0.09 1 7471A 0811 16:00 0812 16:41 0.31 mg/kg 0.09 1 7471A 0811 16:00 0812 16:41 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.3

Comments: Complete list of References and Glossary of Terms found in Addendum I

08150810:57 Page 11 of 30

Laboratory Sample Number: L0811749-03 13.5-SW-3

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volue Le Organies by 78260B/50	35-Soil A	nalysis ko	it id	1 18260B	0111 /31-20
Ethylbenzene	ND	ug/kġ	0.77	Marketine - Transconding to the first of American St. S. S. Landbert St. C. S. C. S. S. S. S. S. S. S. S. S. S.	-
Chloromethane	ND	ug/kg	3.8		
Bromomethane	ND	ug/kg	1.5		•
Vinyl chloride	ND	ug/kg	1.5	•	
Chloroethane	ND .	ug/kg	1.5		
1,1-Dichloroethene	ND	ug/kg	0.77		
trans-1,2-Dichloroethene	ND .	ug/kg	1.2		
Trichloroethene	ND	ug/kg	0.77		
1,2-Dichlorobenzene	ND	ug/kg	3.8		
1,3-Dichlorobenzene	ND	ug/kg	3.8		
1,4-Dichlorobenzene	ND	ug/kg	3.8		
Methyl tert butyl ether	ND	ug/kg	1.5		
p/m-Xylene	ND	ug/kg	1.5		
o-Xylene	ND .	ug/kg	1.5		•
cis-1,2-Dichloroethene	ND	ug/kg	0.77		
Dibromomethane	ND	ug/kg	7.7		
1,4-Dichlorobutane	ND	ug/kg	7.7		
1,2,3-Trichloropropane	ND	ug/kg	7.7		
Styrene	ND	ug/kg	1.5		
Dichlorodifluoromethane	ND	ug/kg	7.7		
Acetone	ND	ug/kg	7.7		
Carbon disulfide	ND	ug/kg	7.7		
2-Butanone	ND	ug/kg	7.7		
Vinyl acetate	ND	ug/kg	7.7		•
4-Methyl-2-pentanone	ND	ug/kg	7.7	•	•
2-Hexanone	ND	ug/kg	7.7		
Ethyl methacrylate	ND ND	ug/kg ug/kg	7.7		
Acrylonitrile	ND	ug/kg	3.1		
Bromochloromethane	ND.	ug/kg ug/kg	3.8		
Tetrahydrofuran	ND	ug/kg ug/kg	15.		•
2,2-Dichloropropane	ND		3.8		
1,2-Dibromoethane	ND	ug/kg	3.1		
1,3-Dichloropropane	ND	ug/kg ug/kg	3.8		
1,1,1,2-Tetrachloroethane	ND				
Bromobenzene	ND	ug/kg	0.77 3.8		
n-Buty1benzene		ug/kg			-
sec-Butylbenzene	ND ND	ug/kg	0.77		
tert-Butylbenzene	ND .	ug/kg	0.77 3.8		
o-Chlorotoluene		ug/kg			
	ND	ug/kg	3.8		
p-Chlorotoluene	ND	ug/kg	3.8		
1,2-Dibromo-3-chloropropane	ND	ug/kg	3.8		
Hexachlorobutadiene	ND	ug/kg	3.8		
Isopropylbenzene	ND	ug/kg	0.77		
p-Isopropyltoluene	ND	ug/kg	0.77	•	
Naphthalene	ND	ug/kg	3.8		
n-Propylbenzene	ND	ug/kg	0.77		
1,2,3-Trichlorobenzene	ND	ug/kg	3.8		
1,2,4-Trichlorobenzene	ND	ug/kg	3.8		
1,3,5-Trimethylbenzene	ND	ug/kg	3.8		

Laboratory Sample Number: L0811749-03 13.5-SW-3

PARAMETER PARA	<u></u>	<u> </u>							
### ### ##############################	PARAMETER	RESULT	UNITS	RDL	REF METHOD				
1,2,4-Trimethylbenzene				•		PREP ANAL			
1,2,4-Trimethylbenzene	`								
1,2,4-Trimethylbenzene	Volutile Organics by 8260B/5	035-Soil Ar	alvsis co	ntid 📗	8260B	4 WORL (233 PD			
Ethyl ether					Maria de la composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della	997993, 9995 33.9 4.2 7 5 3.7 53.7 63.0 5 4.0 6 .0 600 600 600 600 600 600 600 600 600 6			
Surrogate(s) Recovery QC Criteria 1,2-Dichlorocethane-d4 103 8	-	ND		3.8					
1,2-Dichloroethane-d4		ND	ug/kg	3.8					
1,2-Dichloroethane-d4	Surrogate (s)	Recovery		oc cri	toria				
Toluene-d8 4-Bromofluorobenzene 109 109 1070-130 Tolidon Toli	3	-	9.	-					
A-Bromofluorobenzene	· ·								
Dibromofluoromethane			_						
Acenaphthene			-			•			
Acenaphthene	,								
Benzidine	Semivolatile Organics by EPA	8270C			###270C	0809 09:15 08 2 16:16 PS			
1,2,4-Trichlorobenzene	Acenaphthene	ND	ug/kg	410					
Hexachlorobenzene	Benzidine	ND	ug/kg	4100					
Bis (2-chloroethyl) ether ND ug/kg 410 2-Chloronaphthalene ND ug/kg 490 1, 2-Dichlorobenzene ND ug/kg 410 1, 4-Dichlorobenzene ND ug/kg 410 1, 4-Dichlorobenzidine ND ug/kg 420 2, 4-Dinitrotoluene ND ug/kg 410 2, 6-Dinitrotoluene ND ug/kg 410 Azobenzene ND ug/kg 410 Fluoranthene ND ug/kg 410 4-Chlorophenyl phenyl ether ND ug/kg 410 4-Bromophenyl phenyl ether ND ug/kg 410 4-Bromophenyl phenyl ether ND ug/kg 410 Bis (2-chloroisopropyl) ether ND ug/kg 410 Bis (2-chloroethoxy) methane ND ug/kg 410 Bis (2-chloroethoxy) methane ND ug/kg 410 Hexachlorocyclopentadiene ND ug/kg 410 Hexachlorocyclopentadiene ND	1,2,4-Trichlorobenzene	ND	ug/kg	410					
2-Chloronaphthalene	Hexachlorobenzene	ND	ug/kg	410					
1,2-Dichlorobenzene ND ug/kg 410 1,3-Dichlorobenzene ND ug/kg 410 1,4-Dichlorobenzene ND ug/kg 410 3,3'-Dichlorobenzidine ND ug/kg 820 2,4-Dinitrotoluene ND ug/kg 410 2,6-Dinitrotoluene ND ug/kg 410 2,6-Dinitrotoluene ND ug/kg 410 2,6-Dinitrotoluene ND ug/kg 410 2,6-Dinitrotoluene ND ug/kg 410 4-Chorophenzene ND ug/kg 410 4-Chlorophenyl phenyl ether ND ug/kg 410 4-Chlorophenyl phenyl ether ND ug/kg 410 4-Bromophenyl phenyl ether ND ug/kg 410 Bis (2-chloroisopropyl) ether ND ug/kg 410 Bis (2-chlorobtadiene ND ug/kg 410 Hexachlorobtadiene ND ug/kg 410 Hexachlorocyclopentadiene ND ug/kg 820 Hexachlorocyclopentadiene ND ug/kg 410 Isophorone ND ug/kg 410 Nitrobenzene ND ug/kg 410 NitrosoDiPhenylAmine (NDFA)/DFA ND ug/kg 410 Nitrosodi-n-propylamine ND ug/kg 410 Nitrosodi-n-propylamine ND ug/kg 410 Bis (2-Ethylhexyl) phthalate ND ug/kg 410 Bis (2-Ethylhexyl) phthalate ND ug/kg 410 Di-n-butylphthalate ND ug/kg 410 Di-n-butylphthalate ND ug/kg 410 Di-n-octylphthalate ND ug/kg 410 Di-n-octylphthalate ND ug/kg 410 Di-n-octylphthalate ND ug/kg 410 Di-n-octylphthalate ND ug/kg 410 Dimethyl phthalate ND ug/kg 410	Bis(2-chloroethyl)ether	ND	ug/kg	410					
1,3-Dichlorobenzene ND ug/kg 410 1,4-Dichlorobenzene ND ug/kg 410 3,3'-Dichlorobenzidine ND ug/kg 820 2,4-Dinitrotoluene ND ug/kg 410 2,6-Dinitrotoluene ND ug/kg 410 Azobenzene ND ug/kg 410 Fluoranthene ND ug/kg 410 Fluoranthene ND ug/kg 410 4-Chlorophenyl phenyl ether ND ug/kg 410 Bis (2-chloroisopropyl)ether ND ug/kg 410 Bis (2-chloroisopropyl)ether ND ug/kg 410 Bis (2-chloroisopropyl)ether ND ug/kg 410 Bis (2-chloroisopropyl)ether ND ug/kg 410 Bis (2-chlorocothoxy)methane ND ug/kg 410 Bis (2-chlorocothoxy)methane ND ug/kg 410 Bis (2-chlorocothoxy)methane ND ug/kg 820 Hexachlorocotladiene ND ug/kg 820 Hexachlorocotladiene ND ug/kg 410 Sophorone ND ug/kg 410 Nitrosofone ND ug/kg 410 NitrosofiPhenylAmine (NDPA)/DPA ND ug/kg 410 NitrosofiPhenylAmine (NDPA)/DPA ND ug/kg 410 NitrosofiPhenylAmine (NDPA)/DPA ND ug/kg 410 Din-notrylphthalate ND ug/kg 410 Di-n-butylphthalate ND ug/kg 410 Di-n-otylphthalate ND ug/kg 410 Di-n-otylphthalate ND ug/kg 410 Di-n-otylphthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410	•	ND	ug/kg	490					
1,4-Dichlorobenzene	1,2-Dichlorobenzene	ND	ug/kg	410					
3,3'-Dichlorobenzidine ND ug/kg 410 2,4-Dinitrotoluene ND ug/kg 410 Azobenzene ND ug/kg 410 Azobenzene ND ug/kg 410 Azobenzene ND ug/kg 410 4-Chlorophenyl phenyl ether ND ug/kg 410 4-Bromophenyl phenyl ether ND ug/kg 410 Bis(2-chloroisopropyl)ether ND ug/kg 410 Bis(2-chlorothoxy)methane ND ug/kg 410 Bis(2-chlorochoxy)methane ND ug/kg 410 Bis(2-chlorochoxy)methane ND ug/kg 410 Bis(2-chlorochoxy)methane ND ug/kg 410 Bis(2-chlorochoxy)methane ND ug/kg 410 Bis(2-chlorochoxy)methane ND ug/kg 410 Bis(2-chlorochoxy)methane ND ug/kg 410 Bis(2-chlorochoxy)methane ND ug/kg 410 Isophorone ND ug/kg 410 Nitrobenzene ND ug/kg 410 NitrosodiPhenylamine(NDFA)/DPA ND ug/kg 410 NitrosodiPhenylamine(NDFA)/DPA ND ug/kg 410 Bis(2-Ethylhexyl)phthalate ND ug/kg 410 Bis(2-Ethylhexyl)phthalate ND ug/kg 410 Di-n-butylphthalate ND ug/kg 410 Di-n-butylphthalate ND ug/kg 410 Di-n-otylphthalate ND ug/kg 410 Di-n-otylphthalate ND ug/kg 410 Dimethyl phthalate ND ug/kg 410 Dimethyl phthalate ND ug/kg 410 Dimethyl phthalate ND ug/kg 410 Dimethyl phthalate ND ug/kg 410 Benzo(a)anthracene ND ug/kg 410 Benzo(a)pyrene ND ug/kg 410 Benzo(b)fluoranthene ND ug/kg 410 Benzo(b)fluoranthene ND ug/kg 410 Benzo(b)fluoranthene ND ug/kg 410 Chrysene ND ug/kg 410	1,3-Dichlorobenzene	ND	ug/kg	410					
2,4-Dinitrotoluene ND ug/kg 410 2,6-Dinitrotoluene ND ug/kg 410 Azobenzene ND ug/kg 410 Fluoranthene ND ug/kg 410 4-Chlorophenyl phenyl ether ND ug/kg 410 4-Bromophenyl phenyl ether ND ug/kg 410 Bis (2-chloroethoxy) methane ND ug/kg 410 Bis (2-chloroethoxy) methane ND ug/kg 410 Hexachlorobutadiene ND ug/kg 410 Hexachloroeyclopentadiene ND ug/kg 820 Hexachloroeyclopentadiene ND ug/kg 410 Isophorone ND ug/kg 410 Naphthalene ND ug/kg 410 Naphthalene ND ug/kg 410 NitrosopiPhenylAmine (NDPA)/DPA ND ug/kg 410 NitrosopiPhenylAmine (NDPA)/DPA ND ug/kg 410 Bis (2-Ethylhexyl) phthalate ND ug/kg 410 Di-n-butylphthalate ND ug/kg 41	1,4-Dichlorobenzene	ND	ug/kg	410					
Z, 6-Dinitrotoluene ND ug/kg 410 Azobenzene ND ug/kg 410 Fluoranthene ND ug/kg 410 4-Chlorophenyl phenyl ether ND ug/kg 410 4-Bromophenyl phenyl ether ND ug/kg 410 Bis (2-chloroisopropyl) ether ND ug/kg 410 Bis (2-chloroethoxy) methane ND ug/kg 410 Hexachloroethoxy) methane ND ug/kg 410 Hexachlorocyclopentadiene ND ug/kg 820 Hexachlorocyclopentadiene ND ug/kg 410 Isophorone ND ug/kg 410 Naphthalene ND ug/kg 410 NitrosoliPhenylAmine (NDPA)/DPA ND ug/kg 1200 n-Nitrosodi-n-propylamine ND ug/kg 410 Nitrosodi-n-propylamine ND ug/kg 420 Butyl benzyl phthalate ND ug/kg 410 Di-n-butylphthalate ND ug/kg 410 Di-n-octylphthalate ND ug/kg 410 <td>3,3'-Dichlorobenzidine</td> <td>ND</td> <td>ug/kg</td> <td>820</td> <td></td> <td></td>	3,3'-Dichlorobenzidine	ND	ug/kg	820					
Azobenzene	2,4-Dinitrotoluene	ND	ug/kg	410					
Fluoranthene	2,6-Dinitrotoluene	ND	ug/kg	410					
4-Chlorophenyl phenyl ether ND ug/kg 410 4-Bromophenyl phenyl ether ND ug/kg 410 Bis (2-chloroisopropyl)ether ND ug/kg 410 Bis (2-chloroethoxy)methane ND ug/kg 410 Hexachlorobutadiene ND ug/kg 820 Hexachlorocyclopentadiene ND ug/kg 820 Hexachlorochane ND ug/kg 410 Isophorone ND ug/kg 410 Naphthalene ND ug/kg 410 Nitrobenzene ND ug/kg 410 Nitrosodi-n-propylamine ND ug/kg 410 Nitrosodi-n-propylamine ND ug/kg 410 Bis (2-Ethylhexyl)phthalate ND ug/kg 410 Bis (2-Ethylhexyl)phthalate ND ug/kg 410 Di-n-butylphthalate ND ug/kg 410 Di-n-cotylphthalate ND ug/kg 410 Di-n-octylphthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410 Benzo (a) anthracene ND ug/kg 410 Benzo (b) fluoranthene ND ug/kg 410 Benzo (b) fluoranthene ND ug/kg 410 Chrysene ND ug/kg 410 Chrysene	Azobenzene	ND	ug/kg		•				
### ### ##############################	Fluoranthene	ND	ug/kg						
Bis(2-chloroisopropyl)ether ND ug/kg 410 Bis(2-chloroethoxy)methane ND ug/kg 410 Hexachlorobutadiene ND ug/kg 820 Hexachloroethane ND ug/kg 410 Isophorone ND ug/kg 410 Naphthalene ND ug/kg 410 Nitrobenzene ND ug/kg 410 NitrosodiPhenylAmine(NDPA)/DPA ND ug/kg 1200 n-Nitrosodi-n-propylamine ND ug/kg 410 Bis(2-Ethylhexyl)phthalate ND ug/kg 410 Bis(2-Ethylhexyl)phthalate ND ug/kg 410 Di-n-butylphthalate ND ug/kg 410 Di-n-octylphthalate ND ug/kg 410 Di-n-octylphthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410 Benzo(a) anthracene ND ug/kg 410 Benzo(b) fluoranthene ND ug/kg 410		ND	ug/kg ·						
Bis(2-chloroethoxy)methane ND ug/kg 410 Hexachlorobutadiene ND ug/kg 820 Hexachlorocyclopentadiene ND ug/kg 820 Hexachloroethane ND ug/kg 410 Isophorone ND ug/kg 410 Naphthalene ND ug/kg 410 Nitrobenzene ND ug/kg 410 Nitrosodi-n-propylamine ND ug/kg 1200 n-Nitrosodi-n-propylamine ND ug/kg 410 Bis (2-Ethylhexyl)phthalate ND ug/kg 820 Butyl benzyl phthalate ND ug/kg 410 Di-n-butylphthalate ND ug/kg 410 Di-n-octylphthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410 Dimethyl phthalate ND ug/kg 410 Benzo (a) anthracene ND ug/kg 410 Benzo (b) fluoranthene ND ug/kg 410 <		ND	ug/kg	410					
Hexachlorobutadiene ND ug/kg 820 Hexachlorocyclopentadiene ND ug/kg 820 Hexachlorocethane ND ug/kg 410 Isophorone ND ug/kg 410 Naphthalene ND ug/kg 410 Nitrobenzene ND ug/kg 410 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 1200 n-Nitrosodi-n-propylamine ND ug/kg 410 Bis(2-Ethylhexyl)phthalate ND ug/kg 820 Butyl benzyl phthalate ND ug/kg 410 Di-n-butylphthalate ND ug/kg 410 Di-n-octylphthalate ND ug/kg 410 Di-n-octylphthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410 Benzo(a)anthracene ND ug/kg 410 Benzo(a)pyrene ND ug/kg 410 Benzo(b)fluoranthene ND ug/kg 410 Chrysene ND ug/kg 410 Chrysene ND ug/kg 410 Chysene	,	ND	ug/kg			e e			
Hexachlorocyclopentadiene ND ug/kg 820 Hexachloroethane ND ug/kg 410 Isophorone ND ug/kg 410 Naphthalene ND ug/kg 410 Nitrobenzene ND ug/kg 410 NitrosodiPhenylAmine(NDPA)/DPA ND ug/kg 1200 n-Nitrosodi-n-propylamine ND ug/kg 410 Bis(2-Ethylhexyl)phthalate ND ug/kg 820 Butyl benzyl phthalate ND ug/kg 410 Di-n-butylphthalate ND ug/kg 410 Di-n-octylphthalate ND ug/kg 410 Di-n-octylphthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410 Benzo(a)anthracene ND ug/kg 410 Benzo(b)fluoranthene ND ug/kg 410 Benzo(k)fluoranthene ND ug/kg 410 Chrysene ND ug/kg 410	_ · · · · · · · · · · · · · · · · · · ·		ug/kg						
Hexachloroethane ND ug/kg 410 Isophorone ND ug/kg 410 Naphthalene ND ug/kg 410 Nitrobenzene ND ug/kg 410 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 1200 n-Nitrosodi-n-propylamine ND ug/kg 410 Bis (2-Ethylhexyl)phthalate ND ug/kg 820 Butyl benzyl phthalate ND ug/kg 410 Di-n-butylphthalate ND ug/kg 410 Di-n-butylphthalate ND ug/kg 410 Di-n-octylphthalate ND ug/kg 410 Di-hoctylphthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410 Benzo(a)anthracene ND ug/kg 410 Benzo(a)pyrene ND ug/kg 410 Benzo(b)fluoranthene ND ug/kg 410 Benzo(k)fluoranthene ND ug/kg 410 Chrysene ND ug/kg 410 Chrysene ND ug/kg 410 Chrysene ND ug/kg 410		ND							
Isophorone ND ug/kg 410 Naphthalene ND ug/kg 410 Nitrobenzene ND ug/kg 410 NitrosoDiPhenylAmine(NDPA)/DPA ND ug/kg 1200 n-Nitrosodi-n-propylamine ND ug/kg 410 Bis(2-Ethylhexyl)phthalate ND ug/kg 820 Butyl benzyl phthalate ND ug/kg 410 Di-n-butylphthalate ND ug/kg 410 Di-n-octylphthalate ND ug/kg 410 Di-n-octylphthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410 Dimethyl phthalate ND ug/kg 410 Benzo(a)anthracene ND ug/kg 410 Benzo(a)pyrene ND ug/kg 410 Benzo(b)fluoranthene ND ug/kg 410 Benzo(k)fluoranthene ND ug/kg 410 Chrysene ND ug/kg 410 Chrysene ND ug/kg 410		ND							
Naphthalene ND ug/kg 410 Nitrobenzene ND ug/kg 410 NitrosoDiPhenylAmine (NDPA)/DPA ND ug/kg 1200 n-Nitrosodi-n-propylamine ND ug/kg 410 Bis (2-Ethylhexyl) phthalate ND ug/kg 820 Butyl benzyl phthalate ND ug/kg 410 Di-n-butylphthalate ND ug/kg 410 Di-n-octylphthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410 Dimethyl phthalate ND ug/kg 410 Benzo (a) anthracene ND ug/kg 410 Benzo (b) fluoranthene ND ug/kg 410 Benzo (k) fluoranthene ND ug/kg 410 Chrysene ND ug/kg 410									
Nitrobenzene ND ug/kg 410 NitrosoDiPhenylAmine (NDPA)/DPA ND ug/kg 1200 n-Nitrosodi-n-propylamine ND ug/kg 410 Bis (2-Ethylhexyl) phthalate ND ug/kg 820 Butyl benzyl phthalate ND ug/kg 410 Di-n-butylphthalate ND ug/kg 410 Di-n-octylphthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410 Dimethyl phthalate ND ug/kg 410 Benzo (a) anthracene ND ug/kg 410 Benzo (b) fluoranthene ND ug/kg 410 Benzo (k) fluoranthene ND ug/kg 410 Chrysene ND ug/kg 410	-								
NitrosoDiPhenylAmine (NDPA)/DPA ND ug/kg 1200 n-Nitrosodi-n-propylamine ND ug/kg 410 Bis (2-Ethylhexyl) phthalate ND ug/kg 820 Butyl benzyl phthalate ND ug/kg 410 Di-n-butylphthalate ND ug/kg 410 Di-n-octylphthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410 Dimethyl phthalate ND ug/kg 410 Dimethyl phthalate ND ug/kg 410 Benzo (a) anthracene ND ug/kg 410 Benzo (b) fluoranthene ND ug/kg 410 Benzo (k) fluoranthene ND ug/kg 410 Chrysene ND ug/kg 410	-								
n-Nitrosodi-n-propylamine ND ug/kg 410 Bis(2-Ethylhexyl)phthalate ND ug/kg 820 Butyl benzyl phthalate ND ug/kg 410 Di-n-butylphthalate ND ug/kg 410 Di-n-octylphthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410 Dimethyl phthalate ND ug/kg 410 Dimethyl phthalate ND ug/kg 410 Benzo(a)anthracene ND ug/kg 410 Benzo(a)pyrene ND ug/kg 410 Benzo(b)fluoranthene ND ug/kg 410 Benzo(k)fluoranthene ND ug/kg 410 Chrysene ND ug/kg 410									
Bis (2-Ethylhexyl) phthalate ND ug/kg 820 Butyl benzyl phthalate ND ug/kg 410 Di-n-butylphthalate ND ug/kg 410 Di-n-octylphthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410 Dimethyl phthalate ND ug/kg 410 Benzo (a) anthracene ND ug/kg 410 Benzo (a) pyrene ND ug/kg 410 Benzo (b) fluoranthene ND ug/kg 410 Benzo (k) fluoranthene ND ug/kg 410 Chrysene ND ug/kg 410									
Butyl benzyl phthalate ND ug/kg 410 Di-n-butylphthalate ND ug/kg 410 Di-n-octylphthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410 Dimethyl phthalate ND ug/kg 410 Benzo(a) anthracene ND ug/kg 410 Benzo(a) pyrene ND ug/kg 410 Benzo(b) fluoranthene ND ug/kg 410 Benzo(k) fluoranthene ND ug/kg 410 Chrysene ND ug/kg 410									
Di-n-butylphthalate ND ug/kg 410 Di-n-octylphthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410 Dimethyl phthalate ND ug/kg 410 Benzo(a) anthracene ND ug/kg 410 Benzo(a) pyrene ND ug/kg 410 Benzo(b) fluoranthene ND ug/kg 410 Benzo(k) fluoranthene ND ug/kg 410 Chrysene ND ug/kg 410									
Di-n-octylphthalate ND ug/kg 410 Diethyl phthalate ND ug/kg 410 Dimethyl phthalate ND ug/kg 410 Benzo(a) anthracene ND ug/kg 410 Benzo(a) pyrene ND ug/kg 410 Benzo(b) fluoranthene ND ug/kg 410 Benzo(k) fluoranthene ND ug/kg 410 Chrysene ND ug/kg 410									
Diethyl phthalate ND ug/kg 410 Dimethyl phthalate ND ug/kg 410 Benzo(a) anthracene ND ug/kg 410 Benzo(a) pyrene ND ug/kg 410 Benzo(b) fluoranthene ND ug/kg 410 Benzo(k) fluoranthene ND ug/kg 410 Chrysene ND ug/kg 410									
Dimethyl phthalate ND ug/kg 410 Benzo(a)anthracene ND ug/kg 410 Benzo(a)pyrene ND ug/kg 410 Benzo(b)fluoranthene ND ug/kg 410 Benzo(k)fluoranthene ND ug/kg 410 Chrysene ND ug/kg 410	_ <u>-</u>								
Benzo (a) anthracene ND ug/kg 410 Benzo (a) pyrene ND ug/kg 410 Benzo (b) fluoranthene ND ug/kg 410 Benzo (k) fluoranthene ND ug/kg 410 Chrysene ND ug/kg 410									
Benzo(a)pyrene ND ug/kg 410 Benzo(b)fluoranthene ND ug/kg 410 Benzo(k)fluoranthene ND ug/kg 410 Chrysene ND ug/kg 410	- -								
Benzo (b) fluoranthene ND ug/kg 410 Benzo (k) fluoranthene ND ug/kg 410 Chrysene ND ug/kg 410						•			
Benzo(k)fluoranthene ND ug/kg 410 Chrysene ND ug/kg 410									
Chrysene ND ug/kg 410									
Acenaphthylene ND ug/kg 410	-								
	Acenaphtnylene	ND	ug/kg	410					

Laboratory Sample Number: L0811749-03

13.5-SW-3

PARAMETER	RESULT	UNITS	RDL I	REF METHOD	DATE PREP ANAL	ID
Semivolatile Organies by EPA	8270C cont				0609 09:15 0812 16:	o pe
Anthracene	ND .	ug/kg	410		FANAS MANHAMANATAN	e y newn
Benzo(ghi)perylene	ND	ug/kg	410			
Fluorene	ND	ug/kg	410			
Phenanthrene	ND	ug/kg	410			
Dibenzo(a,h)anthracene	ND	ug/kg	410			
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	410			
Pyrene	ND	ug/kg	410			
Aniline	ND	ug/kg	820			
4-Chloroaniline	ND	ug/kg	410			
1-Methylnaphthalene	ND	ug/kg	410			
2-Nitroaniline	ND	ug/kg	410			
3-Nitroaniline	ND .	ug/kg	410	•		
4-Nitroaniline	ND	ug/kg	580		•	
Dibenzofuran	ND	ug/kg	410			
2-Methylnaphthalene	ND	ug/kg	410			
n-Nitrosodimethylamine	ND	ug/kg	4100			
2,4,6-Trichlorophenol	ND	ug/kg	410			
P-Chloro-M-Cresol	ND	ug/kg	410			
2-Chlorophenol	ND	ug/kg	490			
2,4-Dichlorophenol	ND	ug/kg	820			
2,4-Dimethylphenol	ND	ug/kg	410			
2-Nitrophenol	ND	ug/kg	1600			
4-Nitrophenol	ND	ug/kg	820			
2,4-Dinitrophenol	ND	ug/kg	1600			
4,6-Dinitro-o-cresol	ND	ug/kg	1600			
Pentachlorophenol	ND	ug/kg	1600			
Phenol	ND	ug/kg	580			
2-Methylphenol	ND	ug/kg	490			
3-Methylphenol/4-Methylphenol	ND	ug/kg	490			•
2,4,5-Trichlorophenol	ND	ug/kg	410			
Benzoic Acid	ND	ug/kg	4100			
Benzyl Alcohol	ND	ug/kg	820			
Carbazole	ND	ug/kg	410			
Pyridine	, ND	ug/kg	4100			
Surrogate(s)	Recovery		QC Crit	eria		
2-Fluorophenol	63.0	8	25-120			
Phenol-d6	61.0	8	10-120			
Nitrobenzene-d5	56.0	8	23-120			
2-Fluorobiphenyl	58.0	8	30-120			
2,4,6-Tribromophenol	81.0	8	19-120			
4-Terphenyl-d14	60.0	8	18-120			

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0811749-04

Date Collected: 07-AUG-2008 11:00

13.5-SW-4

Date Received: 08-AUG-2008

Sample Matrix:

SOIL

Date Reported: 15-AUG-2008

Condition of Sample:

Satisfactory

Field Prep:

None

Number & Type of Containers: 1-Amber, 3-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
					PREP ANAL
Solids, Total	89	· 8	0.10	30 2540G	0811 16:20 NM
rotal Metats	- 1748 P				
Antimony, Total	ND	mg/kg	2.7	1 6010B	0811 11:00 0812 16:44 MG
Arsenic, Total	3.0	mg/kg	0.54	1 6010B	0811 11:00 0812 16:44 MG
Beryllium, Total	0.37	mg/kg	0.27	1 6010B	0811 11:00 0812 16:44 MG
Cadmium, Total	ND	mg/kg	0.54	1 6010B	0811 11:00 0812 16:44 MG
Chromium, Total	6.0	mg/kg	0.54	1 6010B	0811 11:00 0812 16:44 MG
Copper, Total	9.1	mg/kg	0.54	1 6010B	0811 11:00 0812 16:44 MG
Lead, Total	2.8	mg/kg	2.7	1 6010B	0811 11:00 0812 16:44 MG
Mercury, Total	ND	mg/kg	0.09	1 7471A	0811 16:00 0812 15:39 HG
Nickel, Total	4.4	mg/kg	1.3	1 6010B	0811 11:00 0812 16:44 MG
Selenium, Total	ND	mg/kg	1.1	1 6010B	0811 11:00 0812 16:44 MG
Silver, Total	ND	mg/kg	0.54	1 6010B	0811 11:00 0812 16:44 MG
Thallium, Total	ND	mg/kg	2.1	1 6010B	0811 11:00 0813 11:08 MG
Zinc, Total	19	mg/kg	2.7	1 6010B	0811 11:00 0812 16:44 MG
Volatile Organics by 82608/	5035=Soil∈Ai	ialysis		1 8260B	celi isograpo
Methylene chloride	ND	ug/kg	7.9		
l,1-Dichloroethane	ND	ug/kg	1.2		
Chloroform	· ND	ug/kg	1.2		
Carbon tetrachloride	ND	ug/kg	0.79		
l,2-Dichloropropane	ND	ug/kg	2.8		
Dibromochloromethane	ND	ug/kg	0.79	,	
l,1,2-Trichloroethane	ND	ug/kg	1.2		
etrachloroethene	ND	ug/kg	0.79		
Chlorobenzene	ND	ug/kg	0.79		
richlorofluoromethane	ND.	ug/kg	4.0		
TI TONITOTOTI GOTOMO EN GINE					
	ND	ug/kg	0.79		
1,2-Dichloroethane	ND ND	ug/kg ug/kg	0.79 0.79		
1,2-Dichloroethane 1,1,1-Trichloroethane		2 2			
l,2-Dichloroethane l,1,1-Trichloroethane Bromodichloromethane	ND	ug/kg	0.79		•
1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane 1:rans-1,3-Dichloropropene	ND ND	ug/kg ug/kg	0.79 0.79		
1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane crans-1,3-Dichloropropene cis-1,3-Dichloropropene	ND ND ND	ug/kg ug/kg ug/kg	0.79 0.79 0.79		
1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane crans-1,3-Dichloropropene cis-1,3-Dichloropropene	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	0.79 0.79 0.79 0.79		
1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene 1,1-Dichloropropene Bromoform	ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg	0.79 0.79 0.79 0.79 4.0		
1,2-Dichloroethane 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene cis-1,3-Dichloropropene 1,1-Dichloropropene Bromoform 1,1,2,2-Tetrachloroethane Benzene	ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	0.79 0.79 0.79 0.79 4.0 3.2		

Laboratory Sample Number: L0811749-04

13.5-SW-4

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
volacite Organics by:82609/5	195-S811≡A	nalvsis om	n i. Fa lsa dan l	8260 F THE TOTAL	08 12 18 02 86
Ethylbenzene	ND	ug/kg	0.79	SOCIETA PROPERTY AND AND AND AND AND AND AND AND AND AND	madustrication designation of the control of the co
Chloromethane	ND	ug/kg	4.0		·
Bromomethane	ND	ug/kg	1.6		
Vinyl chloride	ND	ug/kg	1.6		
Chloroethane	ND	ug/kg	1.6		
1,1-Dichloroethene	ND	ug/kg	0.79		
trans-1,2-Dichloroethene	ND	ug/kg	1.2		
Trichloroethene	ND ·	ug/kg	0.79	•	
1,2-Dichlorobenzene	ND	ug/kg	4.0		
1,3-Dichlorobenzene	ND	ug/kg	4.0		
1,4-Dichlorobenzene	ND	ug/kg	4.0	1	
Methyl tert butyl ether	ND	ug/kg	1.6		
p/m-Xylene	ND	ug/kg	1.6		
o-Xylene	ND	ug/kg ug/kg	1.6		
cis-1,2-Dichloroethene	ND	ug/kg	0.79		
Dibromomethane	ND	ug/kg	7.9		
1,4-Dichlorobutane	ND	ug/kg	7.9	1	
1,2,3-Trichloropropane	ND				
Styrene	ND	ug/kg	7.9		
Dichlorodifluoromethane		ug/kg	1.6		
	ND	ug/kg	7.9		
Acetone	ND	ug/kg	7.9		,
Carbon disulfide	ND	ug/kg	7.9		
2-Butanone	ND	ug/kg	7.9		
Vinyl acetate	ND	ug/kg	7.9		
4-Methyl-2-pentanone	ND	ug/kg	7.9		
2-Hexanone	ND	ug/kg	7.9		
Ethyl methacrylate	ND .	ug/kg	7.9		•
Acrylonitrile	ND	ug/kg	3.2		
Bromochloromethane	ND	ug/kg	4.0		,
Tetrahydrofuran	ND	ug/kg	16.	·	
2,2-Dichloropropane	ND .	ug/kg	4.0		٠.
1,2-Dibromoethane	ND	ug/kg	3.2		
1,3-Dichloropropane	ND	ug/kg	4.0		
1,1,1,2-Tetrachloroethane	ND	ug/kg	0.79		
Bromobenzene	ND	ug/kg	4.0		
n-Butylbenzene	ND	ug/kg	0.79		•
sec-Butylbenzene	ND	ug/kg	0.79		
tert-Butylbenzene	ND	ug/kg	4.0		
o-Chlorotoluene	ND	ug/kg	4.0		
p-Chlorotoluene	ND	ug/kg	4.0		
1,2-Dibromo-3-chloropropane	ND	ug/kg	4.0		
Hexachlorobutadiene	ND	ug/kg	4.0		•
Isopropylbenzene	ND	ug/kg	0.79		•
p-Isopropyltoluene	ND	ug/kg	0.79		
Naphthalene	ND	ug/kg	4.0		
n-Propylbenzene	ND	ug/kg	0.79		
1,2,3-Trichlorobenzene	ND	ug/kg	4.0		
1,2,4-Trichlorobenzene	ND	ug/kg	4.0		
1,3,5-Trimethylbenzene	ND	ug/kg	4.0		,

Laboratory Sample Number: L0811749-04

13.5-SW-4

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
÷					PREP ANAL
					· · · · · · · · · · · · · · · · · · ·
Volatile Organics by 8260B/5	035=Soll A	A ALL AND A SHEET STATE OF THE PARTY OF THE	de le	1 82608	0811 18407 PD
1,2,4-Trimethylbenzene	ND	ug/kg	4.0		
trans-1,4-Dichloro-2-butene	ND	ug/kg	4.0		
Ethyl ether	ND	ug/kg	4.0		
Surrogate(s)	Recovery		OC Cri	teria	
1,2-Dichloroethane-d4	115	*	70-130		
Toluene-d8	102	8	70-130		
4-Bromofluorobenzene	125	8	70-130		
Dibromofluoromethane	93.0	8	70-130		
Semivolat le Organics by FPA	8270C				0809 09:15 0818:16:35 Ps
Acenaphthene	ND	ug/kg	370	ANTONIA DEL PARTO DE LA PORTE DE LA PORTE DE LA PORTE DE LA PORTE DE LA PORTE DE LA PORTE DE LA PORTE DE LA PO	MANUAL SAMESAN SAMESAN SAMESAN
Benzidine	ND	ug/kg	3700		
1,2,4-Trichlorobenzene	ND	ug/kg	3700		
Hexachlorobenzene	ND	ug/kg	370		
Bis(2-chloroethyl)ether	ND	ug/kg	370		
2-Chloronaphthalene	ND	ug/kg	450		
1,2-Dichlorobenzene	ND	ug/kg	370		
1.3-Dichlorobenzene	ND	ug/kg	370		
1,4-Dichlorobenzene	ND	ug/kg	370		
3,3'-Dichlorobenzidine	ND	ug/kg	750		
2,4-Dinitrotoluene	ND	ug/kg	370		
2,6-Dinitrotoluene	ND	ug/kg	370	•	
Azobenzene	ND	ug/kg	370		
Pluoranthene	ND	ug/kg	370		
-Chlorophenyl phenyl ether	ND	ug/kg	370		
-Bromophenyl phenyl ether	ND	ug/kg	370		•
Bis (2-chloroisopropyl) ether	ND	ug/kg	370		•
Bis (2-chloroethoxy) methane	ND	ug/kg	370		
Mexachlorobutadiene	ND	ug/kg	750		
Mexachlorocyclopentadiene	ND	ug/kg	750		
lexachloroethane	ND	ug/kg	370		
Sophorone	ND	ug/kg	370		
Maphthalene	ND	ug/kg	370		
litrobenzene	ND	ug/kg	370		
litrosoDiPhenylAmine(NDPA)/DI		ug/kg	1100		
-Nitrosodi-n-propylamine	ND	ug/kg	370		•
is (2-Ethylhexyl) phthalate	ND	ug/kg	750		
Sutyl benzyl phthalate	ND	ug/kg	370		
oi-n-butylphthalate	ND	ug/kg	370		
i-n-octylphthalate	ND	ug/kg	370		
piethyl phthalate	ND	ug/kg	370		
imethyl phthalate	ND	ug/kg	370		
enzo (a) anthracene	ND	ug/kg	370		
enzo(a)pyrene	ND	ug/kg	370		
senzo(b) fluoranthene	ND	ug/kg	370		
enzo(k) fluoranthene	ND	ug/kg	370		
hrysene	ND ·	ug/kg	370		
cenaphthylene	ND ·	ug/kg	370		

Laboratory Sample Number: L0811749-04

13.5-SW-4

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP ANAL	ID
·	·					<u> </u>
Semi volatiale Organi os by EPA				1 #276c R	0809 09:15 0812-16;	5r.PS
Anthracene	ND	ug/kg	370	•		
Benzo(ghi)perylene	ND	ug/kg	370			
Fluorene	ND	ug/kg	370			
Phenanthrene	ND	ug/kg	370		•	
Dibenzo(a,h)anthracene	ND	ug/kg	370			
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	370			
Pyrene	ND	ug/kg	370			
Aniline	ND	ug/kg	750			
4-Chloroaniline	ND	ug/kg	370		•	
1-Methylnaphthalene	ND	ug/kg	370			
2-Nitroaniline	ND	ug/kg	370		•	
3-Nitroaniline	ND	ug/kg	370			
4-Nitroaniline	ND ·	ug/kg	520			•
Dibenzofuran	ND	ug/kg	370			
2-Methylnaphthalene	ND	ug/kg	370			
n-Nitrosodimethylamine	ND	ug/kg	3700		٠.	
2,4,6-Trichlorophenol	ND	ug/kg	370			
P-Chloro-M-Cresol	ND	ug/kg	370 -			
2-Chloropheno1	ND	ug/kg	450			
2,4-Dichlorophenol	ND	ug/kg	750			
2,4-Dimethylphenol	ND	ug/kg	370			
2-Nitrophenol	ND	ug/kg	1500			
4-Nitrophenol	ND	ug/kg	750			
2,4-Dinitrophenol	ND	ug/kg	1500			
4,6-Dinitro-o-cresol	ND	ug/kg	1500			
Pentachlorophenol	ND	ug/kg	1500			
Phenol	ND	ug/kg	520			
2-Methylphenol	ND	ug/kg	450			
3-Methylphenol/4-Methylphenol	ND .	ug/kg	450			
2,4,5-Trichlorophenol	ND	ug/kg	370			
Benzoic Acid	ND	ug/kg	3700			
Benzyl Alcohol	ND	ug/kg	750			
Carbazole	ND	ug/kg	370			
Pyridine	ND	ug/kg	3700			
Surrogate(s)	Recovery		QC Cr	iteria		
2-Fluorophenol	56.0	*	25-12	0		
Phenol-d6	54.0	8	10-12	0.		
Nitrobenzene-d5	50.0	*	23-12	0		
2-Fluorobiphenyl	53.0	8	30-12	0	·	
2,4,6-Tribromophenol	72.0	*	19-12	0 .		
4-Terphenyl-d14	62.0	8	18-12	0 .		

MA:M-MA086 NE:2003 CT:PE-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0811749-05

13.5-B

Date Collected: 07-AUG-2008 12:00 Date Received: 08-AUG-2008

Sample Matrix:

SOIL

Date Reported: 15-AUG-2008

Condition of Sample:

Satisfactory

Field Prep:

None

Number & Type of Containers: 1-Amber, 3-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHO	D D2	TE	ID
					PREP	ANAL	
Solids, Total	84	8	0.10	30 2540G		0811 16:20	NM
Total Metals							
Antimony, Total	ND	mg/kg	2.9	1 6010B	0811 11:00	0812 16:47	MG
Arsenic, Total	2.3	mg/kg	0.58	1 6010B	0811 11:00	0812 16:47	MG
Beryllium, Total	0.50	mg/kg	0.29	1 6010B	0811 11:00	0812 16:47	MG
Cadmium, Total	ND.	mg/kg	0.58	1 6010B	0811 11:00	0812 16:47	MG
Chromium, Total	8.5	mg/kg	0.58	1 6010B	0811 11:00	0812 16:47	MG
Copper, Total	7.1	mg/kg	0.58	1 6010B	0811 11:00	0812 16:47	MG
Lead, Total	13	mg/kg	2.9	1 6010B	0811 11:00	0812 16:47	MG
Mercury, Total	ND	mg/kg	0.09	1 7471A	0811 16:00	0812 15:40	HG
Nickel, Total	7.0	mg/kg	1.4	1 6010B	0811 11:00	0812 16:47	MG
Selenium, Total	ND	mg/kg	1.2	1 6010B	0811 11:00	0812 16:47	MG
Silver, Total	ND	mg/kg	0.58	1 60103	0811 11:00	0812 16:47	MG
Thallium, Total	. ND	mg/kg	1.2	1 6010B	0811 11:00	0812 16:47	MG
Zinc, Total	66	mg/kg	2.9	1 6010B	0011 11.00	0812 16:47	MG
		•••9/ ••9	2.3	1 40108	0811 11:00	0012 10:47	
				1 60108	0611 11:00	0012 10:47	
olatile Organics by 8260B/		adysis "		1 82608		0811 18 44	95
Methylene chloride	ND .	rafysis ug/kg	7.1	1 82608		0811 18 F4	рb
Methylene chloride 1,1-Dichloroethane	ND ND	ug/kg ug/kg ug/kg	7.1 1.1	1 6010B		0011 18:44	25
Methylene chloride 1,1-Dichloroethane Chloroform	ND ND ND	ug/kg ug/kg ug/kg ug/kg	7.1 1.1 1.1	1 82606		0812 10:47 0812 18:47	P D
Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg	7.1 1.1 1.1 0.71	1 8260p		0811 10 44	PP.
Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane	ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	7.1 1.1 1.1 0.71 2.5	1 8260B		0811 16 44	25
Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	7.1 1.1 1.1 0.71 2.5 0.71	1 8260B		0811,10,34	P E
Methylene chloride L,1-Dichloroethane Chloroform Carbon tetrachloride L,2-Dichloropropane Dibromochloromethane L,1,2-Trichloroethane	ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	7.1 1.1 1.1 0.71 2.5 0.71 1.1	1 8260B		0811,10,34	
Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Cetrachloroethene	ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	7.1 1.1 1.1 0.71 2.5 0.71 1.1 0.71	1 8260B		0811 10 34	200
Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Cetrachloroethene Chlorobenzene	ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	7.1 1.1 1.1 0.71 2.5 0.71 1.1 0.71 0.71	82608		0811 10 34	
Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Cetrachloroethene	ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	7.1 1.1 1.1 0.71 2.5 0.71 1.1 0.71	82608		0811 10 34	
Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Cetrachloroethene Chlorobenzene Crichlorofluoromethane 1,2-Dichloroethane	ND ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	7.1 1.1 1.1 0.71 2.5 0.71 1.1 0.71 0.71 3.5 0.71	82508		0811 10134	
Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Cetrachloroethene Chlorobenzene Crichlorofluoromethane 1,2-Dichloroethane 1,1-Trichloroethane	ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	7.1 1.1 1.1 0.71 2.5 0.71 1.1 0.71 0.71 3.5	82508		0811 10134	
Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Cetrachloroethene Chlorobenzene Crichlorofluoromethane 1,2-Dichloroethane	ND ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	7.1 1.1 1.1 0.71 2.5 0.71 1.1 0.71 0.71 3.5 0.71	82508		0811 10134	
Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Cetrachloroethene Chlorofluoromethane 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Trichloropropene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	7.1 1.1 0.71 2.5 0.71 1.1 0.71 0.71 0.71 0.71 0.71	82508		0811 10134	
Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Cetrachloroethene Chlorofluoromethane 1,2-Dichloroethane 1,1-Trichloroethane Commodichloromethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	7.1 1.1 0.71 2.5 0.71 1.1 0.71 0.71 0.71 3.5 0.71 0.71	82508		0811 10134	
Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Cetrachloroethene Chlorofluoromethane 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Trichloropropene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	7.1 1.1 0.71 2.5 0.71 1.1 0.71 0.71 0.71 0.71 0.71	82508		0811 10134	
Methylene chloride 1,1-Dichloroethane 2,1-Dichloroethane 2,2-Dichloropropane 3,1,2-Trichloroethane 3,1,2-Trichloroethane 4,1,1-Trichloroethane 5,1,1-Trichloroethane 6,1,1-Trichloroethane 6,1,1-Trichloroethane 6,1,1-Trichloroethane 6,1,1-Trichloroethane 6,1,1-Trichloropropene 6,1,3-Dichloropropene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	7.1 1.1 0.71 2.5 0.71 1.1 0.71 0.71 0.71 0.71 0.71 0.71	82508		0811 10134	
Methylene chloride 1,1-Dichloroethane 2,1-Dichloroethane 2,2-Dichloropropane 3,1,2-Trichloroethane 3,1,2-Trichloroethane 4,1,2-Trichloroethane 5,1,2-Dichloroethane 6,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,2-Dichloromethane 1,3-Dichloropropene 1,1-Dichloropropene 1,1-Dichloropropene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	7.1 1.1 0.71 2.5 0.71 1.1 0.71 0.71 0.71 0.71 0.71 0.71	82508		0811 10134	
Methylene chloride 1,1-Dichloroethane 2,1-Dichloroethane 2,2-Dichloropropane 3,1,2-Trichloroethane 3,1,2-Trichloroethane 4,1,2-Trichloroethane 5,1,1-Trichloromethane 1,1,1-Trichloroethane 1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloropropene 1,1-Dichloropropene 1,1-Dichloropropene 1,1-Dichloropropene 1,1-Dichloropropene 1,1-Dichloropropene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	7.1 1.1 0.71 2.5 0.71 1.1 0.71 0.71 0.71 0.71 0.71 0.71	82508		0811 10134	

Comments: Complete list of References and Glossary of Terms found in Addendum I

08150810:57 Page 19 of 30

Laboratory Sample Number: L0811749-05

13.5-B

PARAMETER	result	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatrie Organics by 82608/5	035-soilea	ralevs es «coi	Hara Es		0811 18 24 90
Ethylbenzene	ND	ug/kg	0.71	THE RESERVE OF THE PROPERTY OF	
Chloromethane	ND	ug/kg	3.5		
Bromomethane	ND	ug/kg	1.4	•	
Vinyl chloride	ND	ug/kg	1.4		
Chloroethane	ND	ug/kg	1.4		
1,1-Dichloroethene	ND	ug/kg	0.71		
trans-1,2-Dichloroethene	ND	ug/kg	1.1		
Trichloroethene	ND	ug/kg	0.71		
1,2-Dichlorobenzene	ND	ug/kg	3.5		
1,3-Dichlorobenzene	ND	ug/kg	3.5	•	
1,4-Dichlorobenzene	ND	ug/kg	3.5	•	
Methyl tert butyl ether	ND	ug/kg	1.4		
p/m-Xylene	ND	ug/kg	1.4		
o-Xylene	ND	ug/kg	1.4		
cis-1,2-Dichloroethene	ND	ug/kg	0.71		•
Dibromomethane	ND	ug/kg	7.1	•	
1,4-Dichlorobutane	ND	ug/kg	7.1		
1,2,3-Trichloropropane	ND	ug/kg	7.1		
Styrene	ND	ug/kg	1.4		•
Dichlorodifluoromethane	ND	ug/kg	7.1		
Acetone	ND	ug/kg	7.1		
Carbon disulfide	ND	ug/kg	7.1		
2-Butanone	ND	ug/kg	7.1		
Vinyl acetate	ND	ug/kg	7.1		
4-Methyl-2-pentanone	ND	ug/kg	7.1		
2-Hexanone	ND	ug/kg	7.1		
Ethyl methacrylate	ND	ug/kg	7.1		
Acrylonitrile	ND	ug/kg	2.8		
Bromochloromethane	ND	ug/kg	3.5		•
Tetrahydrofuran	ND	ug/kg	14.	·	
2,2-Dichloropropane	ND	ug/kg	3.5		
1,2-Dibromoethane	ND	ug/kg	2.8		•
1,3-Dichloropropane	ND	ug/kg	3.5		
1,1,1,2-Tetrachloroethane	ND	ug/kg	0.71		
Bromobenzene	ND	ug/kg	3.5		
n-Butylbenzene	ND	ug/kg	0.71		
sec-Butylbenzene	ND	ug/kg	0.71		
tert-Butylbenzene	ND	ug/kg	3.5		
o-Chlorotoluene	ND	ug/kg	3.5		
p-Chlorotoluene	ND	ug/kg	3.5		
1,2-Dibromo-3-chloropropane	ND	ug/kg	3.5	•	
Hexachlorobutadiene	NĎ	ug/kg	3.5		
Isopropylbenzene	ND	ug/kg	0.71		
p-Isopropyltoluene	ND	ug/kg	0.71		•
Naphthalene	ND	ug/kg	3.5		
n-Propylbenzene	ND	ug/kg	0.71		
1,2,3-Trichlorobenzene	ND	ug/kg	3.5		•
1,2,4-Trichlorobenzene	ND	ug/kg	3.5		
1,3,5-Trimethylbenzene	ND	ug/kg	3.5		

Laboratory Sample Number: L0811749-05

13.5-B

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
					PREP ANAL

votavite organics by 8260BV5		THE REAL PROPERTY OF THE REAL	This hand was a second of	1982608	0811 1814 305
1,2,4-Trimethylbenzene	ND	ug/kg	3.5		•
trans-1,4-Dichloro-2-butene	ND	ug/kg	3.5		
Ethyl ether	ND	ug/kg	3.5		
Surrogate(s)	Recovery		QC Cri	teria	
1,2-Dichloroethane-d4	111	윰	70-130		
Toluene-d8	98.0	용	70-130		
4-Bromofluorobenzene	128	용	70-130		
Dibromofluoromethane	88.0	용	70-130		
Semivolatile Organics by EPA	8270C			1 W8278C	0809 09115 0812 6 598ps
Acenaphthene	ND	ug/kg	400	A TO COMPANY OF THE PROPERTY O	CONTRACTOR OF THE PROPERTY OF
Benzidine	ND	ug/kg	4000		
1,2,4-Trichlorobenzene	ND	ug/kg	400		
Hexachlorobenzene	ND	ug/kg	400		
Bis(2-chloroethyl)ether	ND	ug/kg	400		
2-Chloronaphthalene	ND	ug/kg	480		
1,2-Dichlorobenzene	ND	ug/kg	400		
1,3-Dichlorobenzene	ND	ug/kg	400		
l,4-Dichlorobenzene	ND	ug/kg	400		
3,3'-Dichlorobenzidine	ND	ug/kg	79Ô		
2,4-Dinitrotoluene	ND	ug/kg	400		
2,6-Dinitrotoluene	ND	ug/kg	400		
Azobenzene	ND	ug/kg	400		
Fluoranthene	ND	ug/kg	400		
4-Chlorophenyl phenyl ether.	ND	ug/kg	400		
4-Bromophenyl phenyl ether	ND	ug/kg	400	•	
Bis(2-chloroisopropyl)ether	ND	ug/kg	400		•
Bis(2-chloroethoxy)methane	ND	ug/kg	400		
Hexachlorobutadiene	ND	ug/kg	790		
Hexachlorocyclopentadiene	ND	ug/kg	790		
Hexachloroethane	ND	ug/kg	400		
Isophorone	ND	ug/kg	400		
Naphthalene	ND	ug/kg	400		
Vitrobenzene	ND	ug/kg	400		
NitrosoDiPhenylAmine(NDPA)/DF	PA ND	ug/kg	1200		
n-Nitrosodi-n-propylamine	ND	ug/kg	400		
Bis(2-Ethylhexyl)phthalate	ND.	ug/kg	790	,	
Butyl benzyl phthalate	ND	ug/kg	400		
Di-n-butylphthalate	ND	ug/kg	400		
Di-n-octylphthalate	· ND	ug/kg	400		
Diethyl phthalate	ND	ug/kg	400		
Dimethyl phthalate	ND	ug/kg	400		
Benzo (a) anthracene	ND	ug/kg	400		
Benzo (a) pyrene	ND	ug/kg	400		
Benzo (b) fluoranthene	ND	ug/kg	400		
Benzo(k)fluoranthene	ND	ug/kg	400		
Chrysene	ND	ug/kg	400		
Acenaphthylene	ND	ug/kg	400		

Laboratory Sample Number: L0811749-05

13.5-B

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATI PREP	E ANAL	ID
Semivorative organics by cpa	82700 zeent	56		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D809 D91 15 0	10.15.5	Q=D<
Anthracene	ND	ug/kg	400		outresian no estado	A SECTION AND ACCUS	
Benzo(ghi)perylene	ND	ug/kg	400				
Fluorene	ND	ug/kg	400				
Phenanthrene	ND	ug/kg	400				
Dibenzo(a,h)anthracene	ND	ug/kg	400				
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	400				
Pyrene	ND	ug/kg	400			•	
Aniline	ND.	ug/kg	790				
4-Chloroaniline	ND	ug/kg	400				
1-Methylnaphthalene	ND	ug/kg	400				
2-Nitroaniline	ND	ug/kg	400				
3-Nitroaniline	ND	ug/kg	400				
4-Nitroaniline	ND	ug/kg	560				
Dibenzofuran	ND	ug/kg	400				
2-Methylnaphthalene	ND	ug/kg	400				
n-Nitrosodimethylamine	ND	ug/kg	4000				
2,4,6-Trichlorophenol	ND	ug/kg	400				
P-Chloro-M-Cresol	ND	ug/kg	400				
2-Chlorophenol	ND	ug/kg	480				
2,4-Dichlorophenol	ND	ug/kg	790				
2,4-Dimethylphenol	ND	ug/kg	400				
2-Nitrophenol	ND	ug/kg	1600	•			
4-Nitrophenol	ND ·	ug/kg	790				
2,4-Dinitrophenol	ND	ug/kg	1600				
4,6-Dinitro-o-cresol	ND	ug/kg	1600				
Pentachlorophenol	ND	ug/kg	1600				
Phenol	ND	ug/kg	560				
2-Methylphenol	ND	ug/kg	480				
3-Methylphenol/4-Methylphenol		ug/kg	480				
2,4,5-Trichlorophenol	ND	ug/kg	400				
Benzoic Acid	ND	ug/kg	4000				
Benzyl Alcohol	ND .	ug/kg	790	•			
Carbazole	ND ·	ug/kg	400			•	
Pyridine	ND	ug/kg	4000				
Surrogate(s)	Recovery		QĊ Cri	teria			
2-Fluorophenol	60.0	9 8	25-120				
Phenol-d6	59.0	8	10-120				
Nitrobenzene-d5	53.0	8	23-120				
2-Fluorobiphenyl	58.0	8	30-120				
2,4,6-Tribromophenol	86.0	8	19-120	•			
4-Terphenyl-d14	56.0	g .	18-120				

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH DUPLICATE ANALYSIS

Parameter	Value 1	Value 2	Units	RPD	RPD	Limits
	Total for sam	ne en en	os utoeropus		2514651	
Solids, Total	100	100	***************************************	0	20	
Total	Melais for sam	ile(s) 015	05 (T0811749	#0 1; wg3	3210 4 -0	
Antimony, Total	ND .	ND	mg/kg	NC	35	
Arsenic, Total	3.0	2.9	mg/kg	3	35	
Beryllium, Total	0.27	0.25	mg/kg	8	35	
Cadmium, Total	ND	ND ·	mg/kg	NC	35	
Chromium, Total	5.4	4.0	mg/kg	30	35	
Copper, Total	7.2	6.2	mg/kg	15	35	,
Lead, Total	ND	ND '	mg/kg	NC	35	
Nickel, Total	4.2	3.5	mg/kg	18	35	
Selenium, Total	ND	ND	mg/kg	NC	35	
Silver, Total	ND	ND	mg/kg	NC	35	
Thallium, Total	ND	ND	mg/kg	NC	35	
Zinc, Total	12	12	mg/kg	. 0	35	
Mill Total	Metals for same	ietsi ol-c)5 (E6811749	4011 WG3	2141737	
Mercury, Total	ND	ND	mg/kg	NC	35	

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH SPIKE ANALYSES

Parameter	% Recovery	QC Criteria
Lorenza La Total Metals E	CS LOT Sample S U1-U5-	WG33210424) Black Comp.
Antimony, Total	86	75-125
Arsenic, Total	92	75–125
Beryllium, Total	90	75-125
Cadmium, Total	93	75-125
Chromium, Total	91	75-125
Copper, Total	82	75-125
Lead, Total	89	75-125
Nickel, Total	86	75-125
Selenium, Total	87	75-125
Silver, Total	123	75-125
Thallium, Total	89	75-125
Zinc, Total	86	75-125
Mercury, Total Metals I	102	80-120
Zotal Metals SPIKE fo		[##3#01;4WG332104-2)
Antimony, Total	58	75-125
Arsenic, Total	93	75-125
Beryllium, Total	97	75-125
Cadmium, Total	94	75-125
Chromium, Total	79	75-125
Copper, Total	73	75-125
Lead, Total	98	75-125
Nickel, Total	86	75-125
Selenium, Total	90	75-125 75-125
Silver, Total	90 97	75–125
Thallium, Total	114	75-125 75-125
Zinc, Total	87	
aine, iotal	87	75-125
CLANDO SECTION MODELS SPEKE SO		
を行うとは、中国の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の		1749-01-9WG332141-A)
Mercury, Total	102	70-130

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH LCS/LCSD ANALYSIS

Parameter	LCS &	LCSD %	RPD	RPD Limit	QC Limits
Volatile Organics by 8260B/503	s casi a materia	as far sam		6 Mwg332201	WG332201-2)
Chlorobenzene	95	92	3	30	60-133
	93	89	4	30	66-142
Benzene	95 95	94	1	30	59-139
Toluene 1,1-Dichloroethene	102	98	4	30	59-172
Trichloroethene	90	89	1	30	62-137
Surrogate(s)					
1,2-Dichloroethane-d4	98	114	15		70-130
Toluene-d8	85	100	16		70-130
4-Bromofluorobenzene	88	104	17		70-130
Dibromofluoromethane	81	93	14		70-130
Semiyolacile organics by EPA 8	270C for same	ie (s)=01+05	,(WG332027	#2# WG33202/7-3	
Acenaphthene	70	67	4	50	31-137
1,2,4-Trichlorobenzene	79	76	4	50	38-107
2-Chloronaphthalene	76	.72	5	50	40-140
1,2-Dichlorobenzene	74	72	3	50	40-140
1,4-Dichlorobenzene	71	67	6	. 50	28-104
2,4-Dinitrotoluene	82	78	5	50	28-89
2,6-Dinitrotoluene	82	80	2	50	40-140
Fluoranthene	88	82	7	50	40-140
4-Chlorophenyl phenyl ether	78	77	1 .	50	40-140
n-Nitrosodi-n-propylamine	. 59	56	. 5	50	41-126
Butyl benzyl phthalate	86	80	7	50	40-140
Anthracene	84	79	6	50	40-140
Pyrene	79	74	7	50	35-142
P-Chloro-M-Cresol	83	83	0	. 50	26-103
2-Chlorophenol	78	70	11	50	25-102
2-Nitropheno1	80	78	3	· 50	30-130
4-Nitrophenol	71	67	6	50	11-114
2,4-Dinitrophenol	85	69	21	50	30-130
Pentachlorophenol	72	70	3	50	17-109
Phenol	68	65	5	50	26-90
Surrogate(s)					
2-Fluorophenol	77 .	74	4		25-120
Phenol-d6	74	69	7		10-120
Nitrobenzene-d5	. 70	65	7 .		23-120
2-Fluorobiphenyl	72	69	4		30-120
2,4,6-Tribromophenol	106	100	6		19-120
4-Terphenyl-d14	70	66	6		18-120

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH BLANK ANALYSIS

<u> </u>					
PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE II
		. ,			PREP ANAL
			· · ·		
Blank Analys	is for sam	pjetaj 01	95 = (WG 93.	2104-3)	
otal Metals 550 LLL					
Antimony, Total	ND	mg/kg	2.5	1 6010B	0811 11:00 0812 16:25 MG
Arsenic, Total	ND.	mg/kg	0.50	1 6010B	0811 11:00 0812 16:25 MG
Beryllium, Total	ND	mg/kg	0.25	1 6010B	0811 11:00 0812 16:25 Mg
Cadmium, Total	ND	mg/kg	0.50	1 6010B	0811 11:00 0812 16:25 MG
Chromium, Total	ND	mg/kg	0.50	1 6010B	0811 11:00 0812 16:25 MG
Copper, Total	ND	mg/kg	0.50	1 6010B	0811 11:00 0812 16:25 Mg
Lead, Total	ND	mg/kg	2.5	1 6010B	0811 11:00 0812 16:25 MG
Wickel, Total	ND	mg/kg	1.2	1 6010B	0811 11:00 0812 16:25 MG
Selenium, Total	ND	mg/kg	1.0	1 6010B	0811 11:00 0812 16:25 MG
Silver, Total	ND	mg/kg	0.50	1 6010B	0811 11:00 0812 16:25 Mg
Thallium, Total	ND	mg/kg	1.0	1 6010B	0811 11:00 0812 16:25 M
Zinc, Total	ND	mg/kg	2.5	1 60108	0811 11:00 0812 16:25 M
		RT-NUMBERS			·
Blank Analy	sis for sam	ole(s) 01=	05 (WG33	2141-21)	
		H82096775445	FEFFERENCE AND UNITED		WELLIAM DER CAMPAGE AND AND AND AND AND AND AND AND AND AND
Mercury, Total	ND	mg/kg	0.08	1 7471A	0811 16:00 0812 15:22 H
Blank Analy	TESTEON SAN	Alaks or	กราชตัวจ	2201431	######################################
volatile Organics by 8260B/					0811510±46 P
Methylene chloride	ND	ug/kg	10.		
1,1-Dichloroethane	ND	ug/kg	1.5		
Chloroform	ND	ug/kg	1.5		
Carbon tetrachloride	ND .	ug/kg	1.0		
1,2-Dichloropropane	ND	ug/kg	3.5	•	
Dibromochloromethane	ND	ug/kg	1.0		
1,1,2-Trichloroethane	ND ·	ug/kg	1.5		
Tetrachloroethene	ND	ug/kg	1.0		•
Chlorobenzene	ND	ug/kg	1.0		•
Trichlorofluoromethane	ND	ug/kg	5.0		
1.2-Dichloroethane	ND	ug/kg	1.0		
1,1,1-Trichloroethane	ND	ug/kg	1.0		
Bromodichloromethane	ND	ug/kg	1.0		
trans-1,3-Dichloropropene	ND	ug/kg	1.0		
cis-1,3-Dichloropropene	ND	ug/kg	1.0		
1,1-Dichloropropene	ND	ug/kg	5.0		
Bromoform	ND	ug/kg	4.0		
1,1,2,2-Tetrachloroethane	ND	ug/kg	1.0		
Benzene	ND	ug/kg	1.0		
Toluene	ND	ug/kg	1.5		
Ethylbenzene	ND	ug/kg	1.0		
Chloromethane	ND	ug/kg	5.0		
Bromomethane	ND	ug/kg	2.0		
DT OWOME CHOILE					
Vinul chloride	MD				
Vinyl chloride Chloroethane	ND ND	ug/kg ug/kg	2.0 2.0		

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH BLANK ANALYSIS

Laboratory Job Number: L0811749

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD .	DATE ID PREP ANAL
	· · ·	•			
Blank Analys Volatile Organics by 8260B/5	iš for sam	ple(s) 01	05 (WG33	2201-3)	0011010146.00
		ualysis	1.0	NEED TO OZOODINI NEED	inimin emercencialistica de l'inite de la companya de la companya de la companya de la companya de la companya
1,1-Dichloroethene	ND	ug/kg	1.5		
trans-1,2-Dichloroethene	ND	ug/kg	1.0		
Trichloroethene	ND	ug/kg	5.0		
1,2-Dichlorobenzene	ND	ug/kg	5.0		
1,3-Dichlorobenzene	ND	ug/kg	5.0		
1,4-Dichlorobenzene	ND	ug/kg ug/kg	2.0		
Methyl tert butyl ether	ND		2.0		
p/m-xylene	ND	ug/kg	2.0		
o-Xylene	ND	ug/kg	1.0		
cis-1,2-Dichloroethene	ND	ug/kg	10.		
Dibromomethane	ND	ug/kg	10.		
1,4-Dichlorobutane	ND	ug/kg		4	
1,2,3-Trichloropropane	ND	ug/kg	10.		
Styrene	ND	ug/kg	2.0		
Dichlorodifluoromethane	ND	ug/kg	10.	•	·
Acetone	ND	ug/kg	10.		
Carbon disulfide	ND	ug/kg	10.		
2-Butanone	ND	ug/kg	10.		
Vinyl acetate	ND	ug/kg	10.		
4-Methyl-2-pentanone	ND	ug/kg	10.		
2-Hexanone	ND	ug/kg	10.		
Ethyl methacrylate	ND	ug/kg	10.		
Acrylonitrile	ND	ug/kg	4.0		•
Bromochloromethane	ND	ug/kg	5.0		• .
Tetrahydrofuran	ND	ug/kg	20.		
2,2-Dichloropropane	ND	ug/kg	5.0		
1,2-Dibromoethane	ND	ug/kg	4.0		
1,3-Dichloropropane	ND	ug/kg	5.0		
1,1,1,2-Tetrachloroethane	ND	ug/kg	1.0		
Bromobenzene	ND	ug/kg	5.0		
n-Butylbenzene	ND	ug/kg	1.0		
sec-Butylbenzene	ND	ug/kg	1.0		
tert-Butylbenzene	ND .	ug/kg	.5.0		
-Chlorotoluene	ND	ug/kg	5.0		
o-Chlorotoluene	ND	ug/kg	5.0		·
1,2-Dibromo-3-chloropropane	ND	ug/kg	5.0	•	
Hexachlorobutadiene	ND	ug/kg	5.0		
Isopropylbenzene	ND	ug/kg	1.0		
p-Isopropyltoluene	ND	ug/kg	1.0		
Naphthalene	ND	ug/kg	5.0		
n-Propylbenzene	ND	ug/kg	1.0		
1,2,3-Trichlorobenzene	ND	ug/kg	5.0		
1,2,4-Trichlorobenzene	ND	ug/kg	5.0		
1,3,5-Trimethylbenzene	ND	ug/kg	5.0		
1,2,4-Trimethylbenzene	ND	ug/kg	5.0		
trans-1,4-Dichloro-2-butene	ND	ug/kg	5.0		

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH BLANK ANALYSIS

Laboratory Job Number: L0811749

Continued

PARAMETER	RESULT	UNITS	RDL F	EF METHOD	PREP	E :	ID
in the second visit				1-3)(147-11-2			
Volatile Organics by 82608/50	35-5011 A	malysis con	tza 💮 🗀	1 8260B		811 10:46	PO
Ethyl ether	ND	ug/kg	5.0				
Surrogate(s)	Recovery		QC Crite	ria			
1,2-Dichloroethane-d4	111	8	70-130				
Toluene-d8	100	8	70-130				
4-Bromofluorobenzene	117	8	70-130				
Dibromofluoromethane	92.0	8	70-130		•		
III. Blank Analysi	s for sam	illei(s)=0.⊑(5, (wg38282				
Seminative Organics by EPA				1 8270C 1 1	0809109515-0	812 12 29	PS _
Acenaphthene	ND	ug/kg	330			٠.	
Benzidine	ND	ug/kg	3300				
1,2,4-Trichlorobenzene	ND	ug/kg	330				
Hexachlorobenzene	N D	ug/kg	330				
Bis(2-chloroethyl)ether	ND	ug/kg	330	•			
2-Chloronaphthalene	ND	ug/kg	400				
1,2-Dichlorobenzene	ND	ug/kg	330				
1,3-Dichlorobenzene	ND	ug/kg	330	• •			
1,4-Dichlorobenzene	ND	ug/kg	330				
3,3'-Dichlorobenzidine	ND	ug/kg	670				
2,4-Dinitrotoluene	ND	ug/kg	330				
2,6-Dinitrotoluene	ND	ug/kg	330				
Azobenzene	ND	ug/kg	330				
Fluoranthene	ND	ug/kg	330				
4-Chlorophenyl phenyl ether	ND	ug/kg	330				
4-Bromophenyl phenyl ether	ND	ug/kg	330				
Bis(2-chloroisopropyl)ether	ND	ug/kg	330				
Bis (2-chloroethoxy) methane	ND	ug/kg	330				
Hexachlorobutadiene	ND	ug/kg	670				
Hexachlorocyclopentadiene	ND	ug/kg	670				
Hexachloroethane	ND	ug/kg	330				
Isophorone	ND	ug/kg	330				
Naphthalene	ND	ug/kg	330				
Nitrobenzene	ND	ug/kg	.330				
NitrosoDiPhenylAmine(NDPA)/DI		ug/kg	1000				
n-Nitrosodi-n-propylamine	ND	ug/kg	330				
Bis (2-Ethylhexyl) phthalate	ND	ug/kg	670				
Butyl benzyl phthalate	ND	ug/kg	330				
Di-n-butylphthalate	ND	ug/kg	330				
Di-n-octylphthalate	ND	ug/kg ug/kg	330		-		
Diethyl phthalate	ND	ug/kg ug/kg	330				
Dimethyl phthalate	ND	ug/kg ug/kg	330				
Benzo(a) anthracene	ND		330				
		ug/kg					
Benzo(a)pyrene	ND	ug/kg	330				
Benzo(b) fluoranthene Benzo(k) fluoranthene	ND	ug/kg	330				
	ND	ug/kg	330				

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH BLANK ANALYSIS

Laboratory Job Number: L0811749

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Blank Analyst			05=(WG33	2027-12	
Semivolatile Organics by EPAL	8270C cont			12.82700	0809 09:15 0812 12:29 PS
Chrysene	ND	ug/kg	330		
Acenaphthylene	ND	ug/kg	330		
Anthracene	ND	ug/kg	330		
Benzo(ghi)perylene	ND	ug/kg	330		
Fluorene	ND	ug/kg	330		•
Phenanthrene	ND	ug/kg	330		
Dibenzo(a,h)anthracene	ND	ug/kg	330		•
Indeno(1,2,3-cd)Pyrene	ND	ug/kg	330		
Pyrene	ND	ug/kg	330		• '
Aniline	ND	ug/kg	670		
4-Chloroaniline	ND	ug/kg	330		•
1-Methylnaphthalene	.ND	ug/kg	330		
2-Nitroaniline	ND	ug/kg	330		
3-Nitroaniline	ND .	ug/kg	330		
4-Nitroaniline	ND	ug/kg	470		į.
Dibenzofuran	ND	ug/kg	330		
2-Methylnaphthalene	ND	ug/kg	330		•
n-Nitrosodimethylamine	ND	ug/kg	3300		
2,4,6-Trichlorophenol	ND	ug/kg	330		
P-Chloro-M-Cresol	ND	ug/kg	330		
2-Chlorophenol	ND	ug/kg	400		
2,4-Dichlorophenol	ND	ug/kg	670		•
2,4-Dimethylphenol	ND	ug/kg	330		
2-Nitrophenol	ND	ug/kg	1300		•
4-Nitrophenol	ND	ug/kg	670		
2,4-Dinitrophenol	ND	ug/kg	1300		
4,6-Dinitro-o-cresol	ND	ug/kg	1300		
Pentachlorophenol	ND	ug/kg	1300		
Phenol	ND	ug/kg	470	•	
2-Methylphenol	ND	ug/kg	400		
3-Methylphenol/4-Methylphenol		ug/kg	400		
2,4,5-Trichlorophenol	ND	ug/kg	330		•
Benzoic Acid	ND	ug/kg	3300	•	
Benzyl Alcohol	ND	ug/kg	670		
Carbazole	ND	ug/kg	330		•
Pyridine	ND	ug/kg	3300		
Surrogate(s)	Recovery			teria	
2-Fluorophenol	67.0	8	25-120		
Phenol-d6	62.0	8	10-120)	
Nitrobenzene-d5	58.0	8	23-120)	
2-Fluorobipheny1	63.0	8	30-120)	
2,4,6-Tribromophenol	78.0	8	19-120)	,
4-Terpheny1-d14	57.0	8	18-120		•

ALPHA ANALYTICAL ADDENDUM I

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IIIA, 1997.
- 30. Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.

GLOSSARY OF TERMS AND SYMBOLS

REF Reference number in which test method may be found.

METHOD Method number by which analysis was performed.

ID Initials of the analyst.

ND Not detected in comparison to the reported detection limit.

NI Not Ignitable.

ug/cart Micrograms per Cartridge.

The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

LIMITATION OF LIABILITIES

Alpha Analytical, Inc. performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical, Inc., shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical, Inc. be held liable for any incidental consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical, Inc.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding times and splitting of samples in the field.

08150810:57 Page 30 of 30

CHAIN	OF CU	STODY ,	AGEOF_	<u>L</u>	iene i e					A	77.4		
WESTBORO, MA MANSFIELD, MA	Project	Information			Report	Inforn	nation - Da	ta Delive	rables	Ві	lling l	nformation	
TEL: 508-898-9220 TEL: 508-822-9300 FAX: 508-898-9193 FAX: 508-822-3288	Project N	ame: Franklin	NH (Ca	okson	Æ ÐAX		E MAI	L		шs	ame a	s Client info PO#:	904Z
Client Information	Project Lo	_	NH		D ADE	-		Deliverabl					
Client: Do Ita Consultan	Project #	84070	12686				quirement						
Address: 185 Joseph RL.	Project M		Zzant	\s	State /Fe		em	Cri	teria				
Tow. NY 12180	ALPHA C	Quote #:	D. 9				SUMPTIVE	CERTA	INTY	- CT RE	EASOI	NABLE CONFIDENCE PR	0TO-
Phone: 518 - 203 - 005	O Turn-A	around Time			□ Yes		Are MCF	Analytica	l Method	ls Requi	ired?	•	
Fax: 518-203-005	()				□ Yes	□ No		-		•		toccis) Required?	
Emall: Sbryant @delta en	. com	1. 1.	confirmed if pre-approved	n Engl		80/	<u> </u>	//	//	<u> </u>	Π	/ /	T O
These samples have been previously analyzed by	y Alpha	\$ 115,700	Time: .		6	1		/ . / _	/ /	/ /	/ /	SAMPLE HANDLING	A L
Other Project Specific Requirements	s/Comments/De	etection Limits:					3//		' /	//	<i> </i>	/ Filtration	. 7
·					اء ا	/ :/	, y /	/ /	//	///	/ /	│ □ Not needed □ Leb to do	ß
				,		0/3	\mathcal{I}	/ /	/ /	//	j	/ Preservation ☐ Lab to do	1
ALPHA Lab HD. Sample	ID .	Collection		ampler's		\$\g\	/ / /	/ /		//.		(Please specify below)	L E
(Lab Use Only) Sample		87/68 1620		Initials	y =)/ '/ · •/	- / /	- 	//	'. /	<i>/ /</i>	Sample Specific Comments	
13.5-9	22 (7 .7 .0 -	 	16	* 7	1	\dashv	++		+	\vdash	.	4
4 15.5 -3	<u>w-z</u>	1 1143		4	11	+	++	+	++	+	\vdash		-4.
3 13.5-5	<u>w 23 </u>	1 1040	2 2	10	+			$\perp \perp$		\perp	Н		
13.5 - 9	5W-4	/100	5	46						_			4
5 13.5 - B	S	1200	1 5.	LU								· · ·	4
Ten B	mk	V -	$ \mathcal{O} $	4	Y	11							
						-							
				-									
		.		-							1.1	-	_
BI EACE ANOMED OUESTIONS ABOVE			Containe	er Type		+	++	++				Please print clearly, legibly a	ا سحدند
PLEASE ANSWER QUESTIONS ABOVE				ervative	·							pletely. Samples can not be	logged .
IS YOUR PROJECT	Reling	uished By:	Date/	ime		Re	geived By:			Date/Tin	ne e	in and turnaround time clock start until any ambiguities an	e rasolvac
MA MCP or CT RCP?		- An	840	8 130	9	Lec	1		,		NE C	All samples submitted are su Alpha's Terms and Condition	
FORM NO: 01-01 (rev. 14-OCT-07)	_		-				-		- 8/	1/08	ייררן.	See reverse side	

APPENDIX G

LABORATORY ANALYTICAL REPORT – 8,000-GALLON UST CONFIRMATION SAMPLES

ALPHA ANALYTICAL

Eight Walkup Drive

Westborough, Massachusetts 01581-1019

(508) 898-9220

www.alphalab.com

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LAO00065 NY:11148 NJ:MA935 Army:USACE

CERTIFICATE OF ANALYSIS

Client: Delta Environmental

Laboratory Job Number: L0812824

Address: 185 Jordan Road

Date Received: 28-AUG-2008

Troy, NY 12180

Date Reported: 04-SEP-2008

Attn:

Mr. Scott Bryant

Delivery Method: Client

Project Number: 8A0704268P

Site: COOKSON-TANNERY ST.

ALPHA SAMPLE NUMBER	CLIENT IDENTIFICATION	SAMPLE LOCATION
L0812824-01	8K-SW-1	FRANKLIN, NH
L0812824-02	8K-SW-2	FRANKLIN, NH
L0812824-03	8K-SW-3	FRANKLIN, NH
L0812824-04	8K-SW-4	FRANKLIN, NH
L0812824-05	8K-B	FRANKLIN, NH
	·	

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized by

echnical Representative

09040812:53 Page 1 of 18

ALPHA ANALYTICAL NARRATIVE REPORT

Laboratory Job Number: L0812824

The samples were received in accordance with the chain of custody and no significant deviations were encountered during preparation or analysis unless otherwise noted below.

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0812824-01

Date Collected: 28-AUG-2008 12:00

8K-SW-1
Sample Matrix: SOIL

-SW-1 Date Received: 28-AUG-2008
IL Date Reported: 04-SEP-2008

Condition of Sample: Satisfa

Satisfactory Field Prep: None

Number & Type of Containers: 1-Plastic, 4-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
· ·	<u></u>	<u> </u>			
Solids, Total	94	8 .	0.10	30 2540G	0902 15:46 SD
Votatifie (Organics by 82608/	5035-Soil A	nalysia			0903 IH 25 PD
Methylene chloride	ND	ug/kg	7.9		
1,1-Dichloroethane	ND ·	ug/kg	1.2		•
Chloroform	ND	ug/kg	1.2		
Carbon tetrachloride	ND	ug/kg	0.79		
1,2-Dichloropropane	ND	ug/kg	2.8		
Dibromochloromethane	ND .	ug/kg	0.79		
1,1,2-Trichloroethane	ND	ug/kg	1.2		
Tetrachloroethene	ND	ug/kg	0.79		•
Chlorobenzene	ND	ug/kg	0.79		•
Trichlorofluoromethane	ND	ug/kg	4.0		
1,2-Dichloroethane	ND	ug/kg	0.79		
1,1,1-Trichloroethane	ND	ug/kg	0.79		
Bromodichloromethane	ND	ug/kg	0.79		1
trans-1,3-Dichloropropene	ND	ug/kg	0.79		
cis-1,3-Dichloropropene	ND ·	ug/kg	0.79		
1,1-Dichloropropene	ND	ug/kg	4.0		•
Bromoform	ND	ug/kg	3.2		
1,1,2,2-Tetrachloroethane	ND ·	ug/kg	0.79		
Benzene	ND	ug/kg	0.79		•
Toluene	ND	ug/kg	1.2		
Ethylbenzene	ND	ug/kg	0.79		
Chloromethane	ND	ug/kg	4.0		
Bromomethane	ND	ug/kg	1.6		
Vinyl chloride	ND .	ug/kg	1.6		
Chloroethane	ND	ug/kg	1.6		
1,1-Dichloroethene	ND	ug/kg	0.79		
trans-1,2-Dichloroethene	ND	ug/kg	1.2		·
Trichloroethene	ND	ug/kg	0.79		
l,2-Dichlorobenzene	ND	ug/kg	4.0		
1,3-Dichlorobenzene	ND	ug/kg	4.0		
l,4-Dichlorobenzene	ND	ug/kg	4.0		
Methyl tert butyl ether	ND	ug/kg	1.6		
o/m-Xylene	ND	ug/kg	1.6		
o-Xylene	ND	ug/kg	1.6		
cis-1,2-Dichloroethene	ND .	ug/kg	0.79		
Dibromomethane	ND	ug/kg	7.9		

Laboratory Sample Number: L0812824-01

8K-SW-1

PARAMETER	RESULT	UNITS	RDL 1	REF METHOD	DATE PREP A	ID NAL
				10 0012 003 (1986)		
Volatite Organics by 8260B/5				31, 45, 8260B	0900	18:25 PD E
1,2,3-Trichloropropane	ND	ug/kg	7.9		·	
Styrene	ND	ug/kg	1.6			
Dichlorodifluoromethane	ND	ug/kg	7.9			
Acetone	ND	ug/kg	7.9			
Carbon disulfide	ND	ug/kg	7.9			
2-Butanone	ND	ug/kg	7.9			
4-Methyl-2-pentanone	ND	ug/kg	7.9			
2-Hexanone	ND	ug/kg	7.9			
Bromochloromethane	ND	ug/kg	4.0			
Tetrahydrofuran	ND	ug/kg	16.			-
2,2-Dichloropropane	ND	ug/kg	4.0			
1,2-Dibromoethane	. ND	ug/kg	3.2	•		
1,3-Dichloropropane	ND	ug/kg	4.0		•	
1,1,1,2-Tetrachloroethane	ND	ug/kg	0.79		•	
Bromobenzene	ND	ug/kg	4.0			•
n-Butylbenzene	ND	ug/kg	0.79		-	
sec-Butylbenzene	ND	ug/kg	0.79			
tert-Butylbenzene	ND	ug/kg	4.0			•
o-Chlorotoluene	ND .	ug/kg	4.0			
p-Chlorotoluene	ND	ug/kg	4.0	,		
1,2-Dibromo-3-chloropropane	ND	ug/kg	4.0			
Hexachlorobutadiene	ND	ug/kg	4.0			
Isopropylbenzene	ND	ug/kg	0.79			
p-Isopropyltoluene	ND	ug/kg	0.79			
Naphthalene	ND	ug/kg	4.0			
n-Propylbenzene	ND	ug/kg	0.79			
1,2,3-Trichlorobenzene	ND	ug/kg	4.0			
1,2,4-Trichlorobenzene	ND	ug/kg	4.0			
1,3,5-Trimethylbenzene	ND	ug/kg	4.0			
1,2,4-Trimethylbenzene	ND	ug/kg	4.0			
Ethyl ether	ND .	ug/kg	4.0			
Isopropyl Ether	. ND	ug/kg	3.2			•
tert-Butyl Alcohol	ND	ug/kg	79.		·	
Ethyl-Tert-Butyl-Ether	ND	ug/kg	3.2		-	
Tertiary-Amyl Methyl Ether	ND	ug/kg	3.2			
Surrogate(s)	Recovery		QC Crit	eria		
1,2-Dichloroethane-d4	93.0	용 ·	70-130			
Toluene-d8	98.0	ક	70-130			•
4-Bromofluorobenzene	110	8	70-130			
Dibromofluoromethane	90.0	ક	70-130			
Petro eum Bydrocarbons iby Go	SRO SELEC			1 1 5 80158 3 FE	660	2 致 30 进程
Gasoline Range Organics	ND	ug/kg	2900			
Surrogate(s)	Recovery		QC Crit	eria		
1,1,1-Trifluorotoluene	91.0	윰	70-130		*	_
4-Bromofluorobenzene	100	ક્ર	70-130			•

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0812824-02

2824-02 Date Collected: 28-AUG-2008 12:10

8K-SW-2
Sample Matrix: SOIL

Date Received : 28-AUG-2008
Date Reported : 04-SEP-2008

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 1-Plastic, 4-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Solids, Total	92	8	0.10	30 2540G	0902 15:46 SD
Yolatile Organics by 8260B/	5035, Soil A	nalyala 💮		100 TE (16260B	0997-19 (02 BU
Methylene chloride	ND .	ug/kg	7.8		
1,1-Dichloroethane	ND	ug/kg	1.2		•
Chloroform	ND	ug/kg	1.2		
Carbon tetrachloride	ND	ug/kg	0.78		·
1,2-Dichloropropane	ND	ug/kg	2.7		•
Dibromochloromethane	ND	ug/kg	0.78		
1,1,2-Trichloroethane	ND	ug/kg	1.2		
Tetrachloroethene	ND	ug/kg	0.78		
Chlorobenzene	. ND	ug/kg	0.78		
Trichlorofluoromethane	ND	ug/kg	3.9		
1,2-Dichloroethane	ND	ug/kg	0.78		•
1,1,1-Trichloroethane	ND	ug/kg	0.78		
Bromodichloromethane	ND	ug/kg	0.78		
trans-1,3-Dichloropropene	ND	ug/kg	0.78		
cis-1,3-Dichloropropene	ND .	ug/kg	0.78		
1,1-Dichloropropene	ND	ug/kg	3.9		
Bromoform	ND	ug/kg	3.1		
1,1,2,2-Tetrachloroethane	ND	ug/kg	0.78	•	
Benzene	ND	ug/kg	0.78		
Toluene	ND	ug/kg	1.2	•	
Ethylbenzene	ND	ug/kg	0.78		
Chloromethane	ND	ug/kg	3.9		
Bromomethane	N D	ug/kg	1.6		
Vinyl chloride	ND	ug/kg	1.6		
Chloroethane	ND	ug/kg	1.6		
l,1-Dichloroethene	ND	ug/kg	0.78		
trans-1,2-Dichloroethene	ND	ug/kg	1.2		
Crichloroethene	ND	ug/kg	0.78		
1,2-Dichlorobenzene	ND	ug/kg	3.9		
1,3-Dichlorobenzene	ND	ug/kg	3.9	•	
l,4-Dichlorobenzene	ND	ug/kg	3.9		
Methyl tert butyl ether	ND ·	ug/kg	1.6		
o/m-Xylene	ND	ug/kg	1.6		
-Xylene	ND	ug/kg	1.6		
cis-1,2-Dichloroethene	ND	ug/kg	0.78		
Dibromomethane	ND	ug/kg	7.8		

 $\hbox{{\tt Comments: Complete list of References and Glossary of Terms found in Addendum I}$

09040812:53 Page 5 of 18

Laboratory Sample Number: L0812824-02

8K-SW-2

PARAMETER	RESULT	UNITS	RDL RI	EF METHOD	DATE ID
Volatile Organics by 8260B/5	035-Scil An	alysis co	atla 🏢 🚟	1 8260B	0903 L9, 02 PD
1,2,3-Trichloropropane	ND	ug/kg	7.8	Committee of the section of the sect	e a Color of the place was the spot of the place of the Color of the C
Styrene ·	ND	ug/kg	1.6		
Dichlorodifluoromethane	ND	ug/kg	7.8		
Acetone	ND	ug/kg	7.8		
Carbon disulfide	ND .	ug/kg	7.8		
2-Butanone	ND	ug/kg	7.8		
4-Methyl-2-pentanone	ND -	ug/kg	7.8		
2-Hexanone	ND	ug/kg	7.8		
Bromochloromethane	ND	ug/kg	3.9		
Tetrahydrofuran	ND	ug/kg	16.		
2,2-Dichloropropane	ND	ug/kg	3.9		
1,2-Dibromoethane	ND	ug/kg	3.1		
1,3-Dichloropropane	ND	ug/kg	3.9		
1,1,1,2-Tetrachloroethane	ND	ug/kg	0.78		
Bromobenzene	ND	ug/kg	3.9		
n-Butylbenzene	ND	ug/kg	0.78	•	
sec-Butylbenzene	ND	ug/kg	0.78		•
tert-Butylbenzene	ND	ug/kg	3.9		•
o-Chlorotoluene	ND	ug/kg	3.9		
p-Chlorotoluene	ND	ug/kg	3.9		•
1,2-Dibromo-3-chloropropane	ND	ug/kg	3.9		•
Hexachlorobutadiene	ND	ug/kg	3.9		•
Isopropylbenzene	ND	ug/kg	0.78	•	
p-Isopropyltoluene	ND	ug/kg	0.78		
Naphthalene	ND	ug/kg	3.9		
n-Propylbenzene	ND	ug/kg	0.78		
1,2,3-Trichlorobenzene	ND	ug/kg	3.9		
1,2,4-Trichlorobenzene	ND	ug/kg	3.9		•
1,3,5-Trimethylbenzene	ND	ug/kg	3.9		
1,2,4-Trimethylbenzene	ND	ug/kg	3.9		,
Ethyl ether	ND	ug/kg	3.9		
Isopropyl Ether	ND ·	ug/kg	3.1	•	
tert-Butyl Alcohol	ND	ug/kg	78.		
Ethyl-Tert-Butyl-Ether	ND	ug/kg	3.1		
Tertiary-Amyl Methyl Ether	ND	ug/kg	3.1		
Surrogate(s)	Recovery		OC Crite	ria	
1,2-Dichloroethane-d4	94.0	*	70-130	- +-4	
Toluene-d8	96.0	8	70-130		
4-Bromofluorobenzene	107	8	70-130		
Dibromofluoromethane	92.0	8	70-130		
Petro leum Hydrocarbons by Go	GRO III		93 - 1 6 A B	1 80158	
Gasoline Range Organics	ND	ug/kg	3600	PERSONAL PROPERTY OF THE PROPE	- NAME TO BE STORED
Surrogate(s)	Recovery		.QC Crite:	ria	
1,1,1-Trifluorotoluene	89.0	8	70-130	-	
4-Bromofluorobenzene	101	8	70-130		
		-	. 5 250		

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0812824-03

Date Collected: 28-AUG-2008 12:20

8K-SW-3

Date Received: 28-AUG-2008 Date Reported: 04-SEP-2008

Condition of Sample:

Sample Matrix:

Satisfactory

SOIL

Field Prep: None

Number & Type of Containers: 1-Plastic, 4-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD		TE	ID
					PREP	ANAL	
Solids, Total	98	8	0.10	30 2540G		0902 15:4	6 SD
Volatile Organits by \$260B/	5035 Soli (A	nalysis		12 82608		0953 1485	
Methylene chloride	ND	ug/kg	11,				
l,1-Dichloroethane	ND	ug/kg	1.6				
Chloroform	ND	ug/kg	1.6				
Carbon tetrachloride	ND	ug/kg	1.1				
l,2-Dichloropropane	ND	ug/kg	3.7		•		
Dibromochloromethane	ND	ug/kg	1.1				
l,1,2-Trichloroethane	ND	ug/kg	1.6				
Tetrachloroethene	ND	ug/kg	1.1	•			
Chlorobenzene	ND	ug/kg	1.1				
Crichlorofluoromethane	ND	ug/kg	5.3				
l,2-Dichloroethane	ND	ug/kg	1.1				
l,1,1-Trichloroethane	ND .	ug/kg	1.1	,			
Bromodichloromethane	ND	ug/kg	1.1				
rans-1,3-Dichloropropene	ND.	ug/kg	1.1				
cis-1,3-Dichloropropene	ND	ug/kg	1.1				
1,1-Dichloropropene	ND	ug/kg	5.3				
Bromoform	ND	ug/kg	4.2				
1,1,2,2-Tetrachloroethane	ND	ug/kg	1.1				
Benzene	ND	ug/kg	1.1				
Coluene	ND	ug/kg	1.6				
Ithylbenzene	ND	ug/kg	1.1				
Chloromethane	ND	ug/kg	5.3				
Bromomethane	ND	ug/kg	2.1				
inyl chloride	ND	ug/kg	2.1				
Chloroethane	ND	ug/kg	2.1				
,1-Dichloroethene	ND	ug/kg	1.1				
rans-1,2-Dichloroethene	ND	ug/kg	1.6				
richloroethene	ND	ug/kg	1.1				
,2-Dichlorobenzene	ND	ug/kg	5.3				
,3-Dichlorobenzene	ND	ug/kg	5.3				
,4-Dichlorobenzene	ND	ug/kg	5.3				
ethyl tert butyl ether	ND	ug/kg	2.1				
o/m-Xylene	ND	ug/kg	2.1				
-Xylene	ND	ug/kg	2.1				
is-1,2-Dichloroethene	ND	ug/kg	1.1				
ibromomethane	ND	ug/kg	11.	•			

Comments: Complete list of References and Glossary of Terms found in Addendum I

09040812:53 Page 7 of 18

Laboratory Sample Number: L0812824-03

8K-SW-3

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP ANA	r ID
volatu le Grgan es by 82608/5	35-So 9-An	llysis co		T TO CAPE IN	0903=15	
1,2,3-Trichloropropane	ND.	ug/kg	11.	は日本なない。 は日本なない。 は日本なない。 日本は、日本のは、日本は、日本のは、日本は、日本のは、日本のは、日本のは、日本の		TO A PLAN
Styrene	ND	ug/kg	2.1			
Dichlorodifluoromethane	ND	ug/kg	11.			
Acetone	ND	ug/kg	11.		•	
Carbon disulfide	ND	ug/kg	11.			
2-Butanone	ND	ug/kg	11.			
4-Methyl-2-pentanone	ND	ug/kg	11.			
2-Hexanone	ND	ug/kg	11.			
Bromochloromethane	ND	ug/kg	5.3			
Tetrahydrofuran	ND	ug/kg	21.	•		
2,2-Dichloropropane	ND	ug/kg	5.3		•	
1,2-Dibromoethane	ND	ug/kg	4.2			
1,3-Dichloropropane	ND	ug/kg	5.3			
1,1,1,2-Tetrachloroethane	ND	ug/kg	1.1			•
Bromobenzene	ND	ug/kg	5.3	•		
n-Butylbenzene	ND	ug/kg	1.1			
sec-Butylbenzene	ND	ug/kg	1.1			-
tert-Butylbenzene	ND	ug/kg	5.3			
o-Chlorotoluene	ND	ug/kg	5.3			
p-Chlorotoluene	ND	ug/kg	5.3			
1,2-Dibromo-3-chloropropane	ND	ug/kg ug/kg	5.3			
Hexachlorobutadiene	ND					
Isopropylbenzene	ND	ug/kg	5.3 1.1			
p-Isopropyltoluene	ND	ug/kg				
Naphthalene	ND	ug/kg	1.1			
n-Propylbenzene	ND	ug/kg	5.3			
1,2,3-Trichlorobenzene	ND	ug/kg	1.1			
1,2,4-Trichlorobenzene	ND	ug/kg	5.3			
1,3,5-Trimethylbenzene	ND	ug/kg	5.3			
1,2,4-Trimethylbenzene	ND	ug/kg	5.3			
Ethyl ether	ND ND	ug/kg	5.3			
Isopropyl Ether		ug/kg	5.3			
tert-Butyl Alcohol	ND ND	ug/kg	4.2			
Ethyl-Tert-Butyl-Ether		ug/kg	110			
Tertiary-Amyl Methyl Ether	ND	ug/kg	4.2			
reicialy-Amyl Methyl Ether	ND	ug/kg	4.2			
Surrogate(s)	Recovery		QC Crit	eria		
1,2-Dichloroethane-d4	111	8	70-130			
Foluene-d8	117	æ	70-130			
4-Bromofluorobenzene	124	8	70-130	•		
Dibromofluoromethane	112	8	70-130			
Petroleum Hydrocarbons by CC	chof 4.6			8015B	0982 E	4 a
Gasoline Range Organics	ND	ug/kg	2700	- DECEMBER		
Surrogate(s)	Recovery		QC Crit	eria		
1,1,1-Trifluorotoluene	89.0	8	70-130			
4-Bromofluorobenzene	102	¥.	70-130			

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0812824-04

8K-SW-4

Sample Matrix: SOIL

Date Collected: 28-AUG-2008 12:30

Date Received : 28-AUG-2008 Date Reported : 04-SEP-2008

Condition of Sample: Satisfactory

Field Prep: None

Number & Type of Containers: 1-Plastic, 4-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Solids, Total	94	· &	0.10	30 2540G	0902 15:46 SD
Volatille Organics by 82608/	5035-Soll A	nalysis		111 100 com	0903-20116-001
Methylene chloride	ND	ug/kg	8.3		
1,1-Dichloroethane	ND	ug/kg	1.2		•
Chloroform	ND	ug/kg	1.2		
Carbon tetrachloride	ND	ug/kg	0.83		•
1,2-Dichloropropane	ND	ug/kg	2.9		
Dibromochloromethane	ND	ug/kg	0.83		
1,1,2-Trichloroethane	ND	ug/kg	1.2		
Tetrachloroethene	ND	ug/kg	0.83		
Chlorobenzene	ND	ug/kg	0.83		
Trichlorofluoromethane	ND	ug/kg	4.2		
1,2-Dichloroethane	ND	ug/kg	0.83	•	-
1,1,1-Trichloroethane	ND	ug/kg	0.83		
Bromodichloromethane	ND	ug/kg	0.83		•
trans-1,3-Dichloropropene	ND	ug/kg	0.83		•
cis-1,3-Dichloropropene	ND	ug/kg	0.83		
1,1-Dichloropropene	ND	ug/kg	4.2		
Bromoform	ND	ug/kg	3.3		
1,1,2,2-Tetrachloroethane	ND	ug/kg	0.83		
Benzene	ND	ug/kg	0.83		
Toluene	ND	ug/kg	1.2	•	
Ethylbenzene	ND	ug/kg	0.83		
Chloromethane	ND	ug/kg	4.2		
Bromomethane	ND	ug/kg	1.7		
Vinyl chloride	ND	ug/kg	1.7		
Chloroethane	ND	ug/kg	1.7		
1,1-Dichloroethene	ND	ug/kg	0.83		
trans-1,2-Dichloroethene	ND	ug/kg	1.2		
Trichloroethene	ND	ug/kg	0.83	•	
1,2-Dichlorobenzene	ND	ug/kg	4.2		
1,3-Dichlorobenzene	ND	ug/kg	4.2		
1,4-Dichlorobenzene	ND ·	ug/kg	4.2		
Methyl tert butyl ether	ND .	ug/kg	1.7		
p/m-Xylene	ND	ug/kg	1.7		
o-Xylene	ND	ug/kg	1.7		
cis-1,2-Dichloroethene	ND	ug/kg	0.83		
Dibromomethane	· ND	ug/kg	8.3		

Comments: Complete list of References and Glossary of Terms found in Addendum I

09040812:53 Page 9 of 18

Laboratory Sample Number: L0812824-04

8K-SW-4

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
			AZAZANSISANAN		
Volatule organics by 8260B/5				4 8260B (18)	- 1-10903 Z0 X6 PD
1,2,3-Trichloropropane	ND	ug/kg	8.3		
Styrene	ND	ug/kg	1.7		
Dichlorodifluoromethane	ND	ug/kg	8.3		
Acetone	ND	ug/kg	8.3		
Carbon disulfide	ND .	ug/kg	8.3		
2-Butanone	ND	ug/kg	8.3		
4-Methyl-2-pentanone	ND	ug/kg	8.3		
2-Hexanone	ND	ug/kg	8.3		
Bromochloromethane	ND	ug/kg	4.2		
Tetrahydrofuran	ND	ug/kg	17.	•	
2,2-Dichloropropane	ND	ug/kg	4.2		•
1,2-Dibromoethane	ND	ug/kg	3.3		•
1,3-Dichloropropane	ND.	ug/kg	4.2		
1,1,1,2-Tetrachloroethane	ND	ug/kg	0.83		
Bromobenzene	ND	ug/kg	4.2		
n-Butylbenzene	ND	ug/kg	0.83		
sec-Butylbenzene	ND	ug/kg	0.83		
tert-Butylbenzene	ND	ug/kg	4.2		
o-Chlorotoluene	ND	ug/kg	4.2		
p-Chlorotoluene	ND	ug/kg	4.2		
1,2-Dibromo-3-chloropropane	ND	ug/kg	4.2		
Hexachlorobutadiene	ND	ug/kg	4.2		
Isopropylbenzene	ND	ug/kg	0.83		
p-Isopropyltoluene	ND	ug/kg	0.83		
Naphthalene	ND	ug/kg	4.2		
n-Propylbenzene	ND	ug/kg	0.83		
1,2,3-Trichlorobenzene	ND	ug/kg	4.2		
1,2,4-Trichlorobenzene	ND	ug/kg	4.2		
1,3,5-Trimethylbenzene	ND	ug/kg	4.2		
1,2,4-Trimethylbenzene	ND	ug/kg	4.2		
Ethyl ether	ND	ug/kg	4.2		
Isopropyl Ether	ND	ug/kg	3.3		
tert-Butyl Alcohol	ND	ug/kg	83.		
Ethyl-Tert-Butyl-Ether	ND	ug/kg	3.3		
Tertiary-Amyl Methyl Ether	ND	ug/kg	3.3		
Surrogate(s)	Recovery		QC Cr	itería	
1,2-Dichloroethane-d4	95.0	8	70-13	_	
Toluene-d8	102	8	70-13		
4-Bromofluorobenzene	115	¥	70-13		
Dibromofluoromethane	97.0	8	70-13		•
Petro leum Hydrocarbon's by S	-cro			. Ta 80158	0902 15 10 11
Gasoline Range Organics	ND	ug/kg	2900	energy production represents the standard state in	ermon menera na 1916 y september 1916 et al estado en 1916 et al 1916 et al 1916 et al 1916 et al 1916 et al 1
Surrogate(s)	Recovery		QC Cr	iteria	
1,1,1-Trifluorotoluene	83.0	8	70-13		
4-Bromofluorobenzene	98.0	8	70-13		

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0812824-05

8K-B

Sample Matrix:

SOIL

Date Collected: 28-AUG-2008 12:40

Date Received: 28-AUG-2008

Date Reported: 04-SEP-2008

Condition of Sample: Satisfactory

Field Prep:

None

Number & Type of Containers: 1-Plastic, 4-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Solids, Total	95	&	0.10	30 2540G	0902 15:46 SD
Volatille: Organics by 8260B	65035 Scilla	halysia		1 8260B	0903-20:53 PD
Methylene chloride	ND	ug/kg	8.4		
1,1-Dichloroethane	ND	ug/kg	1.2		,
Chloroform	ND	ug/kg	1.2		
Carbon tetrachloride	ND	ug/kg	0.84		•
1,2-Dichloropropane	ND	ug/kg	2.9		
Dibromochloromethane	ND	ug/kg	0.84		
1,1,2-Trichloroethane	ND	ug/kg	1.2		
Tetrachloroethene	ND	ug/kg	0.84		
Chlorobenzene	ND	ug/kg	0.84		•
Trichlorofluoromethane	. ND	ug/kg	4.2		
1,2-Dichloroethane	ND	ug/kg	0.84		
1,1,1-Trichloroethane	ND	ug/kg	0.84		
Bromodichloromethane	ND	ug/kg	0.84		
trans-1,3-Dichloropropene	ND	ug/kg	0.84		
cis-1,3-Dichloropropene	ND	ug/kg	0.84		
1,1-Dichloropropene	ND	ug/kg	4.2		
Bromoform	ND	ug/kg	3.3		
1,1,2,2-Tetrachloroethane	ND	ug/kg	0.84		
Benzene	ND	ug/kg	0.84		
Toluene	ND	ug/kg	1.2		
Ethylbenzene	ND	ug/kg	0.84		
Chloromethane	ND	ug/kg	4.2		
Bromomethane	ND	ug/kg	1.7		• •
Vinyl chloride	ND	ug/kg	1.7		•
Chloroethane	ND	ug/kg	1.7		
1,1-Dichloroethene	ND	ug/kg	0.84		
trans-1,2-Dichloroethene	ND	ug/kg	1.2		
Trichloroethene	ND	ug/kg	0.84		
1,2-Dichlorobenzene	ND	ug/kg	4.2		
1,3-Dichlorobenzene	ND	ug/kg	4.2		•
1,4-Dichlorobenzene	ND	ug/kg	4.2		
Methyl tert butyl ether	ND	ug/kg	1.7		
p/m-Xylene	ND	ug/kg	1.7		
o-Xylene	· ND	ug/kg	1.7	٠.	
cis-1,2-Dichloroethene	ND	ug/kg	0.84		
Dibromomethane	ND	ug/kg	8.4		

Comments: Complete list of References and Glossary of Terms found in Addendum I

09040812:53 Page 11 of 18

Laboratory Sample Number: L0812824-05

BK-B

UNITS	RDL	REF METHOD	DATE PREP 1	ID
nalysis co				
ug/kg	8.4	Table Bank Bank Bank Bank Bank Bank Bank Bank	#1:15:55 E. 10:50 D. 10:50 D. 10:50 D. 10:50 D. 10:50 D. 10:50 D. 10:50 D. 10:50 D. 10:50 D. 10:50 D. 10:50 D	3=20 (53 2DL)
ug/kg	1.7			
ug/kg	8.4			
ug/kg	8.4			
ug/kg	8.4			
ug/kg	8.4			
ug/kg	8.4			
ug/kg	8.4			
ug/kg	4.2			
ug/kg	17.			
ug/kg	4.2			
ug/kg	3.3			
ug/kg	4.2			
ug/kg	0.84		·	
ug/kg	4.2			
ug/kg	0.84			
ug/kg	0.84			
ug/kg	4.2			
ug/kg	4.2			
ug/kg	4.2			
ug/kg	4.2			
ug/kg	4.2			
ug/kg	0.84			
ug/kg	0.84			
ug/kg	4.2			
ug/kg	0.84			
ug/kg	4.2	•	•	
ug/kg	4.2			
ug/kg	3.3			
ug/kg	84.			
ug/kg ug/kg	3.3			•
ug/kg ug/kg	3.3			
	QC Crit	eria		
9 .	70-130	CLIA		
8	70-130 70-130			
8	70-130			
8	70-130			
			090	
ug/kg	2500	Control of the State of the Sta	Market Barress	
	QC Crit	eria		
8	70-130			
8	70-130			•
	ક	QC Crit. % 70-130	ug/kg 2500 QC Criteria % 70-130	ug/kg 2500 QC Criteria % 70-130

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH DUPLICATE ANALYSIS

Laboratory Job Number: L0812824 .

Parameter	Value 1	Value 2	Units	RPD	RPD L	imits
e e e e e e e e e e e e e e e e e e e	oran Februsali	12(s) 0140	TE0812824	01, WG3.	34754-17)	
Solids, Total	94	95	8	1	20	
Petroleum Hydrocar	bonskov co-Gr	O for samp	e(s) 00#05	(108 125	14-01, W	23394345)
Gasoline Range Organics	ND	ND	ug/kg	NC	20	
Surrogate(s)	Reco	very				QC Criteria
1,1,1-Trifluorotoluene	88.0	93.0	% .			70-130
4-Bromofluorobenzene	100	110	육			70-130

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH SPIKE ANALYSES

Laboratory Job Number: L0812824

Parameter	% Recovery	QC Criteria	
percoleum nydrocarbons by cc-crosserk	n for sample(s)	01-05 (LO912514-01) WGB3394	3(4)
Gasoline Range Organics	98	80-120	
Surrogate(s)			
1,1,1-Trifluorotoluene	94	70-130	
4-Bromofluorobenzene	103	70-130	·

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH LCS/LCSD ANALYSIS

Laboratory Job Number: L0812824

Parameter	LCS &	LCSD %	RPD	RPD Limit	QC Limits
Volatile Organics by 8260B/50	35-soil analv	ses for San	ole(s)=01=0	5 WG334997-14	WG8-5/40-9-15/24
Chlorobenzene	99	99	0	30	60-133
Benzene	- 98	100	. 2	30	66-142
Toluene	.99	99	0	30	59-139
1,1-Dichloroethene	102	103	1	30	59-172
Trichloroethene	98	100	2	30	62-137
Surrogate(s)					
1,2-Dichloroethane-d4	97	102	5		70-130
Toluene-d8	101	101	. 0		70-130
4-Bromofluorobenzene	99	98	1		70-130
Dibromofluoromethane	99	101	2		70-130
Petrolenm Bydrocarbons by GC	GRO For samp	le(s) 01-05	(WG333945)	6, WG933943 J)	
Gasoline Range Organics	101	101	0	20	80-120
Surrogate(s)					
1,1,1-Trifluorotoluene	99	99	0		70-130
4-Bromofluorobenzene	102	103	1 .		70-130

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH BLANK ANALYSIS

Laboratory Job Number: L0812824

is for sam 035#Soil A ND ND ND ND	olets/201-(nalysis 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			PREP ANAL
035 Soll An ND ND ND	nalysis ug/kg			
035 Soll An ND ND ND	nalysis ug/kg			
ND ND ND	ug/kg	AND DESCRIPTION OF THE PARTY OF	1 92608	
ND ND	3. 3	10.	THE ROOM HIS TON	0.402-195.007.8D/N
ND		1.5		•
	ug/kg	1.5	,	
	ug/kg	1.0		
			•	
			•	
				•
	J . J			
		2.0		
ND	ug/kg	1.0		
ND	ug/kg	1.5		
ND	ug/kg	1.0		
ND	ug/kg	5.0		
ND	ug/kg	5.0		
ND	ug/kg	5.0		
ND	ug/kg	2.0		
ND	ug/kg	2.0		•
ND	ug/kg	2.0		
ND	ug/kg	1.0		
ND .	ug/kg	10.		
ND	ug/kg	10.		•
ND				
ND				•
ND				
ND				•
ND				
ND				
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ug/kg ND ug/kg <td>ND ug/kg 1.0 ND ug/kg 1.5 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 2.0 ND ug/kg 2.0 ND ug/kg 2.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 2.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 1.0 ND</td> <td>ND</td>	ND ug/kg 1.0 ND ug/kg 1.5 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 2.0 ND ug/kg 2.0 ND ug/kg 2.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 2.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 1.0 ND	ND

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH BLANK ANALYSIS

Laboratory Job Number: L0812824

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD		ID
					PREP ANAL	
		25 185 2 2 2 2 3				1000000
Blank Analys Wolatile Organics by 82608/5				997-d) *** (***)		
2,2-Dichloropropane	ND	ug/kg	5.0		III AMARAM MAY SANGKAN	ika di
1,2-Dibromoethane	ND	ug/kg	4.0			
1,3-Dichloropropane	ND	ug/kg	5.0			
1,1,1,2-Tetrachloroethane	ND	ug/kg	1.0			
Bromobenzene	ND	ug/kg	5.0		•	
n-Butylbenzene	ND	ug/kg	1.0			
sec-Butylbenzene	ND ·	ug/kg	1.0	•	A.	
tert-Butylbenzene	ND	ug/kg	5.0			
o-Chlorotoluene	ND	ug/kg	5.0			
p-Chlorotoluene	ND	ug/kg	5.0			
1,2-Dibromo-3-chloropropane	ND	ug/kg	5.0	•		
Hexachlorobutadiene	ND	ug/kg	5.0			
İsopropylbenzene	ND	ug/kg	1.0			
p-Isopropyltoluene	ND	ug/kg	1.0	•		
Naphthalene	ND	ug/kg	5.0			
n-Propylbenzene	ND	ug/kg	1.0			
1,2,3-Trichlorobenzene	ND	ug/kg	5.0			
1,2,4-Trichlorobenzene	ND	ug/kg	5.0		•	
1,3,5-Trimethylbenzene	ND	ug/kg	5.0			
1,2,4-Trimethylbenzene	ND	ug/kg	5.0			
Ethyl ether	ND	ug/kg	5.0			
Isopropyl Ether	. ND	ug/kg	4.0			
tert-Butyl Alcohol	ND	ug/kg	100			
Ethyl-Tert-Butyl-Ether	ND	ug/kg	4.0			
Tertiary-Amyl Methyl Ether	ND	ug/kg	4.0			
Surrogate(s)	Recovery		QC Crit	eria		
1,2-Dichloroethane-d4	99.0	&	70-130	0220		
Toluene-d8	103	8	70-130			
4-Bromofluorobenzene	114	8	70-130			
Dibromofluoromethane	96.0	8	70-130			,
			r waaaa			
Blank Analys Petroleum Hydrocarbons by GC	en entered been born bereit for exercises to establishe	ner a partie partier i divinione nerespessor	o (NG3J38	2 2 6) 1	0902 86 12	
Gasoline Range Organics	ND	ug/kg	2500	Primarentase Primarias de la Colonia de Colo	opens remindering and remained that the results are selected in the selection of the select	mater W
Surrogate(s)	Recovery		QC Crit	eria		
1,1,1-Trifluorotoluene	88.0	8	70-130			
1-Bromofluorobenzene	94.0	8	70-130			
	2	•				:

ALPHA ANALYTICAL ADDENDUM I

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IIIA, 1997.
- 30. Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.

GLOSSARY OF TERMS AND SYMBOLS

REF Reference number in which test method may be found.

METHOD Method number by which analysis was performed.

ID Initials of the analyst.

ND Not detected in comparison to the reported detection limit.

NI Not Ignitable.

ug/cart Micrograms per Cartridge.

The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

LIMITATION OF LIABILITIES

Alpha Analytical, Inc. performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical, Inc., shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical, Inc. be held liable for any incidental consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical, Inc.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding times and splitting of samples in the field.

CHAIN C	F CUSTODY PAGE	OF_	Date Rec'd in Lab: 8/28		A Job#: L0812824				
WESTBORO, MA MANSFIELD, MA TEL: 508-898-9220 TEL: 508-822-9300	Project Information	7 6	Report Information - Data D FAX FAX FAMIL	صحبة بسمسوسي	gInformation eas Client info PO#: 84070426				
FAX: 508-898-9193		-Tannery St.	□ FAX □ Add'I Deli	<i></i>	5 23 CHOILE INTO # C #. 10 10 10 12 C				
Client: Delta Consultant	Project Location: Frankling Project #: 8A0704	2/2P	Regulatory Requirements/Re	eport Limits					
Address: 185 Jordan Rd.	Project Manager: Scall T		State /Fed Program	Criteria					
Trov NY 12180	ALPHA Quote #:	, ,			ABLECONFIDENCEPROTOCOLS				
Phone: (518) 203 - 0050	Turn-Around Time		☐ Yes ☐ No Are MCP Ar	alytical Methods Required					
Fax: (518) 203-0051	570tooded E BUILD			(Reasonable Confidence					
Email: Sbryantedel La env	٠٠دومي	confirmed # pre-approved!) Time:	60 / / J	////	SAMPLE HANDLING				
These samples have been previously analyzed by Al	pha 115 1070			/ / / / / / /	Sample Handling A				
Other Project Specific Requirements/Con	nments/Detection Limits:	_	8260 L MMLY 88 8260 L 5. L 704 - 52. L 704 - 52. L 704 - 52. L 704 - 52. L 704 - 52. L		Done Not needed Lab to do Preservation Lab to do (Please specify below)				
ALPHA Lab ID (Lab Use Only) Sample ID		Sample Sampler's Matrix Initials	1 / 12 / 26/26 / P		Sample Specific Comments				
12024-01 BK-SW-	d28/68 1200	Soil LCG	2111		5				
· 02 8K-SW.		1 1							
- 03 8K-SW-									
-04 8K-SW-	, , , , ,								
- 05 QV - R	1 1240								
- OK B		<u></u>							
					-				
					<u> </u>				
			+ + + + + + + + + + + + + + + + + + + +		:				
PLEASE ANSWER QUESTIONS ABOVE!		Container Type Preservative			Please print clearly, legibly and completely. Samples can not be				
IS YOUR PROJECT	Relinquished By:	Date/Time	Received By:	Date/Time	logged in and turnaround time clock will not start until any ambiguities ar				
MA MCP or CT RCP?		8/28/8 15:	20 Til- Clay	8/28/08/	resolved. All samples submitted are fullbject to Alpha's Payment Terms. See reverse side.				

Closure Report Review

A. Oct 23, 2008 : Date Closure Report Received Baul Durken 0110998 199902062 Owner Information: POLYCLAD LAMINATES INC POLYCLAD LAMINATES INC **45 TANNERY ST** 3100 W RAY RD STE 301 FRANKLIN CHANDLER, AZ 85226 Tank Closure Information: System # 7A 4500 gallon Hazardous Substance System Permanently Closed on 8/6/2008 System # 7B gallon Hazardous Substance System Permanently Closed on 8/6/2008 4500 System # 7C 4500 gallon Hazardous Substance System Permanently Closed on 8/6/2008 8000 gallon Other Substance System Permanently Closed on 8/28/2008 System # 8 B. Oct 23, 2008 Date Submitted For Initial Review WHW or PET, Closure Reviewer: Field Screening: Analytical Results: Release Indicated: Contaminated Soils Stockpiled: NFA) LSIR / SCR / Soil Date Submitted to UST Compliance Compliance Reviewer: Date: Compliance with Env-W m 1401: Non Compliance with Env-W m 1401 Date Fowarded to PM Soil / SIR / SCR / NFA Reviewer:

Chain of Custody Record

STL-4124 (0901)																	7	<u>.</u>			- 3											
DELTA CONSULTANT S Address 185 JORDAN ROAD				Project Manager SCOTT BRYANT Telephone Number (Area Code)/Pax Number									Lan	Date								Chain of Custody Number 326057										
185 JORDAN ROAD			Telephone Number (Area Code) 5 18 - 203 - (•)/Fax Number 00.50						* \$			Lab Number							P	age _			of .	1	•	
City State Zip Code NY \$ 12180			Site Contact					Lab Contact							5			πρ	alys e s	is (A cace	ttac is n	ach list if needed)								,		
LODKSON / Polyclad Flanklin, NH				Carrier/Waybill Number											PPMCTA	B	n. 04	•										Spec	ial In	struc	tions/	,
Sontract/Purchase Order/Quote Np. DELTA FRESECT # 8A 67642 68P			Ма					Containers & Preservatives							l. L	- N	56/	SUIDC		$\cdot \mid \cdot \mid$											Receipt	
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Ąį	Aqueous	Sed.	Soil		Unpres.	H2S04	HNO3	HCI	NaOH	ZnAc/ NaOH		%	1393	275	1975				-92.										
MW-6	11/8/07	1015		X				4		1	3				X	X	X	X									*	Fric	d f	TLT	EN E	<u>></u>
MW-7	11/8/07	1140		X				4		7	3				X	X	X	X										1.				
Trip Blank	10/30/07																												******			
																																-
			Γ							\top																						
			İ						1	T	寸																				····	
							1		1	1	一		\exists																			÷
			┢				\dashv	7		+	\neg					-	-					·										
								1	-	\dashv													\vdash				 					•
			H	-						+		\dashv		-										-					· · · · · · · · · · · · · · · · · · ·			
			-	-					T	\dashv	\dashv	-			_		\vdash						_					.				
			-					\dashv	+	+								-		v" i					-							
Possible Hazard Identification			1	Samp	le Dis	sposa	<u> </u>	_1								<u> </u>	<u> </u>							<u></u>	<u> </u>		<u> </u>					
☐ Non-Hazard ☐ Flammable ☐ Skin Irritant] Unknow	1										or _	(A fee may be or Months longer than 1								e assessed if samples are retained month)											
Turn Around Time Required 24 Hours	ays 🗌 21 Days	. Ot	har						QC F	Requ	iirem	ents	(Spe	ecify)	j													/				
1. Relinguished By			Date Time 1200			00	1. Received By						· ·			~									Date /			, ,	Time	 کر ز ^ح		
2. Relinqúished By				Date Time				2. Received By																		 	Date		Time			
3. Relinquished By			Time				3. Received By																		Date		<u> </u>	Time				
Comments																	···	,c:	<u> </u>	. (_	. ,	<u> </u>									
DISTRIBUTION: WHITE - Returned to Client with Report;	CANARY - Stays w	ith the San	nple:	PINE	⟨ - Fi	eld C	ору											متت .	<u>`</u>	-												